Skip to main content
Log in

Regeneration from chrysanthemum flowers: a review

  • Review
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

The use of flower tissue for the in vitro propagation of chrysanthemum (Chrysanthemum × grandiflorum (Ramat.) Kitam.), an ornamental plant, provides a specific and precious explant type for organogenesis (regeneration of adventitious shoots/roots) or somatic embryogenesis. This is of great importance for the breeding of this species. In vitro culture of flower tissue can lead to the separation of chimera components to obtain stable mutants. Moreover, regenerants derived from ray (ligulate) or disc (tubular) florets may present somaclonal variation. The ability to then regenerate such plant material can result in the production of plants with novel flower colour, modified architecture or other positive attributes, even more so after the application of physical mutagens such as gamma radiation. Although in vitro flowering is a rare phenomenon in chrysanthemum, the notion that it could be possible would allow for the formation of flower material that could serve as in vitro-disinfected material without the need to introduce explants, and possible contamination, from the ex vivo milieu. Regeneration protocols from flower tissue would allow for breeding using such tissues to be advanced while the process of in vitro flowering could also be better understood. This review provides an up-to-date understanding of what is known in this field of research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ahloowalia BS (1992) In vitro radiation induced mutants in chrysanthemum. Mutat Breed News Lett 39:6

    Google Scholar 

  • Annadana S, Beekwilder MJ, Kuipers G, Visser PB, Outchkourov N, Pereira A, Udayakumar M, De Jong J, Jongsma MA (2002) Cloning of the chrysanthemum UEP1 promoter and comparative expression in florets and leaves of Dendranthema grandiflora. Transgenic Res 11(4):437–445

    Article  CAS  PubMed  Google Scholar 

  • Barakat MN, Abdel Fattah Rania S, Badr M, El-Torky MG (2010) In vitro culture and plant regeneration derived from ray florets of Chrysanthemum morifolium. Afr J Biotech 9:1151–1158

    CAS  Google Scholar 

  • Binding H (1975) Reproducibly high plating efficiencies of isolated mesophyll protoplasts from shoot cultures of tobacco. Physiol Plant 35:225–227

    Article  Google Scholar 

  • Broertjes C, Roest S, Bokelmann GS (1976) Mutation breeding of Chrysanthemum morifolium Ram. using in vivo and in vitro adventitious bud techniques. Euphytica 25:11–19

    Article  Google Scholar 

  • Bush SR, Earle ED, Langhans RW (1976) Plantlet from petal segments, petal epidermis, and shoot tips of the periclinal chimera, Chrysanthemum morifolium “Indianapolis”. Am J Bot 63:729–737

    Article  Google Scholar 

  • Chakrabarty D, Datta SK (2010) Management of chimera and in vitro mutagenesis for development of new flower colour/shape and chlorophyll variegated mutants in chrysanthemum. In: Datta SK, Chakrabarty D (eds) Floriculture: Role of tissue culture and molecular techniques. Pointer Publishers, Jaipur, pp 157–164

    Google Scholar 

  • Chakrabarty C, Mandal AK, Datta SK (1999) Management of chimera through direct shoot regeneration from florets of chrysanthemum (Chrysanthemum morifolium Ramat.). J Hortic Sci Biotech 74:293–296

    Google Scholar 

  • Chakrabarty C, Mandal AK, Datta SK (2000a) Retrieval of new coloured chrysanthemum through organogenesis from sectorial chimera. Curr Sci 78(9):1060–1061

    Google Scholar 

  • Chakrabarty C, Mandal AK, Datta SK (2000b) SFM and light microscopic studies on direct shoot regeneration from ray florets of chrysanthemum. Israel J Plant Sci 48(2):105–107

    Article  Google Scholar 

  • Datta SK (1988) Chrysanthemum cultivars evolved by induced mutation at National Botanical Research Institute, Lucknow. Chrysanthemum 49:72–75

    Google Scholar 

  • Datta SK (2012) Success story of induced mutagenesis for development of new ornamental varieties. In: Kozgar MI, Khan S (eds) Induced mutagenesis in crop plants. Bioremediation, biodiversity bioavailability 6 (special issue 1), pp 15–26

