Skip to main content
Log in

Impact of excess zinc on growth parameters, cell division, nutrient accumulation, photosynthetic pigments and oxidative stress of sugarcane (Saccharum spp.)

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

The present study employed a sand culture experiment with three levels of zinc viz., 0.065 (control), 65.0 and 130 mg l−1 Zn (excess) as zinc sulfate, respectively, in sugarcane (Saccharum spp.), cultivar CoLk 8102. The results indicated growth depression, dark green leaves, decreased root number and length and sharp depression in mitotic activity of roots due to high doses of Zn (65 and 130 mg l−1); effects were significant at 130 mg l−1 Zn supply. The endogenous ion contents measurements revealed roots to be the major sink for excess Zn with lower amounts in leaves of sugarcane plants. High level of Zn decreased total phosphorus in leaves and increased it in roots. Fe and Cu content decreased, while, Mn increased in sugarcane plants due to high Zn in the growing medium. Plants experienced oxidative stress when exposed to higher levels of zinc. Biochemical investigations indicated high level of hydrogen peroxide, malondialdehyde contents with high chlorophyll a, b and carotenoids contents and activity of superoxide dismutase, catalase and peroxidase enzymes under high Zn conditions. These findings confirm suggest that excess Zn adversely affects root growth and mitotic efficiency, enhances chromosomal aberrations and increases growth and nutrient accumulation abnormalities, as well as oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

EDTA:

Ethylenediaminetetra-acetic acid

HCl:

Hydrochloric acid

AAs:

Atomic absorption spectrophotometer

SOD:

Superoxide dismutase

MDA:

Malondialdehyde

OD:

Optical density

TCA:

Trichloroacetic acid

ROS:

Reactive oxygen species

References

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  PubMed  Google Scholar 

  • Agarwala SC, Chatterjee C, Sharma CP, Nautiyal N (1985) Copper nutrition of sugar beet. J Exp Bot 36:881–888

    Article  CAS  Google Scholar 

  • Alloway BJ (1995) Heavy metals in soils, 2nd edn. Blackie Academic Professional, London

    Google Scholar 

  • Amer SM, Ali ME (1968) Cytological effects of pesticides. IV. Mitotic effects of some phenols. Cytologia 34:533–540

    Google Scholar 

  • Arduini I, Godbold DL, Onnis A (1994) Cadmium and copper change root growth and morphology of Pinus pinea and Pinus pineaster seedlings. Physiol Plant 92:675–680

    Article  CAS  Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts: polyphenol oxidase in Beta vulgaris. Plant Physiol 24:1–15

    Article  CAS  PubMed  Google Scholar 

  • Asada K (1987) The role of ascorbate peroxidase and monodehydroascorbate reductase in H2O2 scavenging in plants. In: Scandalios JG (ed) Oxidative stress and the molecular biology of antioxidant defenses. Cold Spring Harbor Laboratory Press, USA, pp 715–735

    Google Scholar 

  • Badr A (1983) Mitodepressive and chromotoxic activities of two herbicides in Allium cepa. Cytologia 48:451–457

    CAS  Google Scholar 

  • Barber SA (1995) Soil nutrient bioavailability, 2nd edn. Wiley, New York

    Google Scholar 

  • Beauchamp C, Fridovich I (1971) Superoxide dismutases: improved assay and an assay applicable to acrylamide gels. Anal Biochem 44:276–287

    Article  CAS  PubMed  Google Scholar 

  • Beu SL, Sachwarz OJ, Hughes KW (1976) Studies of the herbicide paraquat. I. Effects on cell cycle and DNA synthesis in Vicia faba. Can J Genet Cytol 18:93–99

    Google Scholar 

  • Boawn LC, Rasmussen PE (1971) Crop response to excessive zinc fertilization of alkaline soil. Agron J 63:874–876

    Article  Google Scholar 

  • Bonnet M, Camares O, Veisseire P (2000) Effects of zinc and influence of Acremonium lolii on growth parameters, chlorophyll a fluorescence and antioxidant enzyme activities of ryegrass (Lolium perenne L. cv. Apollo). J Exp Bot 51:945–953

    Article  CAS  PubMed  Google Scholar 

  • Bowen JE (1981) Kinetics of active uptake of boron, zinc, copper and manganese in barley and sugarcane. J Plant Nutr 3:215–223

    Article  CAS  Google Scholar 

  • Broadley MR, White PJ, Hammond JP, Zelko I, Lux A (2007) Zinc in plants. New Phytol 173:677–702

    Article  CAS  PubMed  Google Scholar 

  • Cakmak I, Horst WJ (1991) Effect of aluminium on lipid peroxidation, superoxide dismutase, catalase and peroxidase activities in root tips of soybean (Glycine max). Physiol Plant 83:463–468

