Skip to main content
Log in

Latest development of double perovskite electrode materials for solid oxide fuel cells: a review

  • Review Article
  • Published:
Frontiers in Energy Aims and scope Submit manuscript

Abstract

Recently, the development and fabrication of electrode component of the solid oxide fuel cell (SOFC) have gained a significant importance, especially after the advent of electrode supported SOFCs. The function of the electrode involves the facilitation of fuel gas diffusion, oxidation of the fuel, transport of electrons, and transport of the byproduct of the electrochemical reaction. Impressive progress has been made in the development of alternative electrode materials with mixed conducting properties and a few of the other composite cermets. During the operation of a SOFC, it is necessary to avoid carburization and sulfidation problems. The present review focuses on the various aspects pertaining to a potential electrode material, the double perovskite, as an anode and cathode in the SOFC. More than 150 SOFCs electrode compositions which had been investigated in the literature have been analyzed. An evaluation has been performed in terms of phase, structure, diffraction pattern, electrical conductivity, and power density. Various methods adopted to determine the quality of electrode component have been provided in detail. This review comprises the literature values to suggest possible direction for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sengodan S, Choi S, Jun A, Shin T H, Ju Y W, Jeong H Y, Shin J, Irvine J T S, Kim G. Layered oxygen-deficient double perovskite as an efficient and stable anode for direct hydrocarbon solid oxide fuel cells. Nature Materials, 2015, 14(2): 205–209

    Google Scholar 

  2. Andújar J M, Segura F. Fuel cells: history and updating. A walk along two centuries. Renewable & Sustainable Energy Reviews, 2009, 13(9): 2309–2322

    Google Scholar 

  3. Abdalla A M, Hossain S, Petra P M, Ghasemi M, Azad A K. Achievements and trends of solid oxide fuel cells in clean energy field: a perspective review. Frontiers in Energy, 2018, 12(1): 1–24

    Google Scholar 

  4. Abdalla A M, Hossain S, Nisfindy O B, Azad A T, Dawood M, Azad A K. Hydrogen production, storage, transportation and key challenges with applications: a review. Energy Conversion and Management, 2018, 165: 602–627

    Google Scholar 

  5. Wang S, Jiang S P. Prospects of fuel cell technologies. National Science Review, 2017, 4(2): 163–166

    Google Scholar 

  6. Garche J, Jurissen L. Applications of fuel cell technology: status and perspectives. Electrochemical Society Interface, 2015, 24(2): 39–43

    Google Scholar 

  7. U.S. Department of Energy. Fuel cell technologies office. 2015, available at http://energy.gov website

  8. Johnson Matthey P L C. Fuel cell applications-fuel cell today. 2018-11-22, available at http://fuelcelltoday.com webite

  9. Financial Times. Japan is betting future cars will use hydrogen fuel cells. 2018-03-27, available at ft.com website

  10. Nissan Motor Corporation. Runnig on e-Bio: Nissan’s solid oxide fuel cell system. 2016-06-14, available at http://nissan-global.com website

  11. INSIDEEVS. Navigant: fuel cell vehicle sales to exceed 228000 units by 2024. 2015-12-27, available at http://insideevs.com website

  12. Ang S M C, Fraga E S, Brandon N P, Samsatli N J, Brett D J L. Fuel cell systems optimisation-methods and strategies. International Journal of Hydrogen Energy, 2011, 36(22): 14678–14703

    Google Scholar 

  13. Stambouli A B, Traversa E, Stambouli A. Solid oxide fuel cells (SOFCs): a review of an environmentally clean and efficient source of energy. Renewable & Sustainable Energy Reviews, 2002, 6(5): 433–455

    Google Scholar 

  14. Laosiripojana N, Wiyaratn W, Kiatkittipong W, Arpornwichanop A, Soottitantawat A, Assabumrungrat S. Reviews on solid oxide fuel cell technology. Engineering Journal (New York), 2009, 13(1): 65–84

    Google Scholar 

  15. Minh N Q. Solid oxide fuel cell technology-features and applications. Solid State Ionics, 2004, 174(1–4): 271–277

    Google Scholar 

  16. Bao C, Wang Y, Feng D L, Jiang Z, Zhang X. Macroscopic modeling of solid oxide fuel cell (SOFC) and model-based control of SOFC and gas turbine hybrid system. Progress in Energy and Combustion Science, 2018, 66: 83–140

