Skip to main content
Log in

Aeromonas punctata PNS-1: a promising candidate to change the root morphogenesis of Arabidopsis thaliana in MS and sand system

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

A model system of sand, comprising Arabidopsis plants inoculated with Aeromonas punctata PNS-1 strain, was used to evaluate the bacterial effect in modulation of plant root structure at second-order lateral root level. In MS media, the root morphogenesis was changed only at first-order lateral root level when inoculated with PNS-1 strain. Inoculation with PNS-1 strain was subjected to significant (P < 0.01) increase in primary root length and lateral root density in both MS and sand system. However, this strain modulated the root structure in the sand environment in a complex manner that may be helpful for incitation of the plant–microbe interaction close to natural environment. In order to determine whether this change in root morphology was due to bacterial auxin, Arabidopsis transgenic line (DR5:GUS) was used to reveal the change in homeostasis of endogenous auxin. In PNS-1 inoculated transgenic seedlings of Arabidopsis plant (DR5:GUS), endogenous auxin in primary root apices and lateral roots was enhanced. For confirmation, PNS-1 was evaluated for auxin production in vitro, showed an increase in auxin production after supplementation of l-tryptophan. The presence of ACC deaminase activity in PNS-1 showed its possible involvement in primary root elongation. In the present study Aeromonas punctata PNS-1 is the potential candidate for triggering the change in root morphogenesis of Arabidopsis thaliana with the involvement of auxin and ACC deaminase production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akhtar S, Ali B (2011) Evaluation of rhizobacteria as non-rhizobial inoculants for mung beans. AJCS 5(13):1723–1729

    CAS  Google Scholar 

  • Ali B, Sabri AN, Ljung K, Hasnain S (2009) Quantification of indole-3-acetic acid from plant associated Bacillus spp. and their phytostimulatory effect on Vigna radiata (L.). World J Microbiol Biotechnol 25:519–526

    Article  CAS  Google Scholar 

  • Barbieri P, Galli E (1993) Effect on wheat root development of inoculation with an Azospirillum brasilense mutant with altered indole-3-acetic-acid production. Res Microbiol 144:69–75

    Article  CAS  PubMed  Google Scholar 

  • Blaha D, Prigent-Combaret C, Mirza MS, Moenne-Loccoz Y (2006) Phylogeny of the 1-aminocyclopropane-1-carboxylic acid deaminase-encoding gene acdS inphytobeneficial and pathogenic proteobacteria and relation with strain biogeography. FEMS Microbiol Ecol 56:455–470

    Article  CAS  PubMed  Google Scholar 

  • Casimiro I, Beeckman T, Graham N, Bhalerao R, Zhang H, Casero P, Sandberg G, Bennett M (2003) Dissecting Arabidopsis lateral root development. Trends Plant Sci 8:165–171

    Article  CAS  PubMed  Google Scholar 

  • Cattelan AJ, Hartel PG, Fuhrmann JJ (1999) Screening for plant growth-promoting rhizobacteria to promote early soybean growth. Soil Sci Soc Am J 63:1670–1680

    Article  CAS  Google Scholar 

  • Chapman N, Whalley WR, Lindsey K, Miller AJ (2011) Water supply and not nitrate concentration determines primary root growth in Arabidopsis. Plant Cell Environ 34:1630–1638

    Article  CAS  PubMed  Google Scholar 

  • Cohen JD, Slovin JP, Hendrickson AM (2003) Two genetically discrete pathways convert tryptophan to auxin: more redundancy in auxin biosynthesis. Trends Plant Sci 8:197–199

    Article  CAS  PubMed  Google Scholar 

  • Contesto C, Milesi S, Mantelin S, Zancarini A, Desbrosses G, Varoquaux F, Bellini C, Kowalczyk M, Touraine B (2010) The auxin-signaling pathway is required for the lateral root response of Arabidopsis to the rhizobacterium Phyllobacterium brassicacearum. Planta 232:1455–1470

    Article  CAS  PubMed  Google Scholar 

  • Dobbelaere S, Croonenborghs A, Thys A, Ptacek D, Vanderleyden J, Dutto P, Labandera-Gonzalez C, Caballero-Mellado J, Aguirre J, Kapulnik Y, Brener S, Burdman S, Kadouri D, Sarig S, Okon Y (2001) Responses of agronomically important crops to inoculation with Azospirillum. Austr J Plant Physiol 28:871–879