  • Datta SK, Chakrabarty D (2009) Management of chimera and in vitro mutagenesis for development of new flower colour/shape and chlorophyll variegated mutants in chrysanthemum. In: Shu QY (ed), Induced plant mutations in the genomics era, food and agriculture organization of the United Nations, Rome, pp 303–305

  • Datta SK, Teixeira da Silva JA (2006) Role of induced mutagenesis for development of new flower colour and type in ornamentals. In: Teixeira da Silva JA (ed) Floriculture, ornamental and plant biotechnology: advances and topical issues, vol 1470 vol I, 1st edn. Global Science Books Ltd., Isleworth, pp 640–645

    Google Scholar 

  • Datta SK, Banerji BK, Gupta MN (1985) ‘Tulika’ : A new chrysanthemum cultivar evolved by gamma irradiation. J Nucl Agric Biol 14:160

    Google Scholar 

  • Datta SK, Chakrabarty D, Saxena M, Mandal AKA, Biswas AK (2001a) Direct shoot generation from florets of chrysanthemum cultivars. Indian J Genet Plant Breed 61(4):373–376

    Google Scholar 

  • Datta SK, Chakrabarty D, Mandal AKA (2001b) Gamma ray-induced genetic manipulations in flower colour and shape in Dendranthema grandiflorum and their management through tissue culture. Plant Breed 120:91–92

    Article  CAS  Google Scholar 

  • Datta SK, Misra P, Mandal AKA, Chakrabarty D (2002) Direct shoot organogenesis from different explants of chrysanthemum, marigold, and tuberose. Israel J Plant Sci 50(4):287–291

    Article  Google Scholar 

  • Datta SK, Misra P, Mandal AKA (2005) In vitro mutagenesis: a quick method for establishment of solid mutant in chrysanthemum. Curr Sci 88(1):155–158

    CAS  Google Scholar 

  • De Jong J, Custers JBM (1986) Induced changes in growth and flowering of chrysanthemum after irradiation and in vitro culture of pedicels and petal epidermis. Euphytica 35:37–148

    Google Scholar 

  • De Jong J, Mertens MJ, Rademaker W (1994) Stable expression of the GUS reporter gene in chrysanthemum depends on binary plasmid T-DNA. Plant Cell Rep 14:59–64

    Article  PubMed  Google Scholar 

  • Dwimahyani I, Widiarsih S (2010) The effects of gamma irradiation on the growth and propagation of in vitro chrysanthemum shoot explants (cv. Yellow Puma). Atom. Indonesia 36(2):45–49

    Google Scholar 

  • Dwivedi AK, Banerji BK, Chakrabarty D, Mandal AKA, Datta SK (2000) Gamma ray induced new flower colour chimera and its management through tissue culture. Indian J Agric Sci 70:853–855

    Google Scholar 

  • Endo M, Sakaki T, Inada I (1990) Creation of mutants through tissue culture of edible chrysanthemums, Chrysanthemum morifolium Ram. I. Especially the relationship among the different explants and variation in their regenerated plants. J Fac Agric Iwate Univ 20:17–33

    Google Scholar 

  • Fujii Y, Shimizu K (1990) Regeneration of plants from achenes and petals of Chrysanthemum coccineum. Plant Cell Rep 8:625–627

    Article  CAS  PubMed  Google Scholar 

  • Hossain Z, Mandal AKA, Datta SK, Biswas AK (2006a) Isolation of a NaCl-tolerant mutant of Chrysanthemum morifolium by gamma radiation: in vitro mutagenesis and selection by salt stress. Funct Plant Biol 33:91–101

    Article  CAS  Google Scholar 

  • Hossain Z, Mandal AKA, Datta SK, Biswas AK (2006b) Development of NaCl-tolerant strain in Chrysanthemum morifolium Ramat. through in vitro mutagenesis. Plant Biol 8:450–461

    Article  CAS  PubMed  Google Scholar 

  • Hossain Z, Mandal AKA, Datta SK, Biswas AK (2007) Development of NaCl-tolerant line in Chrysanthemum morifolium Ramat. through shoot organogenesis of selected callus line. J Biotech 129:658–667