    Google Scholar 

  17. Rits V, Kypreos S, Wokaun A. Evaluating the diffusion offuel-cell cars in the China markets. IATSS Research, 2004, 28(1): 34–46

    Google Scholar 

  18. Venture Radar. SOFC | Venture Radar Search. 2018, available at http://ventureradar.com website

  19. Business Wire.Top emerging trends in the global solid oxide fuel cell market| Technavio. 2018-04-04, available at http://businesswire.com website

  20. Markets and Markets. Solid oxide fuel cell market by type (planar and tubular), application (power generation, combined heat & power, and military), end-use (data centers, commercial & retail, and APU), region (north America, Asia Pacific, and Europe)-global forecast to 2025. 2017, available at http://marketsandmarkets.com website

  21. Abdalla A M, Hossain S, Zhou J, Petra PMI, Erikson S, Savaniu C D, Irvine J T S, Azad A K. NdBaMn2O5+δ layered perovskite as an active cathode material for solid oxide fuel cells. Ceramics International, 2017, 43(17): 15932–15938

    Google Scholar 

  22. Taroco H A, Santos J A F, Domingues R Z, Matencio T. Ceramic materials for solid oxide fuel cells. 2011, available at http://intechopen.com website

  23. Sengodan S, Choi S, Jun A, Shin T H, Ju Y W, Jeong H Y, Shin J, Irvine J T S, Kim G. Layered oxygen-deficient double perovskite as an efficient and stable anode for direct hydrocarbon solid oxide fuel cells. Nature Materials, 2015, 14(2): 205–209

    Google Scholar 

  24. Liu Q, Dong X, Xiao G, Zhao F, Chen F. A Novel electrode material for symmetrical SOFCs. Advanced Materials, 2010, 22(48): 5478–5482

    Google Scholar 

  25. Huang Y H. Double perovskites as anode materials for solid-oxide fuel cells. Science, 2006, 312(5771): 254–257

    Google Scholar 

  26. Atkinson A, Barnett S, Gorte R J, Irvine J T S, McEvoy A J, Mogensen M, Singhal S C, Vohs J. Advanced anodes for high-temperature fuel cells. Nature Materials, 2004, 3(1): 17–27

    Google Scholar 

  27. Zhang L, He T. Performance of double-perovskite Sr2 xSmxMgMoO6 δ as solid-oxide fuel-cell anodes. Journal of Power Sources, 2011, 196(20): 8352–8359

    Google Scholar 

  28. Steele B C, Heinzel A. Materials for fuel-cell technologies. Nature, 2001, 414(6861): 345–352

    Google Scholar 

  29. Singhal S C. Solid oxide fuel cells for stationary, mobile, and military applications. Solid State Ionics, 2002, 152–153: 405–410

    Google Scholar 

  30. Shao Z, Haile S M. A high-performance cathode for the next generation of solid-oxide fuel cells. Nature, 2004, 431(7005): 170–173

    Google Scholar 

  31. Han D, Liu X, Zeng F, Qian J, Wu T, Zhan Z. A micro-nano porous oxide hybrid for efficient oxygen reduction in reduced-temperature solid oxide fuel cells. Scientific Reports, 2012, 2(1): 462

    Google Scholar 

  32. Murray E P, Tsai T, Barnett S A. A direct-methane fuel cell with a ceria-based anode. Nature, 1999, 400(6745): 649–651

    Google Scholar 

  33. Park S, Vohs J, Gorte R. Direct oxidation of hydrocarbons in a solid-oxide fuel cell. Nature, 2000, 404(6775): 265–267

    Google Scholar 

  34. McIntosh S, Gorte R J. Direct hydrocarbon solid oxide fuel cells. Chemical Reviews, 2004, 104(10): 4845–4866

    Google Scholar 

  35. Abdalla A M, Hossain S, Azad A T, Petra P M I, Begum F, Eriksson S G, Azad A K. Nanomaterials for solid oxide fuel cells: a review. Renewable & Sustainable Energy Reviews, 2018, 82: 353–368

