Skip to main content

Advertisement

Log in

AutoMoDe-Chocolate: automatic design of control software for robot swarms

  • Published:
Swarm Intelligence Aims and scope Submit manuscript

Abstract

We present two empirical studies on the design of control software for robot swarms. In Study A, Vanilla and EvoStick, two previously published automatic design methods, are compared with human designers. The comparison is performed on five swarm robotics tasks that are different from those on which Vanilla and EvoStick have been previously tested. The results show that, under the experimental conditions considered, Vanilla performs better than EvoStick, but it is not able to outperform human designers. The results indicate that Vanilla ’s weak element is the optimization algorithm employed to search the space of candidate designs. To improve over Vanilla and with the final goal of obtaining an automatic design method that performs better than human designers, we introduce Chocolate, which differs from Vanilla only in the fact that it adopts a more powerful optimization algorithm. In Study B, we perform an assessment of Chocolate. The results show that, under the experimental conditions considered, Chocolate outperforms both Vanilla and the human designers. Chocolate is the first automatic design method for robot swarms that, at least under specific experimental conditions, is shown to outperform a human designer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. The range-and-bearing board also allows the e-pucks to exchange messages. However, this functionality is not included in \(\mathrm {RM}1\).

  2. https://www.gnu.org/software/gdb/.

  3. http://valgrind.org/.

  4. With the goal of establishing accountability and credit, the five experts are included among the authors of this paper.

  5. We think that PhD candidates are ideal subjects for this study. Indeed, it is our understanding that a large share of the robot swarms described in the domain literature have been programmed by PhD candidates. See Francesca et al. (2014a) for data extracted from the publication record of our research laboratory.

References

  • Ampatzis, C., Tuci, E., Trianni, V., Christensen, A. L., & Dorigo, M. (2009). Evolving self-assembly in autonomous homogeneous robots: Experiments with two physical robots. Artificial Life, 15(4), 465–484.

    Article  Google Scholar 

  • Balaprakash, P., Birattari, M., & Stützle, T. (2007). Improvement strategies for the F-Race algorithm: Sampling design and iterative refinement. Hybrid metaheuristics, HM 2007, LNCS (Vol. 4771, pp. 108–122). Berlin: Springer.

  • Baldassarre, G., Trianni, V., Bonani, M., Mondada, F., Dorigo, M., & Nolfi, S. (2007). Self-organised coordinated motion in groups of physically connected robots. IEEE Transactions on Systems, Man and Cybernetics-Part B, 37(1), 224–239.

    Article  Google Scholar 

  • Berman, S., Kumar, V., & Nagpal, R. (2011). Design of control policies for spatially inhomogeneous robot swarms with application to commercial pollination. International conference on robotics and automation, ICRA 2011 (pp. 378–385). Piscataway, NJ: IEEE Press.

  • Birattari, M. (2009). Tuning metaheuristics. Berlin: Springer.

    Book  MATH  Google Scholar 

  • Birattari, M., Stützle, T., Paquete, L., & Varrentrapp, K. (2002). A racing algorithm for configuring metaheuristics. In W. B. Langdon, et al. (Eds.), Genetic and evolutionary computation, GECCO (pp. 11–18). San Francisco, CA: Morgan Kaufmann.

    Google Scholar 

  • Birattari, M., Yuan, Z., Balaprakash, P., & Stützle, T. (2010). F-race and iterated F-race: An overview. In T. Bartz-Beielstein, et al. (Eds.), Experimental methods for the analysis of optimization algorithms (pp. 311–336). Berlin: Springer.

    Chapter  Google Scholar 

  • Brambilla, M., Ferrante, E., Birattari, M., & Dorigo, M. (2013). Swarm robotics: A review from the swarm engineering perspective. Swarm Intelligence, 7(1), 1–41.

    Article  Google Scholar 

  • Brambilla, M., Brutschy, A., Dorigo, M., & Birattari, M. (2014). Property-driven design for swarm robotics: A design method based on prescriptive modeling and model checking. ACM Transactions on Autonomous and Adaptive Systems, 9(4), 17.1–28.

  • Bredeche, N., Montanier, J. M., Liu, W., & Winfield, A. F. (2012). Environment-driven distributed evolutionary adaptation in a population of autonomous robotic agents. Mathematical and Computer Modelling of Dynamical Systems, 18(1), 101–129.

    Article  MATH  Google Scholar 

  • Chambers, J. M., Cleveland, W. S., Kleiner, B., & Tukey, P. A. (1983). Graphical methods for data analysis. Pacific Grove, CA: Wadsworth & Brooks/Cole.

    MATH  Google Scholar 

  • Conover, W. J. (1999). Practical nonparametric statistics. New York: Wiley.

