Skip to main content
Log in

Interactions between aluminum and boron in tea (Camellia sinensis) plants

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Response of tea plants (Camellia sinensis (L.) O. Kontze) to Al (300 µM AlCl3 for 14 weeks) was studied in combination with deficient (−B) or adequate B supply (+B) in hydroponics. Aluminum improved plant growth under B deficiency. This positive Al effect in (−B) plants was related to an Al-induced increase of B contents in the root cell walls (CW). Moreover, in (−B) plants more Al was partitioned into CW-bound fractions in both leaves and roots than in (+B) plants; an indication that B deficiency reduced the mobility of Al in the tea plants. In general, the highest activities of phenylalanine ammonia lyase, polyphenol oxidase, and soluble and CW-bound fractions of peroxidases were observed in (+Al/−B) plants. In (−B) plants Al supply caused a reduction of CW-bound phenolic acids and lignin, while the concentrations of soluble phenolics increased in the leaves. In the roots, however, Al treatment of B-deficient plants caused a significant increase of CW-bound phenolic acids, but not of lignin. Our results suggest that increased B partitioning into CW and reduction of lignification were important causes for Al-mediated amelioration of growth in B-deficient plants. In addition, the observation that in (+Al/−B) roots CW binding of both Al and phenolic acids was enhanced indicates that in the B-deficient roots Al was mainly bound to the CW phenolic acids; this, in turn, reduced their availability for enzymatic reactions and lignin synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Barceló J, Poschenrieder C (2002) Fast root growth responses, root exudates, and internal detoxias clues to the mechanisms of aluminum toxicity and resistance: a review. Environ Exp Bot 48:75–92

    Article  Google Scholar 

  • Brinkmann K, Blaschke L, Polle A (2002) Comparison of different methods for lignin determination as a basis for calibration of near-infrared reflectance spectroscopy and implications of lignoproteins. J Chem Ecol 28:2483–2501

    Article  CAS  PubMed  Google Scholar 

  • Broadley M, Brown P, Cakmak I, Rengel Z, Zhao F (2012) Function of nutrients: micronutrients. In: Marschner P (ed) Marschner’s mineral nutrition of higher plants. Academic Press, New York, pp 191–248

    Chapter  Google Scholar 

  • Camacho-Cristóbal JJ, Anzelotti D, González-Fontes A (2002) Changes in phenolic metabolism of tobacco plants during short-term boron deficiency. Plant Physiol Biochem 40:997–1002

    Article  Google Scholar 

  • Campos NV, Pereira TAR, Machado MF, Guerra MBB, Tolentino GS, Araújo JS, Rezende MQ, Da Silva MNA, Schaefer CEGR (2014) Evaluation of micro-energy dispersive X-ray fluorescence and histochemical tests for aluminium detection in plants from High Altitude Rocky Complexes, Southeast Brazil. Ann Acad Braz Sci 86:285–296

    Article  CAS  Google Scholar 

  • Carr HP, Lombi E, Küpper H, McGrath SP, Wong MH (2003) Accumulation and distribution of aluminium and other elements in tea (Camellia sinensis) leaves. Agronomie 23:705–710

    Article  CAS  Google Scholar 

  • Chance B, Maehly AC (1955) Assay of catalases and peroxidases. Methods Enzymol 2:764–775

    Article  Google Scholar 

  • Chang YC, Yamamoto Y, Matsumoto H (1999) Accumulation of aluminium in the cell wall pectin in cultured tobacco (Nicotiana tabacum L.) cells treated with a combination of aluminium and iron. Plant Cell Environ 22:1009–1017

    Article  CAS  Google Scholar 

  • Corrales I, Poschenrieder C, Barceló J (2008) Boron-induced amelioration of aluminium toxicity in a monocot and a dicot species. J Plant Physiol 165:504–513

    Article  CAS  PubMed  Google Scholar 

  • Dickerson DP, Pascholati SF, Hagerman AE, Butler LG, Nicholson RL (1984) Phenylalanine ammonia-lyase and hydroxyl cinnamate CoA ligase in maize mesocotyls inoculated with Helminthosporium maydis or Helminthosporium carbonum. Physiol Plant Pathol 25:111–123

    Article  CAS  Google Scholar 

  • Eticha D, Stass A, Horst WJ (2005) Localization of aluminium in the maize root apex: can morin detect cell-wall bound aluminium? J Exp Bot 56:1351–1357

    Article  CAS  PubMed  Google Scholar 

  • Gao HJ, Zhao Q, Zhang XC, Wan XC, Mao JD (2014) Localization of fluoride and aluminum in subcellular fractions of tea Leaves and roots. J Agric Food Chem 62:2313–2319

