Skip to main content
Log in

Antioxidant defense responses: physiological plasticity in higher plants under abiotic constraints

  • Review
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Environmental stresses (salinity, drought, heat/cold, light and other hostile conditions) may trigger in plants oxidative stress, generating the formation of reactive oxygen species (ROS). These species are partially reduced or activated derivatives of oxygen, comprising both free radical \( ( {\text{O}}_{2}^{\cdot - } ,{\text{OH}} \cdot , {\text{OH}}_{ 2} \cdot ) \) and non-radical (H2O2) forms, leading to cellular damage, metabolic disorders and senescence processes. In order to overcome oxidative stress, plants have developed two main antioxidants defense mechanisms that can be classified as non-enzymatic and enzymatic systems. The first class (non-enzymatic) consists of small molecules such as vitamin (A, C and E), glutathione, carotenoids and phenolics that can react directly with the ROS by scavenging them. Second class is represented by enzymes among them superoxide dismutase, peroxidase and catalase which have the capacity to eliminate superoxide and hydrogen peroxide. In this review, we have tried to explore the related works, which have revealed the changes in the basic antioxidant metabolism of plants under various abiotic constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbasi A-R, Hajirezaei M, Hofius D, Sonnewald U, Voll LM (2007) Specific roles of α- and γ-tocopherol in abiotic stress responses of transgenic tobacco. Plant Physiol 143:1720–1738. doi:10.1104/pp.106.094771

    PubMed  CAS  Google Scholar 

  • Agarwal PK, Agarwal P, Reddy MK, Sopory SK (2006) Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Rep 25:1263–1274. doi:10.1007/s00299-006-0204-8

    PubMed  CAS  Google Scholar 

  • Ahmadi A, Baker DA (2001) The effect of water stress on the activities of key regulatory enzymes of the sucrose to starch pathway in wheat. Plant Growth Regul 35:81–91. doi:10.1023/A:1013827600528

    CAS  Google Scholar 

  • Akashi K, Miyake C, Yokota A (2001) Citrulline, a novel compatible solute in drought-tolerant wild watermelon leaves, is an efficient hydroxyl radical scavenger. FEBS Lett 508:438–442. doi:10.1016/S0014-5793(01)03123-4

    PubMed  CAS  Google Scholar 

  • Ali MB, Hahn EJ, Paek K (2005) Effects of temperature on oxidative stress defense systems, lipid peroxidation and lipoxygenase activity in Phalaenopsis. Plant Physiol Biochem 43:213–223. doi:10.1016/j.plaphy.2005.01.007

    PubMed  CAS  Google Scholar 

  • Ali B, Hasan SA, Hayat S, Hayat Q, Yadav S, Fariduddin Q, Ahmad A (2008) A role for brassinosteroids in the amelioration of aluminium stress through antioxidant system in mung bean (Vigna radiata L. Wilczek). Environ Exp Bot 62:153–159. doi:10.1016/j.envexpbot.2007.07.014

    CAS  Google Scholar 

  • Alscher RG, Erturk N, Heath LS (2002) Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Biol 53:1331–1341

    CAS  Google Scholar 

  • Alvarez ME (2000) Salicylic acid in the machinery of hypersensitive cell death and disease resistance. Plant Mol Biol 44:429–442. doi:10.1023/A:1026561029533

    PubMed  CAS  Google Scholar 

  • Amaya I, Botella MA, Cale M, Medina MI, Heredia A, Bressan RA, Hasegawa PM, Quesada MA, Valpuesta V (1999) Improved germination under osmotic stress or tobacco plants over-expressing a cell wall peroxidase. FEBS Lett 457:80–84. doi:10.1016/S0014-5793(99)01011-X

    PubMed  CAS  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399. doi:10.1146/annurev.arplant.55.031903.141701

    PubMed  CAS  Google Scholar 

  • Asada K (1999) The water–water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50:601–639. doi:10.1146/annurev.arplant.50.1.601

    PubMed  CAS  Google Scholar 

  • Asada K, Takahashi M (1987) Production and scavenging of active oxygen in photosynthesis. In: Kyle DJ, Osmond B, Arntzen CJ (eds) Photoinhibition. Elsevier, Amsterdam, pp 227–287

    Google Scholar 

  • Bartoli MG, Simontacchi M, Tambussi E, Beltrano J, Montaldi J, Puntarulo S (1999) Drought and watering-dependent oxidative stress: effect of antioxidant content in Triticum aestivum L. leaves. J Exp Bot 50:375–383. doi:10.1093/jexbot/50.332.373

    CAS  Google Scholar 

  • Blokhina O, Virolainen E, Gagerstedt KV (2003) Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot (Lond) 91:179–194. doi:10.1093/aob/mcf118

    CAS  Google Scholar 

  • Chaitanya KV, Sundar D, Masilamani S, Ramachandra Reddy A (2002) Variation in heat stress-induced antioxidant enzyme activities among three mulberry cultivars. Plant Growth Regul 36:175–180. doi:10.1023/A:1015092628374