    Google Scholar 

  • Di Mario, E., & Martinoli, A. (2014). Distributed particle swarm optimization for limited-time adaptation with real robots. Robotica, 32(2), 193–208.

    Article  Google Scholar 

  • Doncieux, S., & Mouret, J. B. (2014). Beyond black-box optimization: A review of selective pressures for evolutionary robotics. Evolutionary Intelligence, 7(2), 71–93.

    Article  Google Scholar 

  • Dorigo, M., Birattari, M., & Brambilla, M. (2014). Swarm robotics. Scholarpedia, 9(1), 1463.

    Article  Google Scholar 

  • Duarte, M., Oliveira, S. M., & Christensen, A. L. (2014a). Evolution of hierarchical controllers for multirobot systems. In H. Sayama, et al. (Eds.), Artificial life 14: Proceedings of the international conference on the synthesis and simulation of living systems (pp. 657–664). Cambridge, MA: MIT Press.

    Google Scholar 

  • Duarte, M., Oliveira, S. M., & Christensen, A. L. (2014b). Evolution of hybrid robotic controllers for complex tasks. Journal of Intelligent & Robotic Systems, 78(3–4), 463–484.

    Google Scholar 

  • Francesca, G., Brambilla, M., Trianni, V., Dorigo, M., & Birattari, M. (2012). Analysing an evolved robotic behaviour using a biological model of collegial decision making. In From animals to animats 12, LNAI (Vol. 7426, pp. 381–390). Berlin: Springer.

  • Francesca, G., Brambilla, M., Brutschy, A., Garattoni, L., Miletitch, R., Podevijn, G., et al. (2014a). AutoMoDe-chocolate: Automatic design of control software for robot swarms. Supplementary material. http://iridia.ulb.ac.be/supp/IridiaSupp2014-011.

  • Francesca, G., Brambilla, M., Brutschy, A., Garattoni, L., Miletitch, R., Podevijn, G., et al. (2014b). An experiment in automatic design of robot swarms. In M. Dorigo, et al. (Eds.), Swarm intelligence, ANTS 2014, LNCS (Vol. 8667, pp. 25–37). Berlin: Springer.

  • Francesca, G., Brambilla, M., Brutschy, A., Trianni, V., & Birattari, M. (2014c). AutoMoDe: A novel approach to the automatic design of control software for robot swarms. Swarm Intelligence, 8(2), 89–112.

    Article  Google Scholar 

  • Gauci, M., Chen, J., Li, W., Dodd, T. J., & Groß, R. (2014a). Clustering objects with robots that do not compute. In A. Lomuscio, et al. (Eds.), Autonomous agents and multiagent systems, AAMAS 2014 (pp. 421–428). SC: IFAAMAS, Richland.

  • Gauci, M., Chen, J., Li, W., Dodd, T. J., & Groß, R. (2014b). Self-organized aggregation without computation. International Journal of Robotics Research, 33(8), 1145–1161.

    Article  Google Scholar 

  • Geman, S., Bienenstock, E., & Doursat, R. (1992). Neural networks and the bias/variance dilemma. Neural Computation, 4(1), 1–58.

    Article  Google Scholar 

  • Gomes, J., Urbano, P., & Christensen, A. L. (2013). Evolution of swarm robotics systems with novelty search. Swarm Intelligence, 7(2–3), 115–144.

    Article  Google Scholar 

  • Groß, R., & Dorigo, M. (2009). Towards group transport by swarms of robots. International Journal of Bio-Inspired Computation, 1(1–2), 1–13.

    Article  Google Scholar 

  • Gutiérrez, Á., Campo, A., Dorigo, M., Donate, J., Monasterio-Huelin, F., & Magdalena, L. (2009). Open e-puck range and bearing miniaturized board for local communication in swarm robotics. In International conference on robotics and automation, ICRA 2009 (pp. 3111–3116). Piscataway, NJ: IEEE Press.

  • Haasdijk, E., Bredeche, N., & Eiben, A. E. (2014). Combining environment-driven adaptation and task-driven optimisation in evolutionary robotics. PLoS ONE, 9(6), e98,466.

    Article  Google Scholar 

  • Hamann, H., & Wörn, H. (2008). A framework of space-time continuous models for algorithm design in swarm robotics. Swarm Intelligence, 2(2), 209–239.

    Article  Google Scholar 

  • Hauert, S., Zufferey, J. C., & Floreano, D. (2008). Evolved swarming without positioning information: An application in aerial communication relay. Autonomous Robots, 26(1), 21–32.

    Article  Google Scholar 

  • Hecker, J. P., Letendre, K., Stolleis, K., Washington, D., & Moses, M. E. (2012) Formica ex machina: Ant swarm foraging from physical to virtual and back again. In Dorigo M, et al. (Eds.), Swarm intelligence, ANTS 2012, LNCS (Vol. 7461, pp. 252–259). Berlin: Springer.