    Article  CAS  PubMed  Google Scholar 

  • George E, Horst WJ, Neumann E (2012) Adaptation of plants to adverse chemical soil conditions. In: Marschner P (ed) Marschner’s mineral nutrition of higher plants. Academic Press, New York, pp 409–472

    Chapter  Google Scholar 

  • Ghanati F, Morita A, Yokota H (2002) Induction of suberin and increase of lignin content by excess boron in tobacco cells. Soil Sci Plant Nutr 48:357–364

    Article  CAS  Google Scholar 

  • Gunsé B, Poschenrieder C, Barceló J (1997) Water transport properties of roots and root cortical cells in proton and Al-stressed maize varieties. Plant Physiol 113:595–602

    PubMed Central  PubMed  Google Scholar 

  • Hajiboland R, Poschenrieder C (2015) Localization and compartmentation of Al in the leaves and roots of tea plants. Phyton (Argentina) (in press)

  • Hajiboland R, Bastani S, Bahrami-Rad S (2011) Photosynthesis, nitrogen metabolism and antioxidant defense system in B-deficient tea (Camellia sinensis (L.) O. Kuntze) plants. J Sci IR Iran 22:311–320

    CAS  Google Scholar 

  • Hajiboland R, Bahrami-Rad S, Bastani S, Tolrá R, Poschenrieder C (2013a) Boron re-translocation in tea (Camellia sinensis (L.) O. Kuntze) plants. Acta Physiol Plant 35:2373–2381

    Article  CAS  Google Scholar 

  • Hajiboland R, Bahrami-Rad S, Poschenrieder C, Barceló J (2013b) Mechanisms of aluminum-induced growth stimulation in tea (Camellia sinensis). J Plant Nutr Soil Sci 176:616–625

    Article  CAS  Google Scholar 

  • Hajiboland R, Barceló R, Poschenrieder C, Tolrà R (2013c) Amelioration of iron toxicity: a mechanism for aluminum-induced growth stimulation in tea plants. J Inorg Biochem 128:183–187

    Article  CAS  PubMed  Google Scholar 

  • Hajiboland R, Bahrami-Rad S, Bastani S (2014) Aluminum alleviates boron-deficiency induced growth impairment in tea plants. Biol Plant 58:717–724

    Article  Google Scholar 

  • Heidarabadi MD, Ghanati F, Fujiwara T (2011) Interaction between boron and aluminum and their effects on phenolic metabolism of Linum usitatissimum L. roots. Plant Physiol Biochem 49:1377–1383

    Article  PubMed  Google Scholar 

  • Horst WJ, Wang Y, Eticha D (2010) The role of root apoplast in aluminum-induced inhibition of root elongation and in aluminum resistance of plants: a review. Ann Bot 106:185–197

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jiang HX, Tang N, Zheng JG, Chen LS (2009) Antagonistic actions of boron against inhibitory effects of aluminum toxicity on growth, CO2 assimilation, ribulose-1,5-bisphosphate carboxylase/oxygenase, and photosynthetic electron transport probed by the JIP-test, of Citrus grandis seedlings. BMC Plant Biol 9:102

    Article  PubMed Central  PubMed  Google Scholar 

  • Kochian LV (1995) Cellular mechanisms of aluminum toxicity and resistance in plants. Ann Rev Plant Physiol Plant Mol Biol 46:237–260

    Article  CAS  Google Scholar 

  • Lohse G (1982) Microanalytical azomethine-H method for boron determination in plant tissues. Commun Soil Plant Anal 13:127–134

    Article  CAS  Google Scholar 

  • Matoh T (1997) Boron in plant cell walls. Plant Soil 193:59–70

    Article  CAS  Google Scholar 

  • Matoh T, Ochiai K (2005) Distribution and partitioning of newly taken-up boron in sunflower. Plant Soil 278:351–360

    Article  CAS  Google Scholar 

  • McDonald M, Mila I, Scalbert A (1996) Precipitation of metal ions by plant polyphenols: optimal conditions and origin of precipitation. J Agric Food Chem 44:599–606

    Article  CAS  Google Scholar 

  • Morita A, Yanagisawa O, Takatsu S, Maeda S, Hiradate S (2008) Mechanism for the detoxification of aluminum in roots of tea plant (Camellia sinensis (L.) Kuntze). Phytochemistry 69:147–153

    Article  CAS  PubMed  Google Scholar 

  • Morrison IM (1972) A semi-micro method for the determination of lignin and its use in prediction the digestibility of forage crops. J Sci Food Agrc 23:455–463