    Google Scholar 

  36. Safran. Fuel cells: green energy on board. 2018-11-22, available at http://safran-group.com website

  37. Reza M S, Ahmed A, Caesarendra W, Abu Bakar M S, Shams S, Saidur R, Aslfattahi N, Azad A K. Acacia holosericea: an invasive species for bio-char, bio-oil, and biogas production. Bioengineering Multidisciplinary Digital Publishing Institute, 2019, 6(2): 33

    Google Scholar 

  38. Justin Fitzgerald and Nancy O’Bryan. NASA- Fuel cells: a better energy source for earth and space. 2005-11-02, available at http://nasa.gov website

  39. Singhal S. Advances in solid oxide fuel cell technology. Solid State Ionics, 2000, 135(1–4): 305–313

    Google Scholar 

  40. Tao S W, Irvine J T S. A stable, easily sintered proton-conducting oxide electrolyte for moderate-temperature fuel cells and electrolyzers. Advanced Materials, 2006, 18(12): 1581–1584

    Google Scholar 

  41. Radenahmad N, Afif A, Petra P I, Rahman S M H, Eriksson S G, Azad A K. Proton-conducting electrolytes for direct methanol and direct urea fuel cells-a state-of-the-art review. Renewable & Sustainable Energy Reviews, 2016, 57: 1347–1358

    Google Scholar 

  42. Malavasi L, Fisher C A J, Islam M S. Oxide-ion and proton conducting electrolyte materials for clean energy applications: structural and mechanistic features. Chemical Society Reviews, 2010, 39(11): 4370–4387

    Google Scholar 

  43. Hossain S, Abdalla A M, Jamain S N B, Zaini J H, Azad A K. A review on proton conducting electrolytes for clean energy and intermediate temperature-solid oxide fuel cells. Renewable & Sustainable Energy Reviews, 2017, 79: 750–764

    Google Scholar 

  44. Liu M, Lynch M E, Blinn K, Alamgir F M, Choi Y M. Rational SOFC material design: new advances and tools. Materials Today, 2011, 14(11): 534–546

    Google Scholar 

  45. Cologna M. Advances in the production of planar and micro-tubular solid oxide fuel cells. Dissertation for the Doctoral Degree. Trento: University of Trento

  46. Stambouli A B, Traversa E. Solid oxide fuel cells (SOFCs): a review of an environmentally clean and efficient source of energy. Renewable & Sustainable Energy Reviews, 2002, 6(5): 433–455

    Google Scholar 

  47. Hatchwell C E, Sammes N M, Kendall K. Cathode current-collectors for a novel tubular SOFC design. Journal of Power Sources, 1998, 70(1): 85–90

    Google Scholar 

  48. National Energy Technology Laboratory. Solid oxide fuel cell. 2018-11-26, available at http://netl.doe.gov website

  49. Vaillant unveils wall-mounted CHP unit, using staxera SOFC. Fuel Cells Bulletin, 2011, 5: 4

  50. Kupecki J. Off-design analysis of a micro-CHP unit with solid oxide fuel cells fed by DME. International Journal of Hydrogen Energy, 2015, 40(35): 12009–12022

    Google Scholar 

  51. SOLID power. For private households-SOLID power. 2018-11-26, available at http://solidpower.com website

  52. Peña M A, Fierro J L G. Chemical structures and performance of perovskite oxides. Chemical Reviews, 2001, 101(7): 1981–2018

    Google Scholar 

  53. Cava R J, Batlogg B, Krajewski J J, Farrow R, Rupp L W, White A E, Short K, Peck W F, Kometani T. Superconductivity near 30 K without copper: the Ba0.6K0.4BiO3 perovskite. Nature, 1988, 332 (6167): 814–816

    Google Scholar 

  54. Zhang Z, Li J, Zhou W, Yang C, Cao Q, Wang D, Du Y. Mechanism of enhancement in magnetoresistance properties of manganite perovskite ceramics by current annealing. Ceramics International, 2018, 44(4): 3760–3764

    Google Scholar 

  55. Afroze S, Binti Haji Bakar A N, Reza M S, Salam M A. Polyvinylidene fluoride (PVDF) piezoelectric energy harvesting from rotary retracting mechanism: imitating forearm motion. IET Conference Publications, 2018

  56