  • Hsieh, M., Loizou, S., & Kumar, V. (2007). Stabilization of multiple robots on stable orbits via local sensing. In International conference on robotics and automation, ICRA 2007 (pp. 2312–2317). Piscataway, NJ: IEEE Press.

  • Izzo, D., Simões, L. F., & de Croon, G. C. H. E. (2014). An evolutionary robotics approach for the distributed control of satellite formations. Evolutionary Intelligence, 7(2), 107–118.

    Article  Google Scholar 

  • Jakobi, N., Husbands, P., & Harvey, I. (1995). Noise and the reality gap: The use of simulation in evolutionary robotics. In Advances in artificial life, ECAL’95, LNCS (Vol. 929, pp. 704–720). Berlin: Springer.

  • Kazadi, S., Lee, J. R., & Lee, J. (2007). Artificial physics, swarm engineering, and the Hamiltonian method. In World congress on engineering and computer science (pp. 623–632). Hong Kong: Newswood.

  • König, L., & Mostaghim, S. (2009). Decentralized evolution of robotic behavior using finite state machines. International Journal of Intelligent Computing and Cybernetics, 2(4), 695–723.

    Article  MathSciNet  MATH  Google Scholar 

  • Koos, S., Mouret, J., & Doncieux, S. (2013). The transferability approach: Crossing the reality gap in evolutionary robotics. IEEE Transactions on Evolutionary Computation, 17(1), 122–145.

    Article  Google Scholar 

  • Lehman, J., & Stanley, K. O. (2011). Abandoning objectives: Evolution through the search for novelty alone. Evolutionary Computation, 19(2), 189–223.

    Article  Google Scholar 

  • Lerman, K., & Galstyan, A. (2002). Mathematical model of foraging in a group of robots: Effect of interference. Autonomous Robots, 13(2), 127–141.

    Article  MATH  Google Scholar 

  • Lerman, K., Galstyan, A., Martinoli, A., & Ijspeert, A. J. (2001). A macroscopic analytical model of collaboration in distributed robotic systems. Artificial Life, 7(4), 375–393.

    Article  Google Scholar 

  • Lopes, Y., Leal, A., Dodd, T. J., & Groß, R. (2014). Application of supervisory control theory to swarms of e-puck and kilobot robots. In M. Dorigo, et al. (Eds.), Swarm Intelligence, ANTS 2014, LNCS (Vol. 8667, pp. 62–73). Berlin: Springer.

    Google Scholar 

  • López-Ibáñez, M., Dubois-Lacoste, J., Stützle, T., & Birattari, M. (2011). The irace package, iterated race for automatic algorithm configuration. Technical report TR/IRIDIA/2011-004, IRIDIA, Université Libre de Bruxelles, Belgium.

  • Martinoli, A., Ijspeert, A. J., & Mondada, F. (1999). Understanding collective aggregation mechanisms: From probabilistic modelling to experiments with real robots. Robotics and Autonomous Systems, 29(1), 51–63.

    Article  Google Scholar 

  • Martinoli, A., Easton, K., & Agassounon, W. (2004). Modeling swarm robotic systems: A case study in collaborative distributed manipulation. The International Journal of Robotics Research, 23(4–5), 415–436.

    Article  Google Scholar 

  • Mondada, F., Franzi, E., & Ienne, P. (1993). Mobile robot miniaturization: A tool for investigation in control algorithms. In T. Yoshikawa & F. Miyazaki (Eds.), Experimental robotics III (pp. 501–513). Berlin, Germany: Springer.

    Google Scholar 

  • Mondada, F., Bonani, M., Raemy, X., Pugh, J., Cianci, C., Klaptocz, A., et al. (2009). The e-puck, a robot designed for education in engineering. In 9th Conference on autonomous robot systems and competitions, Instituto Politécnico de Castelo Branco, Portugal, (pp. 59–65).

  • Pinciroli, C., Trianni, V., O’Grady, R., Pini, G., Brutschy, A., Brambilla, M., et al. (2012). ARGoS: A modular, parallel, multi-engine simulator for multi-robot systems. Swarm Intelligence, 6(4), 271–295.

    Article  Google Scholar 

  • Pugh, J., & Martinoli, A. (2009). Distributed scalable multi-robot learning using particle swarm optimization. Swarm Intelligence, 3(3), 203–222.

    Article  Google Scholar 

  • Quinn, M., Smith, L., Mayley, G., & Husbands, P. (2003). Evolving controllers for a homogeneous system of physical robots: Structured cooperation with minimal sensors. Philosophical Transactions of the Royal Society of London, Series A: Mathematical, Physical and Engineering Sciences, 361(1811), 2321–2343.

