Skip to main content
Log in

Biochemical responses of glyphosate resistant and susceptible soybean plants exposed to glyphosate

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Glyphosate is a wide spectrum, non-selective, post-emergence herbicide. It acts on the shikimic acid pathway inhibiting 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), thus obstructing the synthesis of tryptophan, phenylalanine, tyrosine and other secondary products, leading to plant death. Transgenic glyphosate-resistant (GR) soybean [Glycine max (L.)] expressing an glyphosate-insensitive EPSPS enzyme has provided new opportunities for weed control in soybean production. The effect of glyphosate application on chlorophyll level, lipid peroxidation, catalase (CAT), ascorbate peroxidase (APX), guaiacol peroxidase (GOPX) and superoxide dismutase (SOD) activities, soluble amino acid levels and protein profile, in leaves and roots, was examined in two conventional (non-GR) and two transgenic (GR) soybean. Glyphosate treatment had no significant impact on lipid peroxidation, whilst the chlorophyll content decreased in only one non-GR cultivar. However, there was a significant increase in the levels of soluble amino acid in roots and leaves, more so in non-GR than in GR soybean cultivars. Root CAT activity increased in non-GR cultivars and was not altered in GR cultivars. In leaves, CAT activity was inhibited in one non-GR and one GR cultivar. GOPX activity increased in one GR cultivar and in both non-GR cultivars. Root APX activity increased in one GR cultivar. The soluble protein profiles as assessed by 1-D gel electrophoresis of selected non-GR and GR soybean lines were unaffected by glyphosate treatment. Neither was formation of new isoenzymes of SOD and CAT observed when these lines were treated by glyphosate. The slight oxidative stress generated by glyphosate has no relevance to plant mortality. The potential antioxidant action of soluble amino acids may be responsible for the lack of lipid peroxidation observed. CAT activity in the roots and soluble amino acids in the leaves can be used as indicators of glyphosate resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AGA:

After glyphosate application

ALA:

δ-Aminolevulinic acid

APX:

Ascorbate peroxidase

CAT:

Catalase

CI:

Chlorophyll Index

EPSPS:

5-enolpyruvylshikimate-3-phosphate synthase

GOPX:

Guaiacol peroxidase

GR:

Glyphosate resistant

GtR:

Glutathione reductase

LP:

Lipid peroxidation

MDA:

Malondialdehyde

PEP:

Phosphoenolpyruvate

POX:

Peroxidase

PVPP:

Polyvinylpyrrolidone

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

TBA:

Thiobarbituric acid

TCA:

Trichloroacetic acid

References

  • Abuirmaileh BE, Jordan LS (1978) Some aspects of glyphosate action in purple nutsedge (Cyperus rotundus). Weed Sci 26:700–703

    CAS  Google Scholar 

  • Alla MMN, Hassan NM (2007) Changes of antioxidants and GSH-associated enzymes in isoproturon-treated maize. Acta Physiol Plant 29:247–258

    Article  CAS  Google Scholar 

  • Asada K (1994) Production and action of active oxygen species in photosynthetic tissues In: Foyer CH, Mullineaux PM (eds) Causes of photooxidative stress and amelioration of defense system in plants. CRC Press, Boca Raton, pp 77–104

    Google Scholar 

  • Azevedo RA, Alas RM, Smith RJ, Lea PJ (1998) Response of antioxidant enzymes to transfer from elevated carbon dioxide to air and ozone fumigation, in the leaves and roots of wild-type and catalase-deficient mutant of barley. Physiol Plant 104:280–292

    Article  CAS  Google Scholar 

  • Azevedo RA, Damerval C, Landry J, Lea PJ, Bellato CM, Meinhardt LW, Le Guilloux M, Delhaye S, Toro AA, Gaziola SA, Berdejo BDA (2003) Regulation of maize lysine metabolism and endosperm protein synthesis by opaque and floury mutations. Eur J Biochem 270:4898–4908

