Skip to main content
Log in

Early differential gene expression profiling of harvest-induced senescence in detached Arabidopsis plants

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

After a series of stresses, detached plant organs such as leafy vegetables and cut flowers begin to appear declining in quality and then finally senescence. Comprehending, plants’ response to multiple stresses may result in new opportunities to extend the shelf life of postharvest. We investigated physiological responses of Arabidopsis plants after harvest and analyzed global gene transcription in dark-stored detached Arabidopsis plants leaves (DSD). Detached darkened plants of Arabidopsis were stored for 12 h in airtight boxes. Multiple stresses caused a distinguished decrease in chlorophyll, protein content and premature senescence of leaves. The microarray analysis revealed that 852 transcripts were upregulated and 1004 transcripts were downregulated, respectively, more than twofold. A gene ontology test and biological process analysis suggested that activated genes were mostly associated with regulation of transcription, secondary metabolism, response to water deprivation, signal transduction, and other stress responses. Meanwhile, genes that were downregulated were involved in protein biosynthesis, protein folding, lipid catabolism, ribosome biogenesis and assembly, ATP binding, and photosynthesis. Gene expression analysis data suggested that the leaves of detached Arabidopsis plants responded to integrated stresses by regulating diverse gene expression in leaves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

PAL1:

Phenylalanine ammonia lyase 1

C4H:

Cinnamate-4-hydroxylase

SEN1:

Senescence-associated protein 1

CCR1:

Cinnamoyl CoA reductase 1

CAD103:

Cinnamyl-alcohol dehydrogenase 103

C3H:

p-Coumarate 3-hydroxylase

F5H:

Ferulate-5-hydroxylase

EBF2:

Ein3-binding f box protein 2

ACO2 :

ACC oxidase 2

References

  • Atkinson NJ, Urwin PE (2012) The interaction of plant biotic and abiotic stresses: from genes to the field. J Exp Bot 63(10):3523–3543

    Article  CAS  PubMed  Google Scholar 

  • Balazadeh S, Riaño-Pachón D, Mueller-Roeber B (2008) Transcription factors regulating leaf senescence in Arabidopsis thaliana. Plant Biol 10(Suppl 1):63–75

    Article  PubMed  Google Scholar 

  • Balazadeh S, Siddiqui H, Allu AD, Matallana-Ramirez LP, Caldana C, Mehrnia M, Zanor MI, Kohler B, Mueller-Roeber B (2010) A gene regulatory network controlled by the NAC transcription factor ANAC092/AtNAC2/ORE1 during salt-promoted senescence. Plant J 62(2):250–264

    Article  CAS  PubMed  Google Scholar 

  • Breeze E, Harrison E, McHattie S, Hughes L, Hickman R, Hill C, Kiddle S, Kim Y-S, Penfold CA, Jenkins D, Zhang CJ, Morris K, Jenner C, Jackson S, Thomas B, Tabrett A, Legaie R, Moore JD, Wild DL, Ott S, Rand D, Beynon J, Denby K, Mead A, Buchanan-Wollaston V (2011) High-resolution temporal profiling of transcripts during Arabidopsis leaf senescence reveals a distinct chronology of processes and regulation. Plant Cell 23(3):873–894

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bu Q, Jiang H, Li CB, Zhai Q, Zhang J, Wu X, Sun J, Xie Q, Li C (2008) Role of the Arabidopsis thaliana NAC transcription factors ANAC019 and ANAC055 in regulating jasmonic acid-signaled defense responses. Cell Res 18(7):756–767

    Article  CAS  PubMed  Google Scholar 

  • Carbonell-Bejerano P, Urbez C, Carbonell J, Granell A, Perez-Amador MA (2010) A fertilization-independent developmental program triggers partial fruit development and senescence processes in pistils of Arabidopsis. Plant Physiol 154(1):163–172

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cui F, Liu LJ, Zhao QZ, Zhang ZH, Li QQ, Lin BY, Wu YY, Tang SY, Xie Q (2012) Arabidopsis ubiquitin conjugase UBC32 is an ERAD component that functions in brassinosteroid-mediated salt stress tolerance. Plant Cell 24(1):233–244

