Skip to main content
Log in

The natural alkaloid sanguinarine promotes the expression of heat shock protein genes in Arabidopsis

  • Short Communication
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Small-molecule heat shock response inducers are known to enhance heat tolerance in plants. In this paper, we report that a plant alkaloid enhances the heat tolerance of Arabidopsis. We investigated 12 commercially available alkaloids to determine whether they enhance the heat tolerance of Arabidopsis seedlings using an in vitro assay system with geldanamycin, which is a known heat shock response inducer, as a positive control. Accordingly we found that the isoquinoline alkaloid sanguinarine can enhance heat tolerance in Arabidopsis. No such effect was shown for the other 11 alkaloids. The sanguinarine treatment increased the expression of heat shock protein genes such as HSP17.6C-CI, HSP70, and HSP90.1, which were up-regulated by geldanamycin. Treatments with other isoquinoline alkaloids (berberine and papaverine), which showed few heat tolerance-enhancing effects, did not promote the expression of the heat shock protein genes. These results suggest that sanguinarine influenced the heat tolerance of Arabidopsis by enhancing the expression of heat shock protein genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Ainsworth EA, Ort DR (2010) How do we improve crop production in a warming world? Plant Physiol 154:526–530

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Allakhverdiev SI, Kreslavski VD, Klimov VV, Los DA, Carpentier R, Mohanty P (2008) Heat stress: an overview of molecular responses in photosynthesis. Photosynth Res 98:541–550

    Article  PubMed  CAS  Google Scholar 

  • Almeida AA, Farah A, Silva DA, Nunan EA, Glória MB (2006) Antibacterial activity of coffee extracts and selected coffee chemical compounds against enterobacteria. J Agric Food Chem 54:8738–8743

    Article  PubMed  CAS  Google Scholar 

  • Cowan MM (1999) Plant products as antimicrobial agents. Clin Microbiol Rev 12:564–582

    PubMed  CAS  PubMed Central  Google Scholar 

  • Dat JF, Lopez-Delgado H, Foyer CH, Scott IM (1998) Parallel changes in H2O2 and catalase during thermotolerance induced by salicylic acid or heat acclimation in mustard seedlings. Plant Physiol 116:1351–1357

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Godowski KC (1989) Antimicrobial action of sanguinarine. J Clin Dent 1:96–101

    PubMed  CAS  Google Scholar 

  • Hall AE (2001) Crop responses to environment. CRC Press LLC, Boca Raton

    Google Scholar 

  • Hara M, Harazaki A, Tabata K (2013) Administration of isothiocyanates enhances heat tolerance in Arabidopsis thaliana. Plant Growth Regul 69:71–77

    Article  CAS  Google Scholar 

  • Huang B, Xu C (2008) Identification and characterization of proteins associated with plant tolerance to heat stress. J Integr Plant Biol 50:1230–1237

    Article  PubMed  CAS  Google Scholar 

  • Iba K (2002) Acclimative response to temperature stress in higher plants: approaches of gene engineering for temperature tolerance. Annu Rev Plant Biol 53:225–245

    Article  PubMed  CAS  Google Scholar 

  • Jones NL, Shabib S, Sherman PM (1997) Capsaicin as an inhibitor of the growth of the gastric pathogen Helicobacter pylori. FEMS Microbiol Lett 146:223–227

    Article  PubMed  CAS  Google Scholar 

  • Kosina P, Walterová D, Ulrichová J, Lichnovský V, Stiborová M, Rýdlová H, Vicar J, Krecman V, Brabec MJ, Simánek V (2004) Sanguinarine and chelerythrine: assessment of safety on pigs in ninety days feeding experiment. Food Chem Toxicol 42:85–91

    Article  PubMed  CAS  Google Scholar 

  • Kotak S, Larkindale J, Lee U, von Koskull-Döring P, Vierling E, Scharf KD (2007) Complexity of the heat stress response in plants. Curr Opin Plant Biol 10:310–316

    Article  PubMed  CAS  Google Scholar 

  • Mackraj I, Govender T, Gathiram P (2008) Sanguinarine. Cardiovasc Ther 26:75–83

    PubMed  CAS  Google Scholar 

  • Maiti M, Kumar GS (2010) Polymorphic nucleic acid binding of bioactive isoquinoline alkaloids and their role in cancer. J Nucleic Acids. doi:10.4061/2010/593408

    PubMed  PubMed Central  Google Scholar 

  • Ozçelik B, Kartal M, Orhan I (2011) Cytotoxicity, antiviral and antimicrobial activities of alkaloids, flavonoids, and phenolic acids. Pharm Biol 49:396–402

    Article  PubMed  Google Scholar 

  • Roberts MF, Wink M (1998) Alkaloids: biochemistry, ecology, and medicinal applications. Plenum Press, New York