    Article  CAS  PubMed  Google Scholar 

  • Benavides MP, Gallego SM, Tomaro ML (2005) Cadmium toxicity in plants. Braz J Plant Physiol 17:21–34

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Cao SQ, Jiang ST, Zhang RX (2006) Evidence for a role of ethylene-insensitive 2 gene in the regulation of the oxidative stress response in Arabidopsis. Acta Physiol Plant 28:417–425

    Article  CAS  Google Scholar 

  • Cole DJ (1985) Mode of action of glyphosate—a literature analysis. In: Grossbard E, Atkinson D (eds) The herbicide glyphosate. Butterworths, London, pp 48–74

    Google Scholar 

  • Donahue JL, Okpodu CM, Cramer CL, Grabau EA, Alscher AG (1997) Response of antioxidants to paraquat in pea leaves. Plant Physiol 113:249–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dröge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82:47–95

    Article  PubMed  Google Scholar 

  • Eker S, Ozturk L, Yazici A, Erenoglu B, Romheld V, Cakmak I (2006) Foliar-applied glyphosate substantially reduced uptake and transport of iron and manganese in sunflower (Helianthus annuus L.) plants. J Agric Food Chem 54:10019–10025

    Article  CAS  PubMed  Google Scholar 

  • Ekmekci Y, Terzioglu S (2005) Effects of oxidative stress induced by paraquat on wild and cultivated wheats. Pestic Biochem Physiol 83:69–81

    Article  CAS  Google Scholar 

  • Elmore RW, Roeth FW, Klein RN, Knezevic SZ, Martin A, Nelson LA, Shapiro CA (2001) Glyphosate-resistant soybean cultivar response to glyphosate. Agron J 93:404–407

    Article  CAS  Google Scholar 

  • Fuchs MA, Geiger DR, Reynolds TL, Bourque JE (2002) Mechanisms of glyphosate toxicity in velvetleaf (Abutilon theophrasti medikus). Pestic Biochem Physiol 74:27–39

    Article  CAS  Google Scholar 

  • Funke T, Han H, Healy-Fried ML, Fischer M, Schönbrunn E (2006) Molecular basis for the herbicide resistance of roundup ready crops. Proc Natl Acad Sci USA 103:13010–13015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geoffroy L, Teisseire H, Couderchet M, Vernet G (2002) Effect of oxyfluorfen and diuron alone and in mixture on antioxidative enzymes of Scenedesmus obliquus. Pestic Biochem Physiol 72:178–185

    Article  CAS  Google Scholar 

  • Gomes-Junior RA, Gratão PL, Gaziola SA, Mazzafera P, Lea PJ, Azevedo RA (2007) Selenium-induced oxidative stress in coffee cell suspension cultures. Funct Plant Biol 34:449–456

    Article  CAS  Google Scholar 

  • Gomes-Junior RA, Moldes CA, Delite FS, Gratão PL, Mazzafera P, Lea PJ, Azevedo RA (2006a) Nickel elicits a fast antioxidant response in Coffea arabica cells. Plant Physiol Biochem 44:420–429

    Article  CAS  PubMed  Google Scholar 

  • Gomes-Junior RA, Moldes CA, Delite FS, Pompeu GB, Gratão PL, Mazzafera P, Lea PJ, Azevedo RA (2006b) Antioxidant metabolism of coffee cell suspension cultures in response to cadmium. Chemosphere 65:1330–1337

    Article  CAS  PubMed  Google Scholar 

  • Gratão PL, Polle A, Lea PJ, Azevedo RA (2005) Making the life of heavy metal-stressed plants a little easier. Funct Plant Biol 32:481–494

    Article  Google Scholar 

  • Gulen H, Turhan E, Eris A (2006) Changes in peroxidase activities and soluble proteins in strawberry varieties under salt-stress. Acta Physiol Plant 28:109–116