    CAS  Google Scholar 

  • Chen Z, Gallie DR (2004) The AA redox state controls guard cell signaling and stomatal movement. Plant Cell 16:1143–1162. doi:10.1105/tpc.021584

    PubMed  CAS  Google Scholar 

  • Chew O, Whelan J, Miller AH (2003) Molecular definition of the ascorbate–glutathione cycle in Arabidopsis mitochondria reveals dual targeting of antioxidant defences in plants. J Biol Chem 278:46869–46877. doi:10.1074/jbc.M307525200

    PubMed  CAS  Google Scholar 

  • Clement SA, Tan CC, Guo JL, Kitta K, Suzuki YJ (2002) Roles of protein kinase and alpha-tocopherol in regulation of signal transduction for GATA-4 phosphorylation in HL-1 cardiac muscle cells. Free Radic Biol Med 32:341–349. doi:10.1016/S0891-5849(01)00802-4

    PubMed  CAS  Google Scholar 

  • Conklin PL (2001) Recent advances in the role and biosynthesis of AA in plants. Plant Cell Environ 24:383–394. doi:10.1046/j.1365-3040.2001.00686.x

    CAS  Google Scholar 

  • Conner AM, Luby JJ, Tong CBS, Finn CE, Hancock JF (2002) Genotypic and environmental variation in antioxidant activity among blue berry cultivars. Acta Hortic 574:209–213

    Google Scholar 

  • Dalmia A, Sawhney V (2004) Antioxidant defense mechanism under drought stress in wheat seedlings. Physiol Mol Biol Plants 10(1):109–114

    CAS  Google Scholar 

  • Davenport SB, Gallego SM, Benavides MP, Tomaro ML (2003) Behaviour of antioxidant defense system in the adaptive response to salt stress in Helianthus annus L. cell. Plant Growth Regul 40:81–88. doi:10.1023/A:1023060211546

    CAS  Google Scholar 

  • Davis DG, Swanson HR (2001) Activity of stress-related enzymes in the perennial weed leafy spurge (Euphorbia esula L.). Environ Exp Bot 46:95–108. doi:10.1016/S0098-8472(01)00081-8

    CAS  Google Scholar 

  • Ehlenfeldt MK, Prior RL (2001) Oxygen radical absorbance capacity (ORAC) and phenolic and anthocyanin concentrations in fruit and leaf of high bush blueberry. J Agric Food Chem 49:2222–2227. doi:10.1021/jf0013656

    PubMed  CAS  Google Scholar 

  • Eraslan F, Inal A, Gunes A, Alpaslan M (2007) Impact of exogenous salicylic acid on the growth, antioxidant activity and physiology of carrot plants subjected to combined salinity and boron toxicity. Sci Hortic (Amsterdam) 113:120–128. doi:10.1016/j.scienta.2007.03.012

    CAS  Google Scholar 

  • Eva C, Dean DP (2003) The role of homogentisate phytyltransferase and other tocopherol pathway enzymes in the regulation of tocopherol synthesis during abiotic stress. Plant Physiol 133:930–940. doi:10.1104/pp.103.026138

    Google Scholar 

  • Farooq M, Basra SMA, Wahid A, Cheema ZA, Cheema MA, Khaliq A (2008) Physiological role of exogenously applied glycinebetaine in improving drought tolerance of fine grain aromatic rice (Oryza sativa L.). J Agron Crop Sci 194:325–333. doi:10.1111/j.1439-037X.2008.00323.x

    CAS  Google Scholar 

  • Fazeli F, Ghorbanli M, Niknam V (2007) Effect of drought on biomass, protein content, lipid peroxidation and antioxidant enzymes in two sesame cultivars. Biol Plant 51:98–103. doi:10.1007/s10535-007-0020-1

    CAS  Google Scholar 

  • Foyer CH, Fletcher JM (2001) Plant antioxidants: colour me healthy. Biologist 48:115–120

    PubMed  CAS  Google Scholar 

  • Foyer CH, Harbinson J (1994) Oxygen metabolism and the regulation of photosynthetic electron transport. In: Foyer CH, Mullineaux PM (eds) Causes of photooxidative stress and amelioration of defense systems in plants. CRC, Boca Raton, pp 1–42

    Google Scholar 

  • Foyer C, Descourvieres P, Kunert KJ (1994) Protection against oxygen radicals: an important defense mechanism studied in transgenic plant. Plant Cell Environ 17:507–523. doi:10.1111/j.1365-3040.1994.tb00146.x

    CAS  Google Scholar 

  • Fu J, Huang B (2001) Involvement of antioxidants and lipid peroxidation in the adaptation of two cool-season grasses to localized drought stress. Environ Exp Bot 45:105–114. doi:10.1016/S0098-8472(00)00084-8