    Article  CAS  Google Scholar 

  • Carroll MD, Loneragan JF (1968) Response of plant species to concentrations of zinc in solution. I. Growth and zinc content of plants. Aust J Agric Res 19:859–868

    Article  CAS  Google Scholar 

  • Chaney RL (1993) Zinc phytotoxicity. In: Robson AD (ed) Zinc in soil and plants. Kluwer, Dordrecht, pp 135–150

    Google Scholar 

  • Chaoui A, Mazhoudi S, Ghorbal MH, Elferjani E (1997) Cadmium and zinc induction of lipid peroxidation and effects on antioxidant enzyme activities in bean (Phaseolus vulgaris L.). Plant Sci 127:139–147

    Article  CAS  Google Scholar 

  • Chatterjee C, Jain R, Dube BK, Nautiyal N (1998) Use of carbonic anhydrase for determining zinc status of sugarcane. Trop Agric (Trinidad) 75:1–4

    Google Scholar 

  • Clemens S (2001) Molecular mechanisms of plant metal tolerance and homeostasis. Planta 212:475–486

    Article  CAS  PubMed  Google Scholar 

  • Collins JC (1981) Zinc. In: Lepp NW (ed) Effects of heavy metal pollution on plants. Applied Science Publishers, London, pp 145–169

    Google Scholar 

  • Davies BE (1993) Radish as an indicator plant for derelict land–uptake of zinc at toxic concentrations. Commun Soil Sci Plant Anal 24:1883–1895

    Article  CAS  Google Scholar 

  • Dudka S, Piotrowska M, Terelak H (1996) Transfer of cadmium, lead, and zinc from industrially contaminated soil to crop plants: a field study. Environ Pollut 94:181–188

    Article  CAS  PubMed  Google Scholar 

  • Fiske CH, Subbarow Y (1925) The colorimetric determination of phosphorus. J Biol Chem 66:375–400

    CAS  Google Scholar 

  • Foy CD, Chaney RL, White MC (1978) The physiology of metal toxicity in plants. Annu Rev Plant Physiol 29:511–566

    Article  CAS  Google Scholar 

  • Foyer CH, Harbinson J (1994) Oxygen metabolism and the regulation of photosynthetic electron transport. In: Foyer CH, Mullineaux PM (eds) Causes of photooxidative stress and amelioration of defense systems in plants. CRC Press, Boca Raton, pp 1–42

    Google Scholar 

  • Gallego SM, Benavides MP, Tomaro ML (1996) Effect of heavy metal ion excess on sunflower leaves: evidence for involvement of oxidative stress. Plant Sci 121:151–159

    Article  CAS  Google Scholar 

  • Hewitt EJ (1983) Essential and functional methods in plants. In: Robb DA, Pierpoint WS (eds) Metals and micronutrients: uptake and utilization by plants. Academic Press, New York, pp 313–315

    Google Scholar 

  • Jain R, Srivastava S, Madan VK (2000) Influence of chromium on growth and cell division of sugarcane. Indian J Plant Physiol 5:228–231

    CAS  Google Scholar 

  • Jain R, Shrivastava AK, Solomon S, Srivastava S (2008) Influence of excess copper on sugarcane metabolism and nutrient composition. Indian J Plant Physiol 13:84–87

    CAS  Google Scholar 

  • Lee CR, Page NR (1967) Soil factors influencing the growth of cotton following peach orchards. Agron J 59:237–240

    Article  CAS  Google Scholar 

  • Lerda D (1992) The effects of lead on Allium cepa L. Mutat Res 281:89–92

    Article  CAS  PubMed  Google Scholar 

  • Lin CC, Kao CH (2001) Cell wall peroxidase activity, hydrogen peroxide level and Na–Cl inhibited root growth of rice seedlings. Plant Soil 230:135–143

    Article  CAS  Google Scholar 

  • Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–375

    CAS  PubMed  Google Scholar 

  • Lozano-Rodriguez E, Hernandez LE, Bonay P, Carpena-Ruiz RO (1997) Distribution of cadmium in shoot and root tissues of maize and pea plants: physiological disturbances. J Exp Bot 48:123–128

    Article  CAS  Google Scholar 

  • Luck H (1963) Peroxidase. In: Bergmeyer HU (ed) Methods in enzymatic analysis. Academic Press, New York, pp 895–897

    Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants. Academic Press, London

    Google Scholar 

  • Monk LS, Fagerstedt KY, Crawford RMM (1989) Oxygen toxicity and superoxide dismutase as an antioxidant in physiological stress. Physiol Plant 76:456–459

    CAS  Google Scholar 

  • Nandi S (1985) Studies on the cytogenetic effect of some mercuric fungicides. Cytologia 50:921–926

