Skip to main content
Log in

Response of Cleopatra mandarin seedlings to a polyamine-biosynthesis inhibitor under salt stress

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Six-month-old, uniform-sized seedlings of Cleopatra mandarin growing in hydroponics in Hoagland nutrient solution under glasshouse conditions were subjected to salinity treatment (NaCl 75 mM). Addition of NaCl to the nutrient medium reduced plant growth (shoot height and leaf number), leaf chlorophyll content, chlorophyll fluorescence yields (Fv/Fm), net photosynthesis, stomatal conductance, transpiration rate, intracellular CO2 concentration, N, K+ and Ca2+ + Mg2+ contents of the leaves; and increased total putrescine (Put), proline and Na+ and Cl contents of the leaves. Addition of d-arginine (1 mM) to the saline medium further reduced the values of all the parameters except Fv/Fm, photosynthesis and related parameters and Ca2+ + Mg2+ contents of the leaves, and increased total spermine (Spm) content of the leaves. However, total Put contents were decreased; spermidine (Spd) contents and Na+ and Cl titres of the leaves were unaffected. Weekly spray of d-arginine (5 mM) was less harmful than its addition to the nutrient medium (1 mM). Addition of 0.5 mM Spd to the medium alleviated the adverse effects of d-arginine by improving plant growth, leaf chlorophyll content, total Put, Spd, Spm, N, P, K+ and Ca2+ + Mg2+ contents of the leaves. Weekly spray of Spd (5 mM) was less effective than its addition in the nutrient medium (0.5 mM).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Anjum MA (2008) Effect of NaCl concentrations in irrigation water on growth and polyamine metabolism in two citrus rootstocks with different levels of salinity tolerance. Acta Physiol Plant 30:43–52

    Article  CAS  Google Scholar 

  • Anjum MA, Abid M, Naveed F (2001) Evaluation of citrus rootstocks for salinity tolerance at seedling stage. Int J Agric Biol 3:1–4

    Google Scholar 

  • Arbona V, Gómez-Cadenas A (2008) Hormonal modulation of citrus responses to flooding. J Plant Growth Regul 27:241–250

    Article  CAS  Google Scholar 

  • Arbona V, Flors V, Jacas J, Garcia-Agustin P, Gómez-Cadenas A (2003) Enzymatic and non-enzymatic antioxidant responses of Carrizo citrange, a salt sensitive citrus rootstock, to different levels of salinity. Plant Cell Physiol 44:388–394

    Article  CAS  PubMed  Google Scholar 

  • Arbona V, Jacas J, Gómez-Cadenas A (2004) Responses of antioxidant machinery of two citrus rootstocks to salt stress. Proc Int Soc Cit 2:644–648

    Google Scholar 

  • Arbona V, Hossain Z, López-Climent MF, Pérez-Clemente RM, Gómez-Cadenas A (2008) Antioxidant enzymatic activity is linked to waterlogging stress tolerance in citrus. Physiol Plant 132:452–466

    Article  CAS  PubMed  Google Scholar 

  • Banuls J, Primo-Millo E (1992) Effects of chloride and sodium on gas exchange parameters and water relations of Citrus plants. Physiol Plant 86:115–123

    Article  CAS  Google Scholar 

  • Bar Y, Apelbaum A, Kafkafi U, Goren R (1996) Polyamines in chloride-stressed Citrus plants: alleviation of stress by nitrate supplementation via irrigation water. J Am Soc Hortic Sci 121:507–513

    CAS  Google Scholar 

  • Botella MA, del Amor F, Amorós A, Serrano M, Martinez V (2000) Polyamine, ethylene and other physico-chemical parameters in tomato (Lycopersicon esculentum) fruits as affected by salinity. Physiol Plant 109:428–434

    Article  CAS  Google Scholar 

  • Bouchereau A, Aziz A, Larher F, Martin-Tanguy J (1999) Review—polyamines and environmental challenges: recent development. Plant Sci 140:103–125

    Article  CAS  Google Scholar 

  • Burtin D, Martin-Taguy J, Paynot M, Rossin N (1989) Effects of the suicide inhibitors of arginine and ornithine decarboxylase activities on organogenesis, growth, free polyamines and hydroxycinnamoyl putrescine levels in leaf explants of Nicotiana Xanthi n.c. cultivated in vitro in a medium producing callus formation. Plant Physiol 89:104–110

    Article  CAS  PubMed  Google Scholar 

  • Chattopadhayay MK, Tiwari BS, Chattopadhyay G, Bose A, Sengupta DN, Ghosh B (2002) Protective role of exogenous polyamines on salinity-stressed rice (Oryza sativa) plants. Physiol Plant 116:192–199