    PubMed  CAS  Google Scholar 

  • De Gara L, Paciolla C, Tullio MC, Motto M, Arrigoni O (2000) Ascorbate-dependent hydrogen peroxide detoxification and ascorbate regeneration during germination of highly productive maize hybrids: evidence of an improved detoxification mechanism against reactive oxygen species. Physiol Plant 109:7–13. doi:10.1034/j.1399-3054.2000.100102.x

    Google Scholar 

  • Giovannoni JJ (2007) Completing a pathway to plant vitamin C synthesis. Proc Natl Acad Sci USA 104(22):9109–9110. doi:10.1073/pnas.0703222104

    PubMed  CAS  Google Scholar 

  • Girotti AW (1998) Lipid hydroperoxide generation, turnover and effectors action in biological systems. J Lipid Res 39:1529–1535

    PubMed  CAS  Google Scholar 

  • Gopi R, Jaleel CA, Sairam R, Lakshmanan GMA, Gomathinayagam M, Panneerselvam R (2007) Differential effects of hexaconazole and paclobutrazol on biomass, electrolyte leakage, lipid peroxidation and antioxidant potential of Daucus carota L. Colloids Surf B Biointerfaces 60:180–186. doi:10.1016/j.colsurfb.2007.06.003

    PubMed  CAS  Google Scholar 

  • Guo Z, Tan H, Zhu Z, Lu S, Zhou B (2005) Effect of intermediates on ascorbic acid and oxalate biosynthesis of rice and in relation to its stress resistance. Plant Physiol Biochem 43:955–962. doi:10.1016/j.plaphy.2005.08.007

    PubMed  CAS  Google Scholar 

  • Hamada AM (2000) Amelioration of drought stress by AA, thiamine or aspirin in wheat plants. Indian J Plant Physiol 5:358–364

    CAS  Google Scholar 

  • Hoekstra FA, Golovina EA, Buitink J (2001) Mechanisms of plant desiccation tolerance. Trends Plant Sci 6:431–438. doi:10.1016/S1360-1385(01)02052-0

    PubMed  CAS  Google Scholar 

  • Hong-Bo S, Li-Ye C, Jaleel CA, Chang-Xing Z (2008a) Water-deficit stress-induced anatomical changes in higher plants. C R Biol 331:215–225. doi:10.1016/j.crvi.2008.01.002

    Google Scholar 

  • Hong-Bo S, Chu LY, Shao MA, Jaleel CA, Hong-Mei M (2008b) Higher plant antioxidants and redox signaling under environmental stresses. C R Biol 331(6):433–441. doi:10.1016/j.crvi.2008.03.011

    Google Scholar 

  • Hong-Bo S, Chu LY, Shao MA (2008c) Calcium as a versatile plant signal transducer under soil water stress. Bioessays 30:634–641. doi:10.1002/bies.20770

    PubMed  Google Scholar 

  • Hong-Bo S, Chu LY, Lu Zhao-Hua, Kang Cong-Min (2008d) Primary antioxidant free radical scavenging and redox signaling pathways in higher plant cells. Int J Biol Sci 4:8–14

    Google Scholar 

  • Jaleel CA, Gopi R, Alagu Lakshmanan GM, Panneerselvam R (2006) Triadimefon induced changes in the antioxidant metabolism and ajmalicine production in Catharanthus roseus (L.). G Don. Plant Sci 171:271–276. doi:10.1016/j.plantsci.2006.03.018

    CAS  Google Scholar 

  • Jaleel CA, Manivannan P, Kishorekumar A, Sankar B, Gopi R, Somasundaram R, Panneerselvam R (2007a) Alterations in osmoregulation, antioxidant enzymes and indole alkaloid levels in Catharanthus roseus exposed to water deficit. Colloids Surf B Biointerfaces 59:150–157. doi:10.1016/j.colsurfb.2007.05.001

    PubMed  CAS  Google Scholar 

  • Jaleel CA, Manivannan P, Sankar B, Kishorekumar A, Gopi R, Somasundaram R, Panneerselvam R (2007b) Water deficit stress mitigation by calcium chloride in Catharanthus roseus: effects on oxidative stress, proline metabolism and indole alkaloid accumulation. Colloids Surf B Biointerfaces 60:110–116. doi:10.1016/j.colsurfb.2007.06.006

    PubMed  CAS  Google Scholar 

  • Jaleel CA, Manivannan P, Sankar B, Kishorekumar A, Gopi R, Somasundaram R, Panneerselvam R (2007c) Induction of drought stress tolerance by ketoconazole in Catharanthus roseus is mediated by enhanced antioxidant potentials and secondary metabolite accumulation. Colloids Surf B Biointerfaces 60(2):201–206. doi:10.1016/j.colsurfb.2007.06.010