    CAS  Google Scholar 

  • Ouariti O, Gouia H, Ghorbal MH (1997) Responses of bean and tomato plants to cadmium: growth, mineral nutrition and nitrate reduction. Plant Physiol Biochem 35:347–354

    CAS  Google Scholar 

  • Pahlsson AMB (1989) Toxicity of heavy metals (Zn, Cu, Cd, Pb) to vascular plants: literature review. Water Air Soil Pollut 47:287–319

    Article  Google Scholar 

  • Panse VG, Sukhatme P (1985) Statistical methods for agricultural workers, 4th edn. ICAR, New Delhi

    Google Scholar 

  • Richardson MD, Hoveland CS, Bacon CW (1993) Photosynthesis and stomatal conductance of symbiotic and nonsymbiotic tall fescue. Crop Sci 33:145–149

    Article  Google Scholar 

  • Ross SM (1994) Sources and forms of potentially toxic metal in soil–plant systems. In: Ross SM (ed) Toxic metals in soil-plant systems. Wiley, New York, pp 3–25

    Google Scholar 

  • Saffar A, Bagherieh Najjar MB, Mianabadi M (2009) Activity of antioxidant enzymes in response to cadmium in Arabidopsis thaliana. J Biol Sci 9:44–50

    Article  CAS  Google Scholar 

  • Sagardoy R, Morales F, Lopez-Millan AF, Abadıa A, Abadıa J (2009) Effects of zinc toxicity on sugar beet (Beta vulgaris L.) plants grown in hydroponics. Plant Biol 11:339

    Article  CAS  PubMed  Google Scholar 

  • Singla-Pareek SL, Yadav SK, Pareek A, Reddy MK, Sopory SK (2006) Transgenic tobacco over expressing glyoxalase pathway enzymes grow and viable seeds in zinc-spiked soils. Plant Physiol 140:613–623

    Article  CAS  PubMed  Google Scholar 

  • Somashekaraiah BV, Padmaja K, Prasad ARK (1992) Phytotoxicity of cadmium ions on germinating seedlings of mung bean (Phaseolus vulgaris): involvement of lipid peroxides in chlorophyll degradation. Physiol Plant 85:85–89

    Article  CAS  Google Scholar 

  • Srivastava S (1995) A modified pretreatment procedure for mitotic studies in sugarcane root tips. Indian J Sugarcane Technol 10:107–110

    Google Scholar 

  • Staker EV, Cummings RW (1941) The influence of zinc on the productivity of certain New York Peat soils. Soil Sci Soc Am Proc 6:207–214

    Article  CAS  Google Scholar 

  • Vaillant N, Monnet F, Hitmi A, Sallanon H, Coudret A (2005) Comparative study of responses in four Datura species to a zinc stress. Chemosphere 59:1005–1013

    Article  CAS  PubMed  Google Scholar 

  • Van Assche F, Clijsters H (1986) Inhibition of photosynthesis in Phaseolus vulgaris by treatment with toxic concentration of zinc: effect on ribulose-1, 5-biphosphate carboxylase/oxygenase. J Plant Physiol 125:355–360

    Google Scholar 

  • Verret F, Gravot A, Auroy P, Leonhardt N, David P, Nussaume L, Vavasseur A, Richaud P (2004) Overexpression of AtHMA4 enhances root-to-shoot translocation of zinc and cadmium and plant metal tolerance. FEBS Lett 576:306–312

    Article  CAS  PubMed  Google Scholar 

  • Wallace A, Romney EM (1977) Roots of higher plants as a barrier to translocation of some metals to shoots of plants. In: Biological implications of metals in the environment. Proceedings of 15th Ann Hanford Life Science Symposium Richland, Washington, 29 September to 10 October, pp 370–379

  • Weckx JEJ, Clijsters HMM (1997) Zn phytotoxicity induces oxidative stress in primary leaves of Phaseolus vulgaris. Plant Physiol Biochem 35:405–410

    CAS  Google Scholar 

  • Zarcinas BA, Pongsakul P, McLaughlin MJ, Cozens G (2004) Heavy metals in soils and crops in Southeast Asia 2. Thailand Environ Geochem Health 26:359–371

    Article  CAS  Google Scholar 

  • Zenk MH (1996) Heavy metal detoxification in higher plants: a review. Gene 179:21–30

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radha Jain.

Additional information

Communicated by G. Klobus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jain, R., Srivastava, S., Solomon, S. et al. Impact of excess zinc on growth parameters, cell division, nutrient accumulation, photosynthetic pigments and oxidative stress of sugarcane (Saccharum spp.). Acta Physiol Plant 32, 979–986 (2010). https://doi.org/10.1007/s11738-010-0487-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-010-0487-9

Keywords

Navigation