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Graaff EVD, Schwacke R, Schneider A, Desimone M, Flügge U-I, Kunze R (2006) Transcription analysis of Arabidopsis membrane transporters and hormone pathways during developmental and induced leaf senescence. Plant Physiol 141(2):776–792

    Article  PubMed Central  PubMed  Google Scholar 

  • Guo YF, Gan SS (2011) Convergence and divergence in gene expression profiles induced by leaf senescence and 27 senescence-promoting hormonal, pathological and environmental stress treatments. Plant Cell Environ 35(3):644–655

    Article  PubMed  Google Scholar 

  • Huber DJ (1987) Postharvest senescence: an introduction to the symposium. HortScience 22:853–859

    Google Scholar 

  • Khan BR, Adham AR, Zolman BK (2012) Peroxisomal Acyl-CoA oxidase 4 activity differs between Arabidopsis accessions. Plant Mol Biol 78(1–2):45–58

    Article  PubMed  Google Scholar 

  • Kim JH, Nguyen NH, Nguyen NT, Hong SW, Lee H (2013) Loss of all three calreticulins, CRT1, CRT2 and CRT3, causes enhanced sensitivity to water stress in Arabidopsis. Plant Cell Rep 32(12):1843–1853

    Article  CAS  PubMed  Google Scholar 

  • King GA, Woollard DC, Irving DE, Borst WM (1990) Physiological changes in asparagus tips after harvest. Physiol Plant 80(2):393–400

    Article  CAS  Google Scholar 

  • Kotchoni SO, Kuhns C, Ditzer A, Kirch HH, Bartels D (2006) Over-expression of different aldehyde dehydrogenase genes in Arabidopsis thaliana confers tolerance to abiotic stress and protects plants against lipid peroxidation and oxidative stress. Plant Cell Environ 29(6):1033–1048

    Article  CAS  PubMed  Google Scholar 

  • Lim PO, Kim HJ, Nam HG (2007) Leaf senescence. Annu Rev Plant Biol 58:115–136

    Article  CAS  PubMed  Google Scholar 

  • Liu XC, Li ZH, Jiang ZQ, Zhao Y, Peng JY, Jin JP, Guo HW, Luo JC (2011) LSD: a leaf senescence database. Nucleic Acids Res 39:1103–1107

    Article  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C (T)) method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  • Lorenzo O, Piqueras R, Sanchez-Serrano JJ, Solano R (2003) ETHYLENE RESPONSE FACTOR1 integrates signals from ethylene and jasmonate pathways in plant defense. Plant Cell 15(1):165–178

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Miao Y, Zentgraf U (2010) A HECT E3 ubiquitin ligase negatively regulates Arabidopsis leaf senescence through degradation of the transcription factor WRKY53. Plant J 63(2):179–188

    Article  CAS  PubMed  Google Scholar 

  • Morris K, MacKerness SA, Page T, John CF, Murphy AM, Carr JP, Buchanan-Wollaston V (2000) Salicylic acid has a role in regulating gene expression during leaf senescence. Plant J 23(5):677–685

    Article  CAS  PubMed  Google Scholar 

  • Page T, Griffiths G, Buchanan-Wollaston V (2001) Molecular and biochemical characterization of postharvest senescence in Broccoli. Plant Physiol 125(2):718–727

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Panchuk II, Zentgraf U, Volkov RA (2005) Expression of the Apx gene family during leaf senescence of Arabidopsis thaliana. Planta 222(5):926–932

    Article  CAS  PubMed  Google Scholar 

  • Porra RJ, Thompson WA, Kriedemann PE (1989) Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls A and B extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim Biophys Acta 975(3):384–394

    Article  CAS  Google Scholar 

  • Pruzinska A, Tanner G, Anders I, Roca M, Hörtensteiner S (2003) Chlorophyll breakdown: pheophorbide a oxygenase is a Rieske-type iron-sulfur protein, encoded by the accelerated cell death 1 gene. PNAS 100(25):15259–15264

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rivero RM, Kojima M, Gepstein A, Sakakibara H, Mittler R, Gepstein S, Blumwald E (2007) Delayed leaf senescence induces extreme drought tolerance in a flowering plant. PNAS 104(49):19631–19636