    Article  CAS  Google Scholar 

  • Kang EJ, Lee YM, Sung SY, Ha BK, Kim SH, Kim DS, Kim JB, Kang SY (2013) Analysis of the genetic relationship of gamma-irradiated in vitro mutants derived from standard-type chrysanthemum cv. Migok. Hortic Environ Biotechnol 54(1):76–81

    Article  CAS  Google Scholar 

  • Kengkarj P, Smitamana P, Fujime Y (2008) Assessment of somaclonal variation in chrysanthemum (Dendranthema grandiflora Kitam.) using RAPD and morphological analysis. Plant Tissue Cult Biotech 18(2):139–149

    Google Scholar 

  • Khalid N, Davey MR, Power JB (1989) An assessment of somaclonal variation in Chrysanthemum morifolium: the generation of plants of potential commercial value. Sci Hortic 38:287–294

    Article  Google Scholar 

  • Kong Y, Bai JR, Shang HZ, Wang NY (2013) Application of heavy ion beam irradiation in ornamental flowers breeding. Acta Hortic Sin 40(9):1837–1845 (in Chinese with English abstract)

    CAS  Google Scholar 

  • Kulpa D (2011) Plant regeneration in inflorescence culture of chrysanthemum (Dendranthema × grandiflora (Ramat.) Kitamura). J Food Agr Environ 9(1):715–718

    Google Scholar 

  • Lamseejan S, Jompuk P, Wongpiyasatid A, Deeseepan S, Kwanthammachart P (2000) Gamma-rays induced morphological changes in chrysanthemum (Chrysanthemum morifolium). Kasetsart J (Nat Sci) 34:417–422

    Google Scholar 

  • Latado RR, Tulmann Neto A, Mendes BMJ (1996) In vitro mutation breeding of chrysanthemum (Dendrathema grandifolia Tzvelev.) cv. Pink repin. Pesquisa Agropecuária Brasileira 31:489–496 (in Portuguese)

    Google Scholar 

  • Latado RR, Adames AH, Neto AT (2004) In vitro mutation of chrysanthemum (Dendranthema grandiflora Tzvelev) with ethylmethanesulphonate (EMS) in immature floral pedicels. Plant Cell Tissue Organ Cult 77:103–106

    Article  Google Scholar 

  • Lee YM, Kang EJ, Sung SY, Kim SH, Ha BK, Kim DS, Kim JB, Kang SY (2013) The effects of plant growth regulators on plant regeneration and direct shoots formation of petal explants of chrysanthemum flower colour mutants varieties, ‘ARTI-purple’ and ‘ARTI-queen’. Korean J Hortic Sci Technol 31(3):359–365 (in Korean with English abstract)

    Article  CAS  Google Scholar 

  • Malaure RS, Barclay G, Power JB, Davey MR (1991) The production of novel plants from florets of Chrysanthemum morifolium using tissue culture 1. Shoot regeneration from ray florets and somaclonal variation exhibited by the regenerated plants. J Plant Physiol 139:8–13

    Article  Google Scholar 

  • Mandal AKA, Datta SK (2005) Direct somatic embryogenesis and plant regeneration from ray florets of chrysanthemum. Biol Plant 49:29–33

    Article  Google Scholar 

  • Mandal AKA, Chakrabarty D, Datta SK (2000a) In vitro isolation of solid novel flower colour mutants from induced chimeric ray florets of chrysanthemum. Euphytica 114:9–12

    Article  Google Scholar 

  • Mandal AKA, Chakrabarty D, Datta SK (2000b) Use of in vitro techniques in mutation breeding of chrysanthemum. Plant Cell Tissue Organ Cult 60:33–38

    Article  Google Scholar 

  • Matsumura A, Nomizu T, Furutani N, Hayashi K, Minamiyama Y, Hase Y (2010) Ray florets color and shape mutants induced by 12C5+ ion beam irradiation in chrysanthemum. Sci Hortic 123(4):558–561

    Article  CAS  Google Scholar 

  • Miler N, Muszczyk P (2013) Regeneration of callus and shoots from ovules and ovaries of chrysanthemum in vitro. 8th International Symposium on in vitro culture and horticultural breeding, Coimbra, Portugal, Book of abstracts: 58, June 2–7