    PubMed  CAS  Google Scholar 

  • Jaleel CA, Manivannan P, Kishorekumar A, Sankar B, Panneerselvam R (2007d) Calcium chloride effects on salinity induced oxidative stress, proline metabolism and indole alkaloid accumulation in Catharanthus roseus. C R Biol 330(9):674–683. doi:10.1016/j.crvi.2007.07.002

    PubMed  CAS  Google Scholar 

  • Jaleel CA, Gopi R, Manivannan P, Panneerselvam R (2007e) Responses of antioxidant defense system of Catharanthus roseus (L.) G. Don to paclobutrazol treatment under salinity. Acta Physiol Plant 29:205–209. doi:10.1007/s11738-007-0025-6

    Google Scholar 

  • Jaleel CA, Manivannan P, Lakshmanan GMA, Sridharan R, Panneerselvam R (2007f) NaCl as a physiological modulator of proline metabolism and antioxidant potential in Phyllanthus amarus. C R Biol 330:806–813. doi:10.1016/j.crvi.2007.08.009

    PubMed  CAS  Google Scholar 

  • Jaleel CA, Gopi R, Manivannan P, Panneerselvam R (2007g) Antioxidative potentials as a protective mechanism in Catharanthus roseus (L.) G. Don plants under salinity stress. Turk J Bot 31:245–251

    Google Scholar 

  • Jaleel CA, Manivannan P, Gomathinayagam M, Sridharan R, Panneerselvam R (2007h) Responses of antioxidant potentials in Dioscorea rotundata Poir. following paclobutrazol drenching. C R Biol 330:798–805. doi:10.1016/j.crvi.2007.08.010

    PubMed  CAS  Google Scholar 

  • Jaleel CA, Sankar B, Murali PV, Gomathinayagam M, Lakshmanan GMA, Panneerselvam R (2008a) Water deficit stress effects on reactive oxygen metabolism in Catharanthus roseus: impacts on ajmalicine accumulation. Colloids Surf B Biointerfaces 62(1):105–111. doi:10.1016/j.colsurfb.2007.09.026

    PubMed  CAS  Google Scholar 

  • Jaleel CA, Gopi R, Manivannan P, Gomathinayagam M, Murali PV, Panneerselvam R (2008b) Soil applied propiconazole alleviates the impact of salinity on Catharanthus roseus by improving antioxidant status. Pestic Biochem Physiol 90(2):135–139. doi:10.1016/j.pestbp.2007.11.003

    CAS  Google Scholar 

  • Jaleel CA, Lakshmanan GMA, Gomathinayagam M, Panneerselvam R (2008c) Triadimefon induced salt stress tolerance in Withania somnifera and its relationship to antioxidant defense system. S Afr J Bot 74(1):126–132. doi:10.1016/j.sajb.2007.10.003

    Google Scholar 

  • Jaleel CA, Gopi R, Kishorekumar A, Manivannan P, Sankar B, Panneerselvam R (2008d) Interactive effects of triadimefon and salt stress on antioxidative status and ajmalicine accumulation in Catharanthus roseus. Acta Physiol Plant 30:287–292. doi:10.1007/s11738-007-0119-1

    Google Scholar 

  • Jaleel CA, Gopi R, Manivannan P, Panneerselvam R (2008e) Exogenous application of triadimefon affects the antioxidant defense system of Withania somnifera Dunal. Pestic Biochem Physiol 91:170–174. doi:10.1016/j.pestbp.2008.03.006

    CAS  Google Scholar 

  • Jaleel CA, Gopi R, Manivannan P, Gomathinayagam M, Hong-Bo S, Zhao CX, Panneerselvam R (2008f) Endogenous hormonal and enzymatic responses of Catharanthus roseus with triadimefon application under water deficits. C R Biol 331:844–852. doi:10.1016/j.crvi.2008.07.025

    PubMed  Google Scholar 

  • Jayakumar K, Vijayarengan P, Zhao CX, Jaleel CA (2008) Soil applied cobalt alters the nodulation, leg-haemoglobin content and antioxidant status of Glycine max (L.) Merr. Colloids Surf B Biointerfaces 67:272–275. doi:10.1016/j.colsurfb.2008.08.012

    PubMed  CAS  Google Scholar 

  • Jimenez A, Hernandez JA, del Rio LA, Sevilla F (1997) Evidence for the presence of the ascorbate–glutathione cycle in mitochondria and peroxisomes of pea leaves. Plant Physiol 114:275–284

    PubMed  CAS  Google Scholar 

  • Kalt W, Mc Donald JE, Donner H (2000) Anthocyanins, phenolics and antioxidant capacity of processed lowbush blueberry products. J Food Sci 65:390–393. doi:10.1111/j.1365-2621.2000.tb16013.x

    CAS  Google Scholar 

  • Kanwischer M, Porfirova S, Bergmüller E, Dörmann P (2005) Alterations in tocopherol cyclase activity in transgenic and mutant plants of Arabidopsis affect tocopherol content, tocopherol composition and oxidative stress. Plant Physiol 137:713–723. doi:10.1104/pp.104.054908

