Skip to main content
Log in

Morphological, physiological and biochemical adaptations of Eucalyptus citriodora seedlings under NaCl stress in hydroponic conditions

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Salinity stress could be managed by the growth of economically important tree species. Adaptations of Eucalyptus citriodora to NaCl stress was investigated under different concentrations of NaCl (15–75 mM). After 2 and 6 months of treatments, data were recorded for growth performance (shoot and root length, leaf number and area), physiological attributes [chlorophyll a (Chl a ), chlorophyll b (Chl b ), total chlorophyll (TC), carotenoids, relative water content (RWC)] and osmolyte accumulation [proline, glycine betaine (GB) and trehalose] parameters. After 2 months, changes in morphological parameters of treated plants were negligible (1–1.8-folds) in comparison to control, which is correlated with 2–8-, 1.12–7.7- and 1.73–3.94-folds increase in GB, proline and trehalose contents, respectively. At 6 months, though there was plant mortality, 70–80 % decrease in TC contents and reduction in osmolyte contents but 20 % increase in RWC of stressed plants were monitored. Survival at higher salt concentrations with accumulation of sodium shows significant salt tolerance in this species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agres (1994) Agres Statistical Software Version 3.01. Pascal International Software Solutions, USA

  • Ahmad R, Kim MD, Back KH, Kim HS, Lee HS, Kwon SY, Murata N, Chung WI, Kwak SS (2008) Stress-induced expression of choline oxidase in potato plant chloroplasts confers enhanced tolerance to oxidative, salt, and drought stresses. Plant Cell Rep 27:687–698

    Article  CAS  PubMed  Google Scholar 

  • Ahmed HE, Youssef EA, Kord MA, Qaid EA (2013) Trehalose accumulation in wheat plant promotes sucrose and starch biosynthesis. Jor J Biol Sci 6:143–150

    CAS  Google Scholar 

  • Akram MS, Ali Q, Athar HR, Bhatti AS (2006) Ion uptake and distribution in Panicum antidotale retz. under salt stress. Pak J Bot 38:1661–1669

    Google Scholar 

  • Ashraf M, Harris PJC (2004) Potential biochemical indicators of salinity tolerance in plants. Plant Sci 166:3–16

    Article  CAS  Google Scholar 

  • Ashraf M, Nazir N, McNeilly T (2001) Comparative salt tolerance of amphidiploid and diploid Brassica species. Plant Sci 160:683–689

    Article  CAS  PubMed  Google Scholar 

  • Bandeh-hagh A, Toorchi M, Mohammadi A, Chaparzadeh N, Salekdeh GH, Kazemnia H (2008) Growth and osmotic adjustment of canola genotypes in response to salinity. J Food Agr Environ 6:201–208

    CAS  Google Scholar 

  • Bashiti TE, Hamamci H, Oktem HA, Yucel M (2005) Biochemical analysis of trehalose and its metabolizing enzymes in wheat under abiotic stress conditions. Plant Sci 169:47–54

    Article  Google Scholar 

  • Bates LS, Waldren RP, Teare LD (1973) Rapid determination of free proline for water stress studies. Plant Soi 39:205–207

    Article  CAS  Google Scholar 

  • Carillo P, Parisi D, Woodrow P, Pontecorvo G, Massaro G, Annunziata MG, Fuggi A, Sulpice R (2011) Salt induced accumulation of Glycine betaine is inhibited by high light in Durum wheat. Func Plan Biol 38:139–150

    Article  CAS  Google Scholar 

  • Cha-um S, Somsueb S, Samphumphuang T, Kirdmanee C (2013) Salt tolerant screening in eucalypt genotypes (Eucalyptus spp.) using photosynthetic abilities, proline accumulation, and growth characteristics as effective indices. In Vitro Cell Dev Biol 49:611–619

    Article  CAS  Google Scholar 

  • Chaves MM, Flexas J, Pinheiro C (2009) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot 103:551–560

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen TH, Murata N (2002) Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and other compatible solutes. Curr Opin Plant Biol 5:250–257

    Article  CAS  PubMed  Google Scholar 

  • Chookhampaeng S (2011) The effect of salt stress on growth, chlorophyll content, proline content and antioxidative enzymes of pepper (Capsicum annuum L.) seedling. European J of Scien Resear 49:103–109