  • Misra P, Datta SK (2007) Standardization of in vitro protocol in Chrysanthemum cv. Madam E Roger for development of quality planting material and to induce genetic variability using γ-radiation. Indian J Biotech 6:121–124

    CAS  Google Scholar 

  • Misra P, Datta SK, Chakrabarty D (2003) Mutation in flower color and shape of Chrysanthemum morifolium induced by gamma irradiation. Biol Plant 47(1):153–156

    Article  Google Scholar 

  • Mizutani T, Tanaka T (1994) Study on the floret culture of Higo-chrysanthemum. Proc Fac Agric Kyushu Tokai Univ 13:9–14

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15:173–179

    Article  Google Scholar 

  • Nagatomi S, Tanaka A, Kato A, Watanabe H, Tano S (1997) Mutation induction on chrysanthemum plants regenerated from in vitro cultured explants irradiated with 12C5+ ion beam. TIARA Ann Rep 5:50–51

    Google Scholar 

  • Nahid JS, Shyamali S, Kazumi H (2007) High frequency shoot regeneration from petal explants of Chrysanthemum morifolium Ramat. in vitro. Pakistan J Biol Sci 10:3356–3361

    Article  CAS  Google Scholar 

  • Naing AH, Min JS, Park KI, Chung MY, Lim SH, Lim KB, Kim CK (2013) Primary and secondary somatic embryogenesis in Chrysanthemum (Chrysanthemum morifolium) cv. ‘Baeksun’ and assessment of ploidy stability of somatic embryogenesis process by flow cytometry. Acta Physiol Plant 35:2965–2974

    Article  CAS  Google Scholar 

  • Nazeer MA, Khoshoo TN (1983) Variation in the chromosome complement of Chrysanthemum morifolium complex. The Nucleus 26:22–29

    Google Scholar 

  • Ohishi K, Sakurai Y (1988) Morphological changes in Chrysanthemum derived from petal tissue. Res Bull Aichiken Agric Res Cent 20:278–284

    Google Scholar 

  • Okamura M, Tanaka A, Momose M, Umemoto N, Teixeira da Silva JA, Toguri T (2006) Advances of mutagenesis in flowers and their industrialization. In: Teixeira da Silva JA (ed) Ornamental and plant biotechnology: advances and topical issues, vol vol I, 1st edn. Global Science Books Ltd, Isleworth, pp 619–628

    Google Scholar 

  • Poole RT (1962) Effect of gamma rays on Chrysanthemum morifolium ‘Bluechip’ grown at various nutritional levels. J Florida State Hortic Soc 1962:443–447

    Google Scholar 

  • Roest S, Bokelmann GS (1975) Vegetative propagation of Chrysanthemum morifolium Ram. in vitro. Sci Hortic 3:317–330

    Article  Google Scholar 

  • Shinoyama H, Anderson N, Furuta H, Mochizuki A, Nomura Y, Singh RP, Datta SK, Wang BC, Teixeira da Sliva JA (2006) Chrysanthemum biotechnology. In: Teixeira da Silva JA (ed) Floriculture, ornamental and plant biotechnology: advances and topical issues, vol I, 1st edn. Global Science Books Ltd, Isleworth, pp 140–163

    Google Scholar 

  • Stewart RN, Dermen H (1970) Somatic genetic analysis of the apical layers of chimeral sports in chrysanthemum by experimental production of adventitious shoots. Am J Bot 57:1061–1071

    Article  Google Scholar 

  • Sung SY, Lee YM, Kim SH, Ha BG, Kang SY, Kim JB, Kim DS (2013) Comparative analysis of growth and antioxidant enzyme activities from two chrysanthemum varieties, ‘ARTI-purple’ and ‘ARTI-queen’ by chronic irradiation of gamma-ray. Kor J Hortic Sci Technol 31(4):490–495 (in Korean with English abstract)

    CAS  Google Scholar 

  • Sutter E, Langhans RW (1981) Abnormalities in Chrysanthemum regenerate from long-term culture. Ann Bot 48:559–568