    Article  MathSciNet  Google Scholar 

  • R Core Team. (2014). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.

  • Rubenstein, M., Ahler, C., Hoff, N., Cabrera, A., & Nagpal, R. (2014). Kilobot: A low cost robot with scalable operations designed for collective behaviors. Robotics and Autonomous Systems, 62(7), 966–975.

    Article  Google Scholar 

  • Sartoretti, G., Hongler, M. O., de Oliveira, M. E., & Mondada, F. (2014). Decentralized self-selection of swarm trajectories: From dynamical systems theory to robotic implementation. Swarm Intelligence, 8(4), 329–351.

    Article  Google Scholar 

  • Stranieri, A., Turgut, A., Salvaro, M., Garattoni, L., Francesca, G., Reina, A., et al. (2013). IRIDIA’s arena tracking system. Technical report TR/IRIDIA/2013-013, IRIDIA, Université Libre de Bruxelles, Belgium.

  • Trianni, V. (2008). Evolutionary swarm robotics. Berlin: Springer.

    Book  Google Scholar 

  • Trianni, V. (2014). Evolutionary robotics: Model or design? Frontiers in Robotics and AI, 1(13), 1–6.

    Google Scholar 

  • Trianni, V., & López-Ibáñez, M. (2014). Advantages of multi-objective optimisation in evolutionary robotics: Survey and case studies. Technical report TR/IRIDIA/2014-014, IRIDIA, Université Libre de Bruxelles, Belgium.

  • Trianni, V., & Nolfi, S. (2009). Self-organising sync in a robotic swarm. A dynamical system view. IEEE Transactions on Evolutionary Computation, 13(4), 722–741.

    Article  Google Scholar 

  • Trianni, V., & Nolfi, S. (2011). Engineering the evolution of self-organizing behaviors in swarm robotics: A case study. Artificial Life, 17(3), 183–202.

    Article  Google Scholar 

  • Tuci, E., Ferrauto, T., Zeschel, A., Massera, G., & Nolfi, S. (2011). An experiment on behavior generalization and the emergence of linguistic compositionality in evolving robots. IEEE Transactions on Autonomous Mental Development, 3(2), 176–189.

    Article  Google Scholar 

  • Watson, R., Ficici, S. G., & Pollack, J. (2002). Embodied evolution: Distributing an evolutionary algorithm in a population of robots. Robotics and Autonomous Systems, 39(1), 1–18.

    Article  Google Scholar 

  • Winfield, A. F. T., & Erbas, M. D. (2011). On embodied memetic evolution and the emergence of behavioural traditions in robots. Memetic Computing, 3(4), 261–270.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Maria Zampetti and Maxime Bussios for their help with the robots, and Marco Chiarandini for his implementation of the Friedman test. This research was partially funded by the ERC Advanced Grant “E-SWARM” (Grant Agreement No. 246939). It was also partially supported by the COMEX project within the Interuniversity Attraction Poles Program of the Belgian Science Policy Office. Vito Trianni acknowledges support from the Italian CNR. Arne Brutschy, Franco Mascia, and Mauro Birattari acknowledge support from the Belgian F.R.S.–FNRS. The authors thank the anonymous reviewers for their useful comments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gianpiero Francesca or Mauro Birattari.

Additional information

The main contributors to this research are G. Francesca and M. Birattari. AutoMoDe and Vanilla were conceived and developed by G. Francesca, M. Brambilla, A. Brutschy, V. Trianni, and M. Birattari. Chocolate was conceived by G. Francesca and M. Birattari. F. Mascia contributed to the implementation. L. Garattoni, R. Miletitch, G. Podevijn, A. Reina, and T. Soleymani acted as human experts: They defined the tasks on which the experimental analysis is performed and they developed control software via C-Human and U-Human. M. Salvaro developed and operated the software we used to track the robots and to compute the value of the objective functions. C. Pinciroli contributed his experience with the ARGoS simulator. The analysis of the results has been performed by G. Francesca, F. Mascia, and M. Birattari. Most of the manuscript has been drafted by G. Francesca and M. Birattari. M. Brambilla drafted the state of the art on manual design methods and V. Trianni the one on automatic design methods. L. Garattoni, R. Miletitch, G. Podevijn, A. Reina, and T. Soleymani drafted the paragraphs that describe the tasks. All authors read and commented the manuscript. The final editing has been performed by M. Birattari and G. Francesca, with notable contributions from C. Pinciroli and A. Brutschy. The research has been conceived and directed by M. Birattari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Francesca, G., Brambilla, M., Brutschy, A. et al. AutoMoDe-Chocolate: automatic design of control software for robot swarms. Swarm Intell 9, 125–152 (2015). https://doi.org/10.1007/s11721-015-0107-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11721-015-0107-9

Keywords

Navigation