    Book  Google Scholar 

  • Roe SM, Prodromou C, O’Brien R, Ladbury JE, Piper PW, Pearl LH (1999) Structural basis for inhibition of the Hsp90 molecular chaperone by the antitumor antibiotics radicicol and geldanamycin. J Med Chem 42:260–266

    Article  PubMed  CAS  Google Scholar 

  • Ruelland E, Zachowski A (2010) How plants sense temperature. Environ Exp Bot 69:225–232

    Article  Google Scholar 

  • Saidi Y, Finka A, Chakhporanian M, Zrÿd JP, Schaefer DG, Goloubinoff P (2005) Controlled expression of recombinant proteins in Physcomitrella patens by a conditional heat-shock promoter: a tool for plant research and biotechnology. Plant Mol Biol 59:697–711

    Article  PubMed  CAS  Google Scholar 

  • Saidi Y, Domini M, Choy F, Zryd JP, Schwitzguebel JP, Goloubinoff P (2007) Activation of the heat shock response in plants by chlorophenols: transgenic Physcomitrella patens as a sensitive biosensor for organic pollutants. Plant, Cell Environ 30:753–763

    Article  CAS  Google Scholar 

  • Sakamoto A, Murata N (2002) The role of glycine betaine in the protection of plants from stress: clues from transgenic plants. Plant, Cell Environ 25:163–171

    Article  CAS  Google Scholar 

  • Senaratna T, Touchell D, Bunn E, Dixon K (2000) Acetyl salicylic acid (Aspirin) and salicylic acid induce multiple stress tolerance in bean and tomato plants. Plant Growth Regul 30:157–161

    Article  CAS  Google Scholar 

  • Trepel J, Mollapour M, Giaccone G, Neckers L (2010) Targeting the dynamic HSP90 complex in cancer. Nat Rev Cancer 10:537–549

    Article  PubMed  CAS  Google Scholar 

  • Vieira SL, Oyarzabal OA, Freitas DM, Berres J, Pena JEM, Torres CA, Coneglian JLB (2008) Performance of broilers fed diets supplemented with sanguinarine-like alkaloids and organic acid. J Appl Poult Res 17:128–133

    Article  CAS  Google Scholar 

  • Wahid A, Gelani S, Ashraf M, Foolad MR (2007) Heat tolerance in plants: an overview. Environ Exp Bot 61:199–223

    Article  Google Scholar 

  • Wang W, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9:244–252

    Article  PubMed  CAS  Google Scholar 

  • Waters ER (2013) The evolution, function, structure, and expression of the plant sHSPs. J Exp Bot 64:391–403

    Article  PubMed  CAS  Google Scholar 

  • Yamada K, Nishimura M (2008) Cytosolic heat shock protein 90 regulates heat shock transcription factor in Arabidopsis thaliana. Plant Signal Behav 3:660–662

    Article  PubMed  PubMed Central  Google Scholar 

  • Yamada K, Fukao Y, Hayashi M, Fukazawa M, Suzuki I, Nishimura M (2007) Cytosolic HSP90 regulates the heat shock response that is responsible for heat acclimation in Arabidopsis thaliana. J Biol Chem 282:37794–37804

    Article  PubMed  CAS  Google Scholar 

  • Yao JY, Shen JY, Li XL, Xu Y, Hao GJ, Pan XY, Wang GX, Yin WL (2010) Effect of sanguinarine from the leaves of Macleaya cordata against Ichthyophthirius multifiliis in grass carp (Ctenopharyngodon idella). Parasitol Res 107:1035–1042

    Article  PubMed  Google Scholar 

  • Yoshida T, Ohama N, Nakajima J, Kidokoro S, Mizoi J, Nakashima K, Maruyama K, Kim JM, Seki M, Todaka D, Osakabe Y, Sakuma Y, Schöffl F, Shinozaki K, Yamaguchi-Shinozaki K (2011) Arabidopsis HsfA1 transcription factors function as the main positive regulators in heat shock-responsive gene expression. Mol Genet Genomics 286:321–332

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Zhang Q, Gao Y, Pan H, Shi S, Wang Y (2014) Overexpression of heat shock protein gene PfHSP21.4 in Arabidopsis thaliana enhances heat tolerance. Acta Physiol Plant 36:1555–1564

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported in part by a Grant-in-Aid (No. 21658025) for Scientific Research from the Ministry of Education, Science, Sports and Culture of Japan, a grant from the Kurita Water and Environment Foundation, a grant for Environmental Research Projects from the Sumitomo Foundation, and the Incubate and Promote New Industry Organization.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masakazu Hara.

Additional information

Communicated by M. Hajduch.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 66 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hara, M., Kurita, I. The natural alkaloid sanguinarine promotes the expression of heat shock protein genes in Arabidopsis . Acta Physiol Plant 36, 3337–3343 (2014). https://doi.org/10.1007/s11738-014-1681-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-014-1681-y

Keywords

Navigation