    Article  CAS  Google Scholar 

  • Nagata T, Hayatsu M, Kosuge N (1992) Identification of aluminium forms in tea leaves by 27Al NMR. Phytochemistry 31:1215–1218

    Article  CAS  Google Scholar 

  • Ranieri A, Castagna A, Baldan B, Soldatini GF (2001) Iron deficiency differently affects peroxidase isoforms in sunflower. J Exp Bot 52:25–35

    Article  CAS  PubMed  Google Scholar 

  • Ruan J, Wong MH (2004) Aluminium absorption by intact roots of the Al-accumulating plant Camellia sinensis L. Agronomie 24:137–142

    Article  CAS  Google Scholar 

  • Ruiz JM, Rivero RM, Romero L (2006) Boron increases synthesis of glutathione in sunflower plants subjected to aluminum stress. Plant Soil 279:25–30

    Article  CAS  Google Scholar 

  • Shen R, Ma JF (2001) Distribution and mobility of aluminum in an Al-accumulator plant, Fagopyrum esculentum Moench. J Exp Bot 52:1683–1687

    Article  CAS  PubMed  Google Scholar 

  • Shorrocks VM (1997) The occurrence and correction of boron deficiency. Plant Soil 193:121–148

    Article  CAS  Google Scholar 

  • Singh N, Singh R, Kaur K, Singh H (1999) Studies of the physico-chemical properties and polyphenol oxidase activity in seeds from hybrid sunflower (Helianthus annuus) varieties grown in India. Food Chem 66:241–247

    Article  CAS  Google Scholar 

  • Solecka D, Boudet AM, Kacperska A (1999) Phenylpropanoid and anthocyanin changes in low-temperature treated winter oilseed rape leaves. Plant Physiol Biochem 37:491–496

    Article  CAS  Google Scholar 

  • Stass A, Kotur Z, Horst WJ (2007) Effect of boron on the expression of aluminum toxicity in Phaseolus vulgaris. Physiol Plant 131:283–290

    CAS  PubMed  Google Scholar 

  • Swain T, Hillis EE (1959) The phenolic constituents of Prunus domestica I. The quantitative analysis of phenolic constituents. J Sci Food Agric 10:63–68

    Article  CAS  Google Scholar 

  • Tolrà R, Vogel-Mikus K, Hajiboland R, Kump P, Pongrac P, Kaulich B, Gianoncelli A, Babin V, Barceló J, Regvar M, Poschenrieder C (2011) Localization of aluminium in tea (Camellia sinensis (L.) O. Kuntze) leaves using low energy X-ray fluorescence spectro-microscopy. J Plant Res 124:165–172

    Article  PubMed  Google Scholar 

  • Wallace G, Fry S (1994) Phenolic components of the plant cell wall. Int Rev Cytol 151:229–267

    Article  CAS  PubMed  Google Scholar 

  • Watanabe T, Osaki M, Yoshihara T, Tadano T (1998) Distribution and chemical speciation of aluminum in the Al accumulator plant, Melastoma malabathricum L. Plant Soil 201:165–173

    Article  CAS  Google Scholar 

  • Yang YH, Gu HJ, Fan WY, Abdullahi BA (2004) Effects of boron on aluminum toxicity on seedlings of two soybean cultivars. Water Air Soil Pollut 154:239–248

    Article  CAS  Google Scholar 

  • Yang JL, Zhu XF, Peng YX, Zheng C, Li GX, Liu Y, Shi YZ, Zheng SJ (2011a) Cell wall hemicellulose contributes significantly to aluminum adsorption and root growth in Arabidopsis. Plant Physiol 155:1885–1892

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yang JL, Zhu XF, Zheng C, Zhang YJ, Zheng SJ (2011b) Genotypic differences in Al resistance and the role of cell-wall pectin in Al exclusion from the root apex in Fagopyrum tataricum. Ann Bot 107:371–378

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yu M, Shen R, Xiao H, Xu M, Wang H, Wang H, Zeng Q, Bian J (2009) Boron alleviates aluminum toxicity in pea (Pisum sativum). Plant Soil 314:87–98

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support by Center of Excellence for Biodiversity, University of Tabriz is greatly appreciated.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roghieh Hajiboland.

Additional information

Communicated by J. Zwiazek.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hajiboland, R., Bastani, S., Bahrami-Rad, S. et al. Interactions between aluminum and boron in tea (Camellia sinensis) plants. Acta Physiol Plant 37, 54 (2015). https://doi.org/10.1007/s11738-015-1803-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-015-1803-1

Keywords

Navigation