    Google Scholar 

  • Tanaka K, Kanno Y, Kudo S, Suzuki M (2000) Somatic embryogenesis and plant regeneration in chrysanthemum [Dendranthema grandiflorum (Ramat.) Kitamura]. Plant Cell Rep 19:946–953

    Article  CAS  Google Scholar 

  • Teixeira da Silva JA (2003a) Chrysanthemum: advances in tissue culture, postharvest technology, genetics and transgenic biotechnology. Biotech Adv 21:715–766

    Article  CAS  Google Scholar 

  • Teixeira da Silva JA (2003b) Thin cell layer technology for induced response and control of rhizogenesis in chrysanthemum. Plant Growth Reg 39(1):67–76

    Article  CAS  Google Scholar 

  • Teixeira da Silva JA (2004a) Ornamental chrysanthemums: improvement by biotechnology. Plant Cell Tissue Organ Cult 79:1–18

    Article  Google Scholar 

  • Teixeira da Silva JA (2004b) Mining the essential oils of the Anthemideae: a review. Afr J Biotechnol 3(12):706–720

    CAS  Google Scholar 

  • Teixeira da Silva JA (2012a) Is BA (6-benzyladenine) BAP (6-benzylaminopurine)? Asian Australas J Plant Sci Biotech 6(Special Issue 1):121–124

    Google Scholar 

  • Teixeira da Silva JA (2012b) Callus, calluses or calli: multiple plurals? Asian Australas J Plant Sci Biotech 6(Special Issue 1):125–126

    Google Scholar 

  • Teixeira da Silva JA (2013) The need for post-publication peer review in plant science publishing. Front Plant Sci 4(3):485

    PubMed Central  PubMed  Google Scholar 

  • Teixeira da Silva JA (2014a) Organogenesis from chrysanthemum (Dendranthema × grandiflora (Ramat.) Kitamura) petals (disc and ray florets) induced by plant growth regulators. Asia-Pac J Mol Biol Biotech 22(1):145–151

    Google Scholar 

  • Teixeira da Silva JA (2014b) Postpublication peer review in plant science. Science Editor (CSE) (in press)

  • Teixeira da Silva JA (2014c) Recent retraction cases in plant science that show why post-publication peer review is essential. J Adv Eng Technol 1(3):4. doi:10.15297/JAET.V1I3.03

    Google Scholar 

  • Teixeira da Silva JA, Dobránszki J (2011) The plant growth correction factor. I. The hypothetical and philosophical basis. Intl J Plant Dev Biol 5(1):73–74

    Google Scholar 

  • Teixeira da Silva JA, Dobránszki J (2013) How timing of sampling can affect the outcome of the quantitative assessment of plant organogenesis. Sci Hortic 159:59–66

    Article  Google Scholar 

  • Teixeira da Silva JA, Dobránszki J (2014) Dissecting the concept of the thin cell layer: theoretical basis and practical application of the Plant Growth Correction Factor to apple, Cymbidium and chrysanthemum. J Plant Growth Reg 33(4):881–895

    Article  CAS  Google Scholar 

  • Teixeira da Silva JA, Dobránszki J (2015) Problems with traditional science publishing and finding a wider niche for post-publication peer review. Accountability Res: Policies Qual Assur 22(1):22–40

    Article  Google Scholar 

  • Teixeira da Silva JA, Fukai S (2003) Chrysanthemum organogenesis through thin cell layer technology and plant growth regulator control. Asian J Plant Sci 2(6):505–514

    Article  Google Scholar 

  • Teixeira da Silva JA, Kulus D (2014) Chrysanthemum biotechnology: discoveries from the recent literature. Folia Hortic 26(2):67–77

    Article  Google Scholar 

  • Teixeira da Silva JA, Yonekura L, Kaganda J, Mookdasanit J, Nhut DT, Afach G (2005) Important secondary metabolites and essential oils of species within the Anthemidae (Asteraceae). J Herbs, Spices Med Plants 11(1/2):1–46

    Article  Google Scholar 

  • Teixeira da Silva JA, Dobránszki J, Ross S (2013a) Phloroglucinol in plant tissue culture. Vitro Cell Dev Biol Plant 49(1):1–16