    Article  CAS  Google Scholar 

  • Guo Z, Huang M, Lu S, Yaqing Z, Zhong Q (2007) Differential response to paraquat induced oxidative stress in two rice cultivars on antioxidant and chlorophyll a fluorescence. Acta Physiol Plant 29:39–46

    Article  CAS  Google Scholar 

  • Halliwell B, Gutteridge JM (1989) Free radicals in biology and medicine, 2nd edn. Clarendon Press, Oxford

    Google Scholar 

  • Jung S, Back K (2005) Herbicidal and antioxidant responses of transgenic rice overexpressing Myxococcus xanthus protoporphyrinogen oxidase. Plant Physiol Biochemistry 43:423–430

    Article  CAS  Google Scholar 

  • Jung S, Kim JS, Cho KY, Tae GS, Kang BG (2000) Antioxidant responses of cucumber (Cucumis sativus) to photoinhibition and oxidative stress induced by norflurazon under high and low PPFDs. Plant Sci 153:145–154

    Article  CAS  PubMed  Google Scholar 

  • King CA, Purcell LC, Vories ED (2001) Plant growth and nitrogenase activity of glyphosate-tolerant soybean in response to foliar glyphosate application. Agron J 93:179–186

    Article  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  • Lamb DC, Kelly DE, Hanley SZ, Mehmood SL, Kelly SL (1998) Glyphosate is an inhibitor of plant cytochrome P450: functional expression of Thlaspi arvensae cytochrome P45071B1/reductase fusion protein in Escherichia coli. Biochem Biophys Res Commun 244:110–114

    Article  CAS  PubMed  Google Scholar 

  • Lea PJ, Azevedo RA (2006) Nitrogen use efficiency: I. Uptake of nitrogen from the soil. Ann Appl Biol 149:243–247

    Article  CAS  Google Scholar 

  • Lea PJ, Azevedo RA (2007) Nitrogen use efficiency: II. Amino acid metabolism. Ann Appl Biol 151:269–275

    Article  CAS  Google Scholar 

  • Lea PJ, Sodek L, Parry MAJ, Shewry PR, Halford NG (2007) Asparagine in plants. Ann Appl Biol 150:1–26

    Article  CAS  Google Scholar 

  • Martinez-Cayuela M (1998) Toxicidad de xenobióticos mediada por radicales libres de oxígeno. Ars Pharmaceutica 39:5–18

    CAS  Google Scholar 

  • Muñoz-Rueda A, Gonzalez-Murua C, Becerril JM, Sánchez-Díaz MF (1986) Effects of glyphosate [N-(phosphonomethyl)glycine] on photosynthetic pigments, stomatal response and photosynthetic electron transport in Medicago sativa and Trifolium pratense. Physiol Plant 66:63–68

    Article  Google Scholar 

  • Murashige T, Tucker DPH (1969) Growth factor requirements of Citrus tissue culture. In: Chapman HD (ed) Proc. First Int. Citrus Symp, vol. III. Riverside Color Press, Riverside, pp 1155–1161

    Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplast. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Nandula VK, Reddy KN, Rimando AM, Duke SO, Poston DH (2007) Glyphosate-resistant and susceptible soybean (Glycine max) and canola (Brassica napus) dose response and metabolism relationships with glyphosate. J Agric Food Chem 55:3540–3545

    Article  PubMed  Google Scholar 

  • Patykowski J (2006) Role of hydrogen peroxide and apoplastic peroxidase in tomato—Botrytis cinerea interaction. Acta Physiol Plant 28:589–598

    Article  CAS  Google Scholar 

  • Pinkard EA, Patel V, Mohammed C (2006) Chlorophyll and nitrogen determination for plantation-grown Eucaliptus nitens and E. glogulus using a non-destructive meter. Forest Ecol Manag 223:211–217

    Article  Google Scholar 

  • Qi A, Perry JN, Pidgeon JD, Haylock LA, Brooks DR (2008) Cost-efficacy in measuring farmland biodiversity—lessons from the farm scale evaluations of genetically modified herbicide-tolerant crops. Ann Appl Biol 152:93–101