    PubMed  CAS  Google Scholar 

  • Karpinski S, Muhlenbock P (2007) Genetic, molecular and physiological mechanisms controlling cell death, defenses, and antioxidant network in response to abiotic and biotic stresses in plants. Comp Biochem Physiol A Mol Integr Physiol 146:60–66

    Google Scholar 

  • Ksouri R, Megdiche W, Falleh H, Trabelsi N, Boulaaba M, Smaoui A, Abdelly C (2008) Influence of biological, environmental and technical factors on phenolic content and antioxidant activities of Tunisian halophytes. C R Biol. doi:10.1016/j.crvi.2008.07.024

  • Lafitte HR, Yongsheng G, Yan S, Li ZK (2007) Whole plant responses, key processes, and adaptation to drought stress: the case of rice. J Exp Bot 58:169–175. doi:10.1093/jxb/erl101

    PubMed  CAS  Google Scholar 

  • Laing WA, Michele AW, Janine C, Sean MB (2007) The missing step of the l-galactose pathway of ascorbate biosynthesis in plants, an l-galactose guanyltransferase, increases leaf ascorbate content. Proc Natl Acad Sci USA 104(22):9534–9539. doi:10.1073/pnas.0701625104

    PubMed  CAS  Google Scholar 

  • Lawlor DW (2002) Limitation to photosynthesis in water stressed leaves: stomata vs. metabolism and role of ATP. Ann Bot (Lond) 89:871–885. doi:10.1093/aob/mcf110

    CAS  Google Scholar 

  • Lee SK, Kader AA (2000) Pre harvest and post harvest factors influencing vitamin C content of horticultural crops. Postharvest Biol Technol 20:207–220. doi:10.1016/S0925-5214(00)00133-2

    CAS  Google Scholar 

  • De Leonardis S, Dipierro N, Dipierro S (2000) Purification and characterization of an APX from potato tuber mitochondria. Plant Physiol Biochem 38:773–779. doi:10.1016/S0981-9428(00)01188-8

    Google Scholar 

  • Less H, Galili G (2008) Principal transcriptional programs regulating plant amino acid metabolism in response to abiotic stresses. Plant Physiol 147:316–330. doi:10.1104/pp.108.115733

    PubMed  CAS  Google Scholar 

  • Liang Y, Sun W, Zhu Y-G, Christie P (2007) Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants: a review. Environ Pollut 147:422–428. doi:10.1016/j.envpol.2006.06.008

    PubMed  CAS  Google Scholar 

  • Lopez-Huertas E, Charlton WL, Johnson B, Graham IA, Baker A (2000) Stress induces peroxisome biogenesis genes. EMBO J 19:6770–6777. doi:10.1093/emboj/19.24.6770

    PubMed  CAS  Google Scholar 

  • Manivannan P, Jaleel CA, Kishorekumar A, Sankar B, Somasundaram R, Sridharan R, Panneerselvam R (2007) Changes in antioxidant metabolism of Vigna unguiculata (L.) Walp. By propiconazole under water deficit stress. Colloids Surf B Biointerfaces 57:69–74. doi:10.1016/j.colsurfb.2007.01.004

    PubMed  CAS  Google Scholar 

  • Manivannan P, Jaleel CA, Somasundaram R, Panneerselvam R (2008a) Osmoregulation and antioxidant metabolism in drought stressed Helianthus annuus under triadimefon drenching. C R Biol 331(6):418–425. doi:10.1016/j.crvi.2008.03.003

    PubMed  CAS  Google Scholar 

  • Manivannan P, Jaleel CA, Kishorekumar A, Sankar B, Somasundaram R, Panneerselvam R (2008b) Protection of Vigna unguiculata (L.) Walp. plants from salt stress by paclobutrazol. Colloids Surf B Biointerfaces 61(2):315–318. doi:10.1016/j.colsurfb.2007.09.007

    PubMed  CAS  Google Scholar 

  • Martinez JP, Silva H, Ledent JF, Pinto M (2007) Effect of drought stress on the osmotic adjustment, cell wall elasticity and cell volume of six cultivars of common beans (Phaseolus vulgaris L.). Eur J Agron 26:30–38. doi:10.1016/j.eja.2006.08.003

    Google Scholar 

  • Massacci A, Nabiev SM, Pietrosanti L, Nematov SK, Chernikova TN, Thor K, Leipner J (2008) Response of the photosynthetic apparatus of cotton (Gossypium hirsutum) to the onset of drought stress under field conditions studied by gas-exchange analysis and chlorophyll fluorescence imaging. Plant Physiol Biochem 46:189–195. doi:10.1016/j.plaphy.2007.10.006

    PubMed  CAS  Google Scholar 

  • May MJ, Vernoux T, Leaver C, Van Montagu M, Inze D (1998) Glutathione homeostatis in plant: implications for environmental sensing and plant development. J Exp Bot 49:649–667. doi:10.1093/jexbot/49.321.649