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sakuraba Y, Schelbert S, Park SY, Han SH, Lee BD, Andrès CB, Kessler F, Hörtensteiner S, Paek NC (2012) STAY-GREEN and chlorophyll catabolic enzymes interact at light-harvesting complex II for chlorophyll detoxification during leaf senescence in Arabidopsis. Plant Cell 24(2):507–518

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Salleh FM, Evans K, Goodall B, Machin H, Mowla SB, Mur LA, Runions J, Theodoulou FL, Foyer CH, Rogers HJ (2012) A novel function for a redox-related LEA protein (SAG21/AtLEA5) in root development and biotic stress responses. Plant Cell Environ 35(2):418–429

    Article  CAS  PubMed  Google Scholar 

  • Schenk N, Schelbert S, Kanwischer M, Goldschmidt EE, Dörmann P, Hörtensteiner S (2007) The chlorophyllases AtCLH1 and AtCLH2 are not essential for senescence-related chlorophyll breakdown in Arabidopsis thaliana. FEBS Lett 581(28):5517–5525

    Article  CAS  PubMed  Google Scholar 

  • Sedigheh HG, Mortazavian M, Norouzian D, Atyabi M, Akbarzadeh A, Hasanpoor K, Ghorbani M (2011) Oxidative stress and leaf senescence. BMC Res Notes 4:477

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Seufert W, Jentsch S (1990) Ubiquitin-conjugating enzymes UBC4 and UBC5 mediate selective degradation of short-lived and abnormal proteins. EMBO J 9(2):543–550

    PubMed Central  CAS  PubMed  Google Scholar 

  • Shan XY, Wang JX, Chua LL, Jiang DA, Peng W, Xie DX (2011) The role of Arabidopsis rubisco activase in jasmonate-induced leaf senescence. Plant Physiol 155(2):751–764

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tabata R, Ikezaki M, Fujibe T, Aida M, Tian CE, Ueno Y, Yamamoto KT, Machida Y, Nakamura K, Ishiguro S (2010) Arabidopsis auxin response factor 6 and 8 regulate jasmonic acid biosynthesis and floral organ development via repression of class 1 KNOX genes. Plant Cell Physiol 51(1):164–175

    Article  CAS  PubMed  Google Scholar 

  • Trivellini A, Jibran R, Watson LM, O’Donoghue EM, Ferrante A, Sullivan KL, Dijkwel PP, Hunter DA (2012) Carbon deprivation-driven transcriptome reprogramming in detached developmentally arresting Arabidopsis inflorescences. Plant Physiol 160(3):1357–1372

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Watts FZ, Butt N, Layfield P, Machuka J, Burke JF, Moore AL (1994) Floral expression of a gene encoding an E2-relatedubiquitin-conjugating protein from Arabidopsis thaliana. Plant Mol Biol 26(1):445–451

    Article  CAS  PubMed  Google Scholar 

  • Zhang LB, Wang G, Chang JM, Liu JS, Cai JH, Rao XW, Zhang LJ, Zhong JJ, Xie JH, Zhu SJ (2010) Effects of 1-MCP and ethylene on expression of three CAD genes and lignification in stems of harvested Tsai Tai (Brassica chinensis). Food Chem 123(1):32–40

    Article  CAS  Google Scholar 

  • Zhou X, Liao Y, Ren GD, Zhang YY, Chen WJ, Kuai BK (2007) Repression of AtCLH1 expression results in a decrease in the ratio of chlorophyll a/b but does not affect the rate of chlorophyll degradation during leaf senescence. J Plant Physiol Mol Biol 33(6):596–606

    CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Chinese Academy of Tropical Agricultural Sciences Special Project for Basic Research Activities of Public-Profitable Research Institutions run by the Central Government (sscri200708, 1251022012001), the HPNSF (No. 808193) and NNSFC (No. 31371870).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lubin Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Y. Wang.

J. Chang and L. Zhang contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, J., Zhang, L., Jia, Z. et al. Early differential gene expression profiling of harvest-induced senescence in detached Arabidopsis plants. Acta Physiol Plant 37, 165 (2015). https://doi.org/10.1007/s11738-015-1918-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-015-1918-4

Keywords

Navigation