    Article  Google Scholar 

  • Sergiev IG, Alexieva VS, Ivanov SV, Moskova II, Karanov EN (2006) The phenylurea cytokinin 4PU-30 protects maize plants against glyphosate action. Pestic Biochem Physiol 85:139–146

    Article  CAS  Google Scholar 

  • Servaites JC, Tucci MA, Geiger DR (1987) Glyphosate effects on carbon assimilation ribulose bisphosphate carboxylase activity and metabolite levels in sugar beet leaves. Plant Physiol 85:370–374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sunohara Y, Matsumoto H (2004) Oxidative injury induced by the herbicide quinclorac on Echinochloa oryzicola Vasing. and the involvement of antioxidative ability in its highly selective action in grass species. Plant Sci 167:597–606

    Article  CAS  Google Scholar 

  • Tamas L, Huttova J, Mistrik I, Olle M (2006) Cadmium-induced microsomal membrane-bound peroxidases mediated hydrogen peroxide production in barley roots. Acta Physiol Plant 28:453–457

    Article  CAS  Google Scholar 

  • Tan S, Evans R, Singh B (2006) Herbicidal inhibitors of amino acid biosynthesis and herbicide-tolerant crops. Amino Acids 30:195–204

    Article  CAS  PubMed  Google Scholar 

  • Vitória AP, Lea PJ, Azevedo RA (2001) Antioxidant enzymes responses to cadmium in radish tissues. Phytochemistry 57:701–710

    Article  PubMed  Google Scholar 

  • Wong PK (2000) Effects of 2,4-d, glyphosate and paraquat on growth, photosynthesis and chlorophyll-a synthesis of Scenedesmus quadricauda Berb 614. Chemosphere 41:177–182

    Article  CAS  PubMed  Google Scholar 

  • Xiang WS, Wang XJ, Ren TR, Xu XL (2005) Expression of wheat cytochrome P450 monooxygenase in yeast and its inhibition by glyphosate. Pestic Manag Sci 61:402–406

    Article  CAS  Google Scholar 

  • Yu W, Zhang R, Li R, Guo S (2007) Isolation and characterization of glyphosate-regulated genes in soybean seedlings. Plant Sci 172:497–504

    Article  CAS  Google Scholar 

  • Zabalza A, Gaston S, Sandalio LM, Del Rio LA, Royuela M (2007) Oxidative stress is not related to the mode of action of herbicides that inhibit acetolactate synthase. Environ Exp Bot 59:150–159

    Article  CAS  Google Scholar 

  • Zablotowicz RM, Reddy KN (2007) Nitrogenase activity, nitrogen content, and yield responses to glyphosate in glyphosate-resistant soybean. Crop Protection 26:370–376

    Article  CAS  Google Scholar 

  • Zaidi A, Khan MS, Rizvi PQ (2005) Effect of herbicides on growth, nodulation and nitrogen content of greengram. Agron Sustain Dev 25:497–504

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, Grant no. 04/08444-6). The authors also thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq-Brazil) for the fellowship and scholarship, and the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES-Brazil) and Secretaria de Políticas Universitarias (SPU-Argentina) for scholarship. We also would like to thank Dr. Diego Soldini (INTA-Marcos Juarez) and Dr. Valdemar L. Tornisielo (CENA, USP, Piracicaba) for the plant material used in present work and Prof. Peter J. Lea (University of Lancaster, UK) for the critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Antunes Azevedo.

Additional information

Communicated by A. Tukiendorf.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moldes, C.A., Medici, L.O., Abrahão, O.S. et al. Biochemical responses of glyphosate resistant and susceptible soybean plants exposed to glyphosate. Acta Physiol Plant 30, 469–479 (2008). https://doi.org/10.1007/s11738-008-0144-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-008-0144-8

Keywords

Navigation