    CAS  Google Scholar 

  • Mc Dermott JH (2000) Antioxidant nutrients: current dietary recommendations and research update. J Am Pharm Assoc 40:785–799

    CAS  Google Scholar 

  • Megdiche W, Hessini K, Gharbi F, Jaleel CA, Ksouri R, Abdelly C (2008) Photosynthesis, photosystem II efficiency of two salt-adapted halophytic seashore Cakile maritima ecotypes. Photosynthetica 46(3):410–419. doi:10.1007/s11099-008-0073-1

    CAS  Google Scholar 

  • Mehlhorn H, Lelandais M, Korth HG, Foyer CH (1996) Ascorbate is the natural substrate for plant peroxidases. FEBS Lett 378:203–206. doi:10.1016/0014-5793(95)01448-9

    PubMed  CAS  Google Scholar 

  • Miller G, Suzuki N, Rizhsky L, Hegie A, Koussevitzky S, Mittler R (2007) Double mutants deficient in cytosolic and thylakoid ascorbate peroxidase reveal a complex mode of interaction between reactive oxygen species, plant development, and response to abiotic stresses. Plant Physiol 144:1777–1785. doi:10.1104/pp.107.101436

    PubMed  CAS  Google Scholar 

  • Molina A, Bueno P, Marin MC, Rodriguez-Rosales MP, Belver A, Venema K, Donaire JP (2002) Involvement of endogenous salicylic acid content, lipoxygenase and antioxidant enzyme activities in the response of tomato cell suspension cultures to NaCl. New Phytol 156:409–415. doi:10.1046/j.1469-8137.2002.00527.x

    CAS  Google Scholar 

  • Munne-Bosch S, Algere L (2003) Drought induced changes in the redox state of a tocopherol, ascorbate and the diterpene cornosic acid in the chloroplasts of labiatae species differing in carnosic acid contents. Plant Physiol 131:1816–1825. doi:10.1104/pp.102.019265

    PubMed  CAS  Google Scholar 

  • Nicolas N, Collin V, Gualberto J, Gelhaye E, Hirasawa M, Rey P, Knaff DB, Issakidis E, Jacquot JP, Rouhier N (2006) Plant glutathione peroxidases are functional peroxiredoxins distributed in several subcellular compartments and regulated during biotic and abiotic stresses. Plant Physiol 142:1364–1379. doi:10.1104/pp.106.089458

    Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–270. doi:10.1146/annurev.arplant.49.1.249

    PubMed  CAS  Google Scholar 

  • Noctor G, Leonardo G, Vanacker H, Foyer CH (2002) Interactions between biosynthesis, compartmentation and transport in the control of glutathione homeostasis and signaling. J Exp Bot 53(372):1283–1304. doi:10.1093/jexbot/53.372.1283

    PubMed  CAS  Google Scholar 

  • Pand SK, Khan MH (2003) Antioxidant efficiency in rice (Oryza sativa L.) leaves under heavy metal toxicity. J Plant Biol 30(1):23–29

    Google Scholar 

  • Pastori GM, Foyer CH (2002) Common components, networks and pathways of cross tolerance to stress. The central role of “redox” and abscisic acid-mediated controls. Plant Physiol 129:460–468. doi:10.1104/pp.011021

    PubMed  CAS  Google Scholar 

  • Pastori G, Mullineaux P, Foyer CH (2000) Post transcriptional regulation prevents accumulation of glutathione reductase protein and activity in the bundle sheath cells of maize. Implication on the sensitivity of maize to temperatures. Plant Physiol 122:667–675. doi:10.1104/pp.122.3.667

    PubMed  CAS  Google Scholar 

  • Pei ZM, Murata Y, Benning G, Thomine S, Klusener B, Allen GJ, Grill E, Schroeder JI (2000) Calcium channels activated by hydrogen peroxide mediate abscissic acid signaling in quard cells. Nature 406:731–734. doi:10.1038/35021067

    PubMed  CAS  Google Scholar 

  • Petropoulos SA, Daferera D, Polissiou MG, Passam HC (2008) The effect of water deficit stress on the growth, yield and composition of essential oils of parsley. Sci Hortic (Amsterdam) 115:393–397. doi:10.1016/j.scienta.2007.10.008

    CAS  Google Scholar 

  • Pinheiro C, Passarinho JA, Ricardo CP (2004) Effect of drought and rewatering on the metabolism of Lupinus albus organs. J Plant Physiol 161:1203–1210. doi:10.1016/j.jplph.2004.01.016

    PubMed  CAS  Google Scholar 

  • Porcel R, Barea JM, Ruiz-Lozano JM (2003) Antioxidant activities in mycorrhizal soybean plants under drought stress and their possible relationship to the process of nodule senescence. New Phytol 157:135–143. doi:10.1046/j.1469-8137.2003.00658.x