    Article  CAS  PubMed  Google Scholar 

  • Demetriou G, Neonaki C, Navakoudis E, Kotzabasis K (2007) Salt stress impact on molecular structure and function of the photosynthetic apparatus—the protective role of polyamines. Biochem Biophys Acta 1767:272–280

    Article  CAS  PubMed  Google Scholar 

  • Flores HE (1991) Changes in polyamine metabolism in response to abiotic stress. In: Slocum R, Flores HE (eds) The biochemistry and physiology of polyamines in plants. CRS Press, Boca Raton, pp 214–225

    Google Scholar 

  • Gómez-Cadenas A, Tadeo FR, Primo-Millo E, Talon M (1998) Involvement of abscisic acid and ethylene in the responses of citrus seedlings to salt shock. Physiol Plant 103:475–484

    Article  Google Scholar 

  • Ha HC, Sirisoma NS, Kuppusamy P, Zweier JL, Woster PM, Casero RA (1998) The natural polyamine spermine functions directly as a free radical scavenger. Proc Nat Acad Sci USA 95:11140–11145

    Article  CAS  PubMed  Google Scholar 

  • Hao YJ, Kitashiba H, Honda C, Nada K, Moriguchi T (2005) Expression of arginine decarboxylase and ornithine decarboxylase genes in apple cells and stressed shoots. J Exp Bot 56:1105–1115

    Article  CAS  PubMed  Google Scholar 

  • Hoagland DR, Arnon DJ (1950) The water culture method for growing plants without soil. Circular No. 347. California Agricultural Experimental Station, Berkeley

  • Hummel I, Couée I, El-Amrani A, Martin-Tanguy J, Hennion F (2002) Involvement of polyamines in root development at low temperature in the subantarctic cruciferous species Pringlea antiscorbutica. J Exp Bot 53:1463–1473

    Article  CAS  PubMed  Google Scholar 

  • Hummel I, Gouesbet G, Amrani AE, Aïnouche A, Couée I (2004) Characterization of two arginine decarboxylase (polyamine biosynthesis) paralogues of the endemic subantarctic cruciferous species Pringlea antiscorbutica and analysis of their differential expression during development and response to environmental stress. Gene 342:199–209

    Article  CAS  PubMed  Google Scholar 

  • Ioannidis NE, Kotzabasis K (2007) Effects of polyamines on the functionality of photosynthetic membrane in vivo and in vitro. Biochim Biophys Acta 1767:1372–1382

    Article  CAS  PubMed  Google Scholar 

  • Ioannidis NE, Sfichi L, Kotzabasis K (2006) Putrescine stimulates chemiosmotic ATP synthesis. Biochim Biophys Acta 1757:821–828

    Article  CAS  PubMed  Google Scholar 

  • Ioannidis NE, Ortigosa SM, Veramendi J, Printó-Marijuan M, Fleck I, Carvajal P, Kotzabasis K, Santos M, Torné JM (2009) Remodeling of tobacco thylakoids by over-expression of maize plastidial transglutaminase. Biochim Biophys Acta 1787:1215–1222

    Article  CAS  PubMed  Google Scholar 

  • Kakkar RK, Sawhney VK (2002) Polyamine research in plants: a changing perspective. Physiol Plant 116:281–292

    Article  CAS  Google Scholar 

  • Kasinathan V, Wingler A (2004) Effect of reduced arginine decarboxylase activity on salt tolerance and polyamine formation during salt stress in Arabidopsis thaliana. Physiol Plant 121:101–107

    Article  CAS  PubMed  Google Scholar 

  • Kaur-Sawhney R, Dai Y, Galston AW (1986) Effect of inhibitors of polyamine biosynthesis on gibberellin-induced internode growth in light-grown dwarf peas. Plant Cell Physiol 27:253–260

    CAS  PubMed  Google Scholar 

  • Kotzabasis K, Strasser B, Navakoudis E, Senger H, Dörnemann D (1999) The regulatory role of polyamines in structure and functioning of the photosynthetic apparatus during photoadaption. J Photochem Photobiol B: Biol 50:45–52

    Article  CAS  Google Scholar 

  • Kumria R, Rajam MV (2002) Ornithine decarboxylase transgene in tobacco affects polyamines, in vitro morphogenesis and response to salt stress. J Plant Physiol 159:983–990

    Article  CAS  Google Scholar 

  • Liu K, Fu H, Bei Q, Luan S (2000) Inward potassium channel in guard cells as a target for polyamine regulation of stomatal movements. Plant Physiol 124:1315–1325

    Article  CAS  PubMed  Google Scholar 

  • Liu JH, Nada K, Honda C, Kitashiba H, Wen XP, Pang XM, Moriguchi T (2006) Polyamine biosynthesis of apple callus under salt stress: importance of arginine decarboxylase pathway in stress response. J Exp Bot 57:2589–2599