    Google Scholar 

  • Duan J, Muller KM, Charles TC, Vesely S, Glick BR (2006) 1-Aminocyclopropane-1-carboxylate (ACC)deaminase genes in Rhizobia: Isolation, characterization and regulation. Proceedings of the 7th International PGPRWorkshop, Amsterdam

  • Dworkin M, Foster J (1958) Experiments with some microorganisms which utilize ethane and hydrogen. J Bacteriol 75:592–601

    CAS  PubMed  Google Scholar 

  • Gamalero E, Martinotti MG, Trotta A, Lemanceau P, Berta G (2002) Morphogenetic modifications induced by Pseudomonas fluorescens A6RI and Glomus mosseae BEG12 in the root system of tomato differ according to plant growth conditions. New Phytol 155:293–300

    Article  Google Scholar 

  • Gamalero E, Fracchia L, Cavaletto M, Garbaye J, Frey-Klett P, Varese GC, Martinotti MG (2003) Characterization of functional traits of two fluorescent pseudomonads isolated from basidiomes of ectomycorrhizal fungi. Soil Biol Biochem 35:55–65

    Article  CAS  Google Scholar 

  • Gamalero E, Trotta A, Massa N, Copetta A, Martinotti MG, Berta G (2004) Impact of two fluorescent pseudomonads and an arbuscular mycorrhizal fungus on tomato plant growth, root architecture and P acquisition. Mycorrhiza 14:185–192

    Article  PubMed  Google Scholar 

  • Glick BR, Penrose DM, Li J (1998) A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J Theor Biol 190:63–68

    Article  CAS  PubMed  Google Scholar 

  • Glick BR, Todorovic B, Czarny J, Cheng Z, Duan J, Mcconkey B (2007) Promotion of plant growth by bacterial ACC deaminase. Crit Rev Plant Sci 26(5):227–242

    Article  CAS  Google Scholar 

  • Grichko VP, Glick BR (2001) Amelioration of flooding stress by ACC deaminase-containing plant growth-promoting bacteria. Plant Physiol Biochem 39:11–17

    Article  CAS  Google Scholar 

  • Jones DL, Dennis PG, Owen AG, Paw VH (2003) Organic acid behavior in soils-misconceptions and knowledge gaps. Plant Soil 248:31–41

    Article  CAS  Google Scholar 

  • Kapulnik Y, Okon Y, Henis Y (1985) Changes in root morphology of wheat caused by Azospirillum inoculation. Can J Microbiol 31:881–887

    Article  Google Scholar 

  • Lambrecht M, Okon Y, Vande Broek A, Vanderleyden J (2000) Indole-3-acetic acid: a reciprocal signaling molecule in bacteria–plant interactions. Trends Microbiol 8:298–300

    Article  CAS  PubMed  Google Scholar 

  • Larcher M, Muller B, Mantelin S, Rapior S, Cleyet-Marel J-C (2003) Early modifications of Brassica napus root system architecture induced by a plant growth-promoting Phyllobacterium strain. New Phytol 160:119–125

    Article  Google Scholar 

  • Laskowski M, Biller S, Stanley K, Kajstura T, Prusty R (2006) Expression profiling of auxin-treated Arabidopsis roots: toward a molecular analysis of lateral root emergence. Plant Cell Physiol 47:788–792

    Article  CAS  PubMed  Google Scholar 

  • Lima JE, Kojima S, Takahashi H, von-Wiren N (2010) Ammonium triggers lateral root branching in Arabidopsis in an Ammonium Transporter1;3-dependent manner. Plant Cell 22:3621–3633

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Bucio J, Hernandez-Abreu E, Sanchez-Calderon L, Nieto- Jacobo MF, Simpson J, Herrera-Estrella L (2002) Phosphate availability alters architecture and causes changes in hormone sensitivity in the Arabidopsis root system. Plant Physiol 129:244–256

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Bucio J, Campos-Cuevas JC, Hernandez-Calderon E, Velasquez-Becerra C, Farias-Rodriguez R, Macias-Rodriguez LI, Valencia-Cantero E (2007) Bacillus megaterium rhizobacteria promote growth and alter root-system architecture through an auxin- and ethylene-independent signaling mechanism in Arabidopsis thaliana. Mol Plant Microbe Interact 20:207–217

    Article  CAS  PubMed  Google Scholar 

  • Lucas M, Guedon Y, Jay-Allemand C, Godin C, Laplaze L (2008) An auxin transport-based model of root branching in Arabidopsis thaliana. PLoS ONE 3(11):1–13

    Article  Google Scholar 

  • Malamy JE (2005) Intrinsic and environmental response pathways that regulate root system architecture. Plant Cell Eviron 28:67–77