    CAS  Google Scholar 

  • Prior RL, Cao G, Martin A, Sofic E, Mc Ewen J, Brien CO, Lischner N, Ehlenfeldt M, Kalt W, Krewer G, Mainland CM (1998) Antioxidant capacity as influenced by total phenolic and anthocyanin content, maturity and variety of vaccinium species. J Agric Food Chem 46:2686–2693. doi:10.1021/jf980145d

    CAS  Google Scholar 

  • Puckette MC, Weng H, Mahalingam R (2007) Physiological and biochemical responses to acute ozone-induced oxidative stress in Medicago truncatula. Plant Physiol Biochem 45:70–79. doi:10.1016/j.plaphy.2006.12.004

    PubMed  CAS  Google Scholar 

  • Rajendiran K, Ramanujam MP (2004) Improvement of biomass partitioning, flowering and yield by triadimefon in UV-B stressed Vigna radiata (L). Biol Plant 48(1):145–148. doi:10.1023/B:BIOP.0000024293.31266.a2

    CAS  Google Scholar 

  • Raychaudhuri SS, Deng XW (2000) The role of SOD in combating oxidative stress in higher plants. Bot Rev 66(1):89–98. doi:10.1007/BF02857783

    Google Scholar 

  • Rout GR, Samantaray S, Das P (2000) In vitro rooting of Psoralea corylifolia Linn: peroxidase activity as a marker. Plant Growth Regul 30:215–219. doi:10.1023/A:1006336819887

    CAS  Google Scholar 

  • Sandorf I, Hollander-Czytko H (2002) Jasmonate is involved in the induction of tyrosine aminotransferase and tocopherol biosynthesis in Arabidopsis thaliana. Planta 216:173–179. doi:10.1007/s00425-002-0888-0

    PubMed  CAS  Google Scholar 

  • Sang HL, Ahsan N, Lee KW, Kim DH, Lee DG, Kwak SS, Kwon SY, Kim TH, Lee BH (2007) Simultaneous overexpression of both CuZn superoxide dismutase and ascorbate peroxidase in transgenic tall fescue plants confers increased tolerance to a wide range of abiotic stresses. J Plant Physiol 64:1626–1638

    Google Scholar 

  • Sankar B, Jaleel CA, Manivannan P, Kishorekumar A, Somasundaram R, Panneerselvam R (2007) Effect of paclobutrazol on water stress amelioration through antioxidants and free radical scavenging enzymes in Arachis hypogaea L. Colloids Surf B Biointerfaces 60:229–235. doi:10.1016/j.colsurfb.2007.06.016

    PubMed  CAS  Google Scholar 

  • Santiago LJM, Louro RP, De Oliveira DE (2000) Compartmentation of phenolic compounds and phenylalmine ammonia lyase in leaves of Phyllanthus tenellus. Roxb and their induction by copper sulphate. Ann Bot (Lond) 86:1023–1032. doi:10.1006/anbo.2000.1271

    CAS  Google Scholar 

  • Scandalios JG (1997) Molecular genetics of SOD in plants. In: Scandalios JG (ed) Oxidative stress and the molecular biology of antioxidant defense. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 527–568

    Google Scholar 

  • Seong ES, Cho HS, Choi D, Joung YH, Lim CK, Hur JH, Wang MH (2007) Tomato plants overexpressing CaKR1 enhanced tolerance to salt and oxidative stress. Biochem Biophys Res Commun 363:983–988. doi:10.1016/j.bbrc.2007.09.104

    PubMed  CAS  Google Scholar 

  • Sgherri C, Cosi E, Navari-Izzo F (2003) Phenols and antioxidative status of Raphanus sativus grown in copper excess. Physiol Plant 118:21–28. doi:10.1034/j.1399-3054.2003.00068.x

    PubMed  CAS  Google Scholar 

  • Shams-El-Din MHA (2000) Antioxidant activity of some pea and soybean hot water extracts. J Agric Sci (Egypt) 24:1921–1928

    Google Scholar 

  • Shigeoka S, Ishikawa T, Tamoi M, Miyagawa Y, Takeda T, Yabuta Y, Yoshimura K (2002) Regulation and function of ascorbate peroxidase isoenzymes. J Exp Bot 53(372):1305–1319. doi:10.1093/jexbot/53.372.1305

    PubMed  CAS  Google Scholar 

  • Simontacchi M, Caro A, Fraga CG, Puntarulo S (1993) Oxidative stress affects α-tocopherol content in soybean embryonic axes upon imbibition and following germination. Plant Physiol 103:949–953

    PubMed  CAS  Google Scholar 

  • Smirnoff N (1995) Antioxidant systems and plant response to the environment. In: Smirnoff V (ed) Environment and plant metabolism: flexibility and acclimation. BIOS Scientific Publishers, Oxford, pp 217–243

    Google Scholar 

  • Smirnoff M (2000) AA: metabolism and functions of a multi faceted molecule. Curr Opin Plant Biol 3:229–235