    Google Scholar 

  • Dutta BK, Karmakar S, Naglot A, Aich JC, Begam M (2007) Anticandidial activity of some essential oils of a mega biodiversity hotspot in India. Mycoses 50:121–124

    Article  CAS  PubMed  Google Scholar 

  • Feikema PM, Sasse JM, Bandara GD (2012) Chloride content and biomass partitioning in Eucalyptus hybrids grown on saline sites. New Forest 43:89–107

    Article  Google Scholar 

  • Gadallah MAA (1999) Effects of proline and glycinebetaine on Vicia faba responses to salt stress. Biol Plant 42:249–257

    Article  CAS  Google Scholar 

  • Gebauer J, Siddigb KE, Salihc AA, Ebert G (2004) Tamarindus indica L. seedlings are moderately salt tolerant when exposed to NaCl-induced salinity. Scientia Horticult 103:1–8

    Article  CAS  Google Scholar 

  • Gebre GM, Tschaplinski TJ, Tuskan GA, Todd DE (1998) Clonal and seasonal differences in leaf osmotic potential and organic solutes of five hybrid poplar clones grown under field conditions. Tree Physiol 18:645–652

    Article  CAS  PubMed  Google Scholar 

  • Ghoulam C, Foursy A, Khalid F (2002) Effects of salt stress on growth, inorganic ions and proline accumulation in relation to osmotic adjustment in five sugar beet cultivars. Environ Exp Bot 47:39–50

    Article  CAS  Google Scholar 

  • Gucci R, Lombardini L, Tattini M (1997) Analysis of leaf water relations of two olive (Olea europea) cultivars differing in tolerance to salinity. Tree Physiol 17:13–21

    Article  PubMed  Google Scholar 

  • Heidari A, Toorchi M, Bandehagh A, Shakiba MR (2011) Effect of NaCl stress on growth, water relations, organic and inorganic osmolytes accumulation in Sunflower (Helianthus annuus L.) Lines. Univ J Environ Res Technol 1:351–362

    CAS  Google Scholar 

  • Javid MG, Sorooshzadeh A, Moradi F, Sanavy SAMM, Allahdadi I (2011) The role of phytohormone in alleviating salt stress in crop plants. Aust J Crop Sci 5:726–734

    CAS  Google Scholar 

  • Juhany LIE, Aref IM, Ahmed AIM (2008) Response of Eucalyptus camaldulensis, Eucalyptus microtheca and Eucalyptus intertexta Seedlings to Irrigation with Saline Water. World J Agr Sci 4:825–834

    Google Scholar 

  • Kong Y, Zhou G, Wang Y (2001) Physiological characteristics and alternative respiratory pathway under stress in two wheat cultivars differing in salt tolerance. Russ J Plant Physiol 48:595–600

    Article  CAS  Google Scholar 

  • Marcar NE, Termaat A (1990) Effect of root zone solutes on Eucalyptus camaldulensis and Eucalyptus bicostata seedlings: responses to Na+, Mg2+ and Cl−. Plant Soil 125:245–254

    Article  CAS  Google Scholar 

  • Marschner H (1995) Mineral Nutrition of Higher Plants. Academic Press, London

    Google Scholar 

  • Matsunaga E, Nanto K, Oishi M, Ebinuma H, Morishita Y, Sakurai N, Suzuki H, Shibata D, Shimada T (2012) Agrobacterium-mediated transformation of Eucalyptus globulus using explants with shoot apex with introduction of bacterial choline oxidase gene to enhance salt tolerance. Plant Cell Rep 31:225–235

    Article  CAS  PubMed  Google Scholar 

  • Merchant A, Callister A, Arndt S, Tausz M, Adams M (2007) Contrasting physiological responses of six eucalyptus species to water deficit. Oxford J Ann Bot 100:1507–1515

    Article  Google Scholar 

  • Morabito D, Mills D, Prat D, Dizengremel P (1994) Response of clones of Eucalyptus microtheca to NaCl in vitro. Tree Physiol 14:201–210

    Article  CAS  PubMed  Google Scholar 

  • Nasim M, Qureshi RH, Aziz T, Saqib M, Nawaz S, Sahi ST, Pervaiz S (2008) Growth and ionic composition of salt-stressed Eucalyptus camaldulensis and Eucalyptus tereticornis. Pak J Bot 40:799–805