    Article  CAS  Google Scholar 

  • Malamy J, Benfey P (1997) Down and out in Arabidopsis: the formation of lateral roots. Trends Plant Sci 2:390–396

    Article  Google Scholar 

  • Mastretta C et al (2006) Endophytic bacteria and their potential application to improve the phytoremediation of contaminated environments. Biotechnol Gen Eng Rev 23:175–207

    CAS  Google Scholar 

  • Mayak S et al (2004) Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol Biochem 42:565–572

    Article  CAS  PubMed  Google Scholar 

  • Nagatsu T, Yagi K (1966) A simple assay of monoamine oxidase and d-amino acid oxidase by measuring ammonia. J Biochem 60:219–221

    CAS  PubMed  Google Scholar 

  • Pare PW, Farag MA, Krishnamachari V, Zhang H, Ryu CM, Kloepper JW (2005) Elicitors and priming agents initiate plant defense responses. Photosynth Res 85:149–159

    Article  CAS  PubMed  Google Scholar 

  • Patten C, Glick B (2002) Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Appl Environ Microbiol 68:3795–3801

    Article  CAS  PubMed  Google Scholar 

  • Penrose DM, Moffatt BA, Glick BR (2001) Determination of 1-aminocyclopropane-1-carboxylic acid (ACC) to assess the effects of ACC deaminase-containing bacteria on roots of canola seedlings. Cnd J Microbiol 47:77–80

    Article  CAS  Google Scholar 

  • Persello-Cartieaux F, Nussaume L, Robaglia C (2003) Tales from the underground: molecular plant-rhizobia interactions. Plant, Cell Environ 26:189–199

    Article  CAS  Google Scholar 

  • Ryu RJ, Patten CL (2008) Aromatic amino acid-dependent expression of indole-3-pyruvate decarboxylase is regulated by TyrR in Enterobacter cloacae UW5. J Bacteriol 190:7200–7208

    Article  CAS  PubMed  Google Scholar 

  • Ryu CM, Farag MA, Hu CH, Reddy MS, Kloepper JW, Pare PW (2004) Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol 134:1017–1026

    Article  CAS  PubMed  Google Scholar 

  • Saharan BS, Nehra V (2011) Plant growth promoting rhizobacteria: a critical review. LSMR 21:1–30

    Google Scholar 

  • Shaharoona B, Arshad M, Zahir ZA (2006) Effect of growth-promoting rhizobacteria containing ACCdeaminase on maize (Zea mays L.) growth under axenic conditions and on nodulation in mung bean (Vigna radiata L.). Lett Appl Microbiol 42:155–159

    Article  CAS  PubMed  Google Scholar 

  • Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev 31:425–448

    Article  CAS  PubMed  Google Scholar 

  • Stepanova AN, Hoyt JM, Hamilton AA, Alonso JM (2005) A link between ethylene and auxin uncovered by the characterization of two root-specific ethylene-insensitive mutants in Arabidopsis. Plant Cell 17:2230–2242

    Article  CAS  PubMed  Google Scholar 

  • Taghavi S et al (2009) Genome survey and characterization of endophytic bacteria exhibiting a beneficial effect on growth and development of poplar. Appl Environ Microbiol 75:748–757

    Article  CAS  PubMed  Google Scholar 

  • Ulmasov T, Murfett J, Hagen G, Guilfoyle T (1997) Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. Plant Cell 9:1963–1971

    CAS  PubMed  Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586

    Article  CAS  Google Scholar 

  • Wang C, Ramette A, Punjasamarnwong P, Zala M, Natsch A, Moenne-Loccoz Y, Defago G (2001) Cosmopolitan distribution of phlD-containing dicotyledonous crop-associated pseudomonads of worldwide origin. FEMS Microbiol Ecol 37:105–116

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The Higher Education Commission of Pakistan is acknowledged for providing funds to Atia Iqbal (IRSIP No.1-8/HEC/HRD/2009/514) to visit (Department of Molecular Genetics and Cell Biology, university of Chicago) to carry out this study. We are highly obliged to Jocelyn E. Malamy for her assistance and providing lab facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atia Iqbal.

Additional information

Communicated by H. Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iqbal, A., Hasnain, S. Aeromonas punctata PNS-1: a promising candidate to change the root morphogenesis of Arabidopsis thaliana in MS and sand system. Acta Physiol Plant 35, 657–665 (2013). https://doi.org/10.1007/s11738-012-1106-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-012-1106-8

Keywords

Navigation