    PubMed  CAS  Google Scholar 

  • Smirnoff N, Wheeler GL (2000) AA in plants: biosynthesis and function. Crit Rev Plant Sci 19:267–290. doi:10.1016/S0735-2689(00)80005-2

    CAS  Google Scholar 

  • Sreenivasulu N, Sopory SK, Kavi-Kishor PB (2007) Deciphering the regulatory mechanisms of abiotic stress tolerance in plants by genomic approaches. Gene 388:1–13. doi:10.1016/j.gene.2006.10.009

    PubMed  CAS  Google Scholar 

  • Srivalli B, Viswanathan C, Chopta RK (2003) Antioxidant defense in response to abiotic stresses in plants. J Plant Biol 30(2):121–139

    Google Scholar 

  • Tahkokorpi M, Taulavuori K, Laine K, Taulavuori E (2007) After-effects of drought-related winter stress in previous and current year stems of Vaccinium myrtillus L. Environ Exp Bot 61:85–93. doi:10.1016/j.envexpbot.2007.03.003

    CAS  Google Scholar 

  • Tanaka R, Oster U, Kruse E, Rüdiger W, Grimm B (1999) Reduced activity of geranylgeranyl reductase leads to loss of chlorophyll and tocopherol and to partially geranylgeranylated chlorophyll in transgenic tobacco plants expressing antisense RNA for geranylgeranyl reductase. Plant Physiol 120:695–704. doi:10.1104/pp.120.3.695

    PubMed  CAS  Google Scholar 

  • Vanacker H, Carver TLW, Foyer CH (1998) Pathogen-induced changes in the antioxidant status of the apoplast in barley leaves. Plant Physiol 117:1103–1114. doi:10.1104/pp.117.3.1103

    PubMed  CAS  Google Scholar 

  • Vranova E, Inze D, Van Breusegem F (2002) Signal transduction during oxidative stress. J Exp Bot 53:1227–1236. doi:10.1093/jexbot/53.372.1227

    PubMed  CAS  Google Scholar 

  • Wang X, Quinn PJ (2000) The location and function of vitamin E in membranes. Mol Membr Biol 17:143–156. doi:10.1080/09687680010000311

    PubMed  Google Scholar 

  • Whetten RW, Mackay JJ, Sederoff RR (1998) Recent advances in understanding lignin biosynthesis. Annu Rev Plant Physiol Plant Mol Biol 49:585–609. doi:10.1146/annurev.arplant.49.1.585

    PubMed  CAS  Google Scholar 

  • Wu QS, Xia R-X, Zou Y-N (2008) Improved soil structure and citrus growth after inoculation with three arbuscular mycorrhizal fungi under drought stress. Eur J Soil Biol 44:122–128. doi:10.1016/j.ejsobi.2007.10.001

    Google Scholar 

  • Yamaguchi J, Iwamoto T, Kida S, Masushige S, Yamada K, Esashi T (2001) Tocopherol associated protein is a ligand dependent transcriptional activator. Biochem Biophys Res Commun 285:295–299. doi:10.1006/bbrc.2001.5162

    Google Scholar 

  • Zabalza A, Gálvez L, Marino D, Royuela M, Arrese-Igor C, González EM (2008) The application of ascorbate or its immediate precursor, galactono-1, 4-lactone, does not affect the response of nitrogen-fixing pea nodules to water stress. J Plant Physiol 165:805–812. doi:10.1016/j.jplph.2007.08.005

    PubMed  CAS  Google Scholar 

  • Zaka R, Vandecasteele CM, Misset T (2002) Abscisic acid increase in non-growing and paclobutrazol-treated fruit of seedless mandarins. Physiol Plant 95:613–619

    Google Scholar 

  • Zancani M, Nagy G (2000) Phenol dependent H2O2 breakdown by soybean root plasma membrane bound peroxidase is regulated by ascorbate and thiols. J Plant Physiol 156:295–299

    CAS  Google Scholar 

  • Zhang J, Jia W, Yang J, Ismail AM (2006) Role of ABA in integrating plant responses to drought and salt stresses. Field Crops Res 97:111–119. doi:10.1016/j.fcr.2005.08.018

    Google Scholar 

  • Zhao CX, Guo LY, Jaleel CA, Hong-Bo S, Yang HB (2008) Prospects for dissecting plant-adaptive molecular mechanisms to improve wheat cultivars in drought environments. C R Biol 331:579–586. doi:10.1016/j.crvi.2008.05.006

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheruth Abdul Jaleel.

Additional information

Communicated by A. Kononowicz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jaleel, C.A., Riadh, K., Gopi, R. et al. Antioxidant defense responses: physiological plasticity in higher plants under abiotic constraints. Acta Physiol Plant 31, 427–436 (2009). https://doi.org/10.1007/s11738-009-0275-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-009-0275-6

Keywords

Navigation