    Article  CAS  PubMed  Google Scholar 

  • Lopatin AN, Makhina EN, Nichols CG (1994) Potassium channel block by cytoplasmic polyamines as the mechanism of intrinsic rectification. Nature 372:366–369

    Article  CAS  PubMed  Google Scholar 

  • López-Climent MF, Arbona V, Pérez-Clemente RM, Gómez-Cadenas A (2008) Relationship between salt tolerance and photosynthetic machinery performance in citrus. Environ Exp Bot 62:176–184

    Article  Google Scholar 

  • Lütz C, Novakoudis E, Seidlitz HK, Kotzabasis K (2005) Stimulated solar irradiation with enhanced UV-B adjust plastid- and thylakoid-associated polyamine change for UV-B protection. Biochim Biophys Acta 1710:24–33

    Article  PubMed  Google Scholar 

  • Moya JL, Primo-Millo E, Talon M (1999) Morphological factors determining salt tolerance in citrus seedlings: the shoot to root ratio modulates passive root uptake of chloride ions and their accumulation in leaves. Plant Cell Environ 22:1425–1433

    Article  CAS  Google Scholar 

  • Moya JL, Gómez-Cadenas A, Primo-Millo E, Talon M (2003) Chloride absorption in salt-sensitive Carrizo citrange and salt-tolerant Cleopatra mandarin citrus rootstocks is linked to water use. J Exp Bot 54:825–833

    Article  CAS  PubMed  Google Scholar 

  • Ndayiragije A, Lutts S (2006) Do exogenous polyamines have an impact on the response of a salt sensitive rice cultivar to NaCl? J Plant Physiol 163:506–516

    Article  CAS  PubMed  Google Scholar 

  • Nieves M, Cerda A, Botella M (1991) Salt tolerance of two lemon scions measured by leaf chloride and sodium accumulation. J Plant Nutr 14:623–636

    Article  Google Scholar 

  • Roy M, Wu R (2001) Arginine decarboxylase transgene expression and analysis of environmental stress tolerance in transgenic rice. Plant Sci 160:869–875

    Article  CAS  PubMed  Google Scholar 

  • Roy P, Niyogi K, SenGupta DN, Ghosh B (2005) Spermidine treatment to rice seedlings recovers salinity stress-induced damage of plasma membrane and PM-bound H+-ATPase in salt-tolerant and salt-sensitive rice cultivars. Plant Sci 168:583–591

    Article  CAS  Google Scholar 

  • Shabala S, Cuin TA, Pottosin I (2007) Polyamines prevent NaCl-induced K+ efflux from mesophyll by blocking non-selective cation channels. FEBS Lett 581:1993–1999

    Article  CAS  PubMed  Google Scholar 

  • Storey R, Walker RR (1999) Citrus and salinity. Sci Hortic 78:39–81

    Article  CAS  Google Scholar 

  • Sultana N, Ikeda T, Itoh R (1999) Effect of NaCl salinity on photosynthesis and dry matter accumulation in developing rice grains. Environ Exp Bot 42:211–220

    Article  CAS  Google Scholar 

  • Tang W, Newton RJ (2005) Polyamines reduce salt-induced oxidative damage by increasing the activities of antioxidant enzymes and decreasing lipid peroxidation in Virginia pine. Plant Growth Reg 46:31–43

    Article  CAS  Google Scholar 

  • Tester M, Davenport R (2003) Na tolerance and Na transportation in higher plants. Ann Bot 91:503–527

    Article  CAS  PubMed  Google Scholar 

  • Tiburcio AF, Besford RT, Capell T, Borrell A, Testillano PS, Risueňo MC (1994) Mechanisms of polyamine action during senescence responses induced by osmotic stress. J Exp Bot 45:1789–1800

    Article  CAS  Google Scholar 

  • Tiburcio AF, Altabella T, Borrell A, Masgrau C (1997) Polyamine metabolism and its regulation. Physiol Plant 100:664–674

    Article  CAS  Google Scholar 

  • Zhang RH, Li J, Guo SR, Tezuka T (2009) Effect of exogenous putrescine on gas-exchange and chlorophyll fluorescence of NaCl-stressed cucumber seedlings. Photosynth Res 100:155–162

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Akbar Anjum.

Additional information

Communicated by J. Zwiazek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anjum, M.A. Response of Cleopatra mandarin seedlings to a polyamine-biosynthesis inhibitor under salt stress. Acta Physiol Plant 32, 951–959 (2010). https://doi.org/10.1007/s11738-010-0483-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-010-0483-0

Keywords

Navigation