    Article  CAS  Google Scholar 

  • Teixeira da Silva JA, Kerbauy GB, Zeng S-J, Chen Z-L, Duan J (2013b) In vitro flowering of orchids. Crit Rev Biotech 34(1):56–76

    Article  Google Scholar 

  • Teixeira da Silva JA, Shinoyama H, Aida R, Matsushita Y, Raj SK, Chen F (2013c) Chrysanthemum biotechnology: Quo vadis? Crit Rev Plant Sci 32(1):21–52

    Article  CAS  Google Scholar 

  • Thangmanee C, Kanchanapoom K (2011) Regeneration of chrysanthemum plants (Chrysanthemum × grandiflorum (Ramat.) Kitam.) by callus derived from ray floret explants. Propaga Ornamental Plants 11(4):204–209

    Google Scholar 

  • Thimijan RW, Heins RD (1983) Photometric, radiometric, and quantum light units of measure: a review of procedures for interconversion. Hortic Sci 18(6):818–822

    Google Scholar 

  • Tilney-Bassett RAE (1986) Plant chimeras. Edward Arnold, London, pp 19–62

    Google Scholar 

  • Tymoszuk A, Zalewska M (2014a) In vitro adventitious shoots regeneration from ligulate florets in the aspect of application in chrysanthemum breeding. Acta Sci Pol Hortorum Cultus 13(2):45–58

    Google Scholar 

  • Tymoszuk A, Zalewska M (2014b) Biological factors affecting regeneration of adventitious shoots from in vitro isolated ligulate florets of chrysanthemum. Acta Sci Pol Hortorum Cultus 13(3):155–165

    Google Scholar 

  • Tymoszuk A, Zalewska M, Lema-Rumińska J (2014) Regeneration of somatic embryos from in vitro isolated ligulate florets of chrysanthemum. Acta Sci Pol Hortorum Cultus 13(4):13–22

    Google Scholar 

  • Verma AK, Prasad KV, Singh SK, Kumar S (2012a) In vitro isolation of red coloured mutant from chimeric ray florets of chrysanthemum induced by gamma-ray. Indian J Hortic 69(4):562–567

    Google Scholar 

  • Verma AK, Prasad KV, Janakiram T, Kumar S (2012b) Standardization of protocol for pre-treatment, surface sterilization, regeneration, elongation and acclimatization of Chrysanthemum morifolium Ramat. Int J Hortic 2(3):7–12

    Google Scholar 

  • Vilasini P, Latipah Z (2000) Somaclonal variation in Chrysanthemum morifolium generated through petal cultures. J Trop Agric Food Sci 28(2):115–120

    Google Scholar 

  • Yamada H, Inagaki H, Hagiwara Y, Otsuka H (2002) Breeding of flower color mutant cultivar ‘Dreaming’ of spray-type chrysanthemum (Dendranthema grandiflora) by soft X-ray irradiation. Bull Shizuoka Agric Exp Sta 47:43–48

    Google Scholar 

  • Zalewska M, Lema-Rumińska J, Miler N (2007) In vitro propagation using adventitious buds technique as a source of new variability in chrysanthemum. Sci Hortic 113:70–73

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Haenghoon Kim (Sunchon National University, South Korea) and the anonymous reviewer(s) for providing useful comments on the manuscript. The authors thank Dr. D. J. Nicholas Hind, Head of Compositae Research, Royal Botanic Gardens, Kew, UK, for fruitful discussion on and clarification of the nomenclature and taxonomy of garden chrysanthemums.

Conflict of interest

The authors declare no conflicts of interest, financial or other.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jaime A. Teixeira da Silva, Justyna Lema-Rumińska, Alicja Tymoszuk or Danuta Kulpa.

Additional information

Communicated by A. K. Kononowicz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teixeira da Silva, J.A., Lema-Rumińska, J., Tymoszuk, A. et al. Regeneration from chrysanthemum flowers: a review. Acta Physiol Plant 37, 36 (2015). https://doi.org/10.1007/s11738-015-1773-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-015-1773-3

Keywords

Navigation