    CAS  Google Scholar 

  • Nguyen A, Lamant A (1988) Pinitol and myo-inositol accumulation in water-stressed seedlings of maritime pine. Phytochem 27:3423–3427

    Article  CAS  Google Scholar 

  • Popp M, Lied W, Bierbaum U, Gross M, Große-Schulte T, Hams S, Oldenettel J, Schüler S, Wiese J (1997) Cyclitols—stable osmotica in trees. In: Rennenberg H, Escrich S, Ziegler H (eds) Trees—contributions to modern tree physiology. Backhuys Publishers, Leiden, pp 257–270

    Google Scholar 

  • Sarwar MKS, Ullah I, Rahman MU, Asraf MY, Zafar Y (2006) Glycine betaine accumulation and its relation to yield and yield components in cotton genotypes grown under water deficit condition. Pak J Bot 38:1449–1456

    Google Scholar 

  • Shannon MC, Grieve CM (1999) Tolerance of vegetable crops to salinity. Scientia Hort 78:5–38

    Article  CAS  Google Scholar 

  • Siddique MRB, Hamid A, Islam MS (2000) Drought stress effects on water relations of wheat. Bot Bull Acad Sin 41:35–39

    Google Scholar 

  • Silva ALLD, Oliveira YD, Dibax R, Costa JDL, Scheidt GN, Machado MP, Guerra EP, Brondani GE, Alves SAO (2012) Hydroponics growth of Eucalyptus saligna Sm. on salt-stress mediated by sodium chloride. J Bact Biotech 3:213–218

    Google Scholar 

  • Silveira JAG, Viegas RA, Rocha IMA, Moreira ACDM, Moreira RA, Oliveira JTA (2003) Proline accumulation and glutamine synthetase activity are increased by salt-induced proteolysis in cashew leaves. J Plant Physiol 160:115–123

    Article  CAS  PubMed  Google Scholar 

  • Singh A, Toky OP, Singh B, Dhillon GPS (2011) Influence of salinity on biomass and plant water relations of Eucalyptus tereticornis and E. camaldulensis. Indian J of Ecology 38:180–183

    Google Scholar 

  • Tahir MA, Aziz RT, Ashraf M, Kanwal S, Maqsood MA (2006) Beneficial effects of silicon in wheat (Triticum aestivum L.) under salinity stress. Pak J Bot 38:1715–1722

    Google Scholar 

  • Turan MA, Elkarim AHA, Taban A, Taban S (2010) Effect of salt stress on growth and ion distribution and accumulation in shoot and root of maize plant. Afr J Agric Res 5:584–588

    Google Scholar 

  • Witham FH, Blaydes BF, Devlin RM (1971) Experiments in plant physiology. Van Nostrand Reinhold, New York, pp 167–200

    Google Scholar 

  • Woodward AJ, Bennett IJ (2005) The effect of salt stress and abscisic acid on proline production, chlorophyll content and growth of in vitro propagated shoots of Eucalyptus camaldulensis. Plant Cell Tiss Org Cult 82:189–200

    Article  CAS  Google Scholar 

  • Yang CW, Zhang ML, Liu J, Shi DC, Wang DL (2009) Effects of buffer capacity on growth, photosynthesis, and solute accumulation of a glycophyte (wheat) and a halophyte (Chlorisvirgata). Photosynthetica 47:55–60

    Article  CAS  Google Scholar 

  • Zhu JK (2003) Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol 6:441–445

    Article  CAS  PubMed  Google Scholar 

  • Zohar Y, Stefano JD, Bartle J (2010) Strategy for screening Eucalypts for saline lands. Agroforest Syst 78:127–137

    Article  Google Scholar 

Download references

Acknowledgments

The author (Anusha Pulavarty) is very much grateful to Department of Science and Technology, Government of India, for awarding DST INSPIRE fellowship. We would also like to acknowledge Director, CSIR-NEERI, Nagpur for providing excellent platform to conduct research activities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bijaya Ketan Sarangi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Communicated by R. Aroca.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pulavarty, A., Kukde, S., Shinde, V.M. et al. Morphological, physiological and biochemical adaptations of Eucalyptus citriodora seedlings under NaCl stress in hydroponic conditions. Acta Physiol Plant 38, 20 (2016). https://doi.org/10.1007/s11738-015-2042-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-015-2042-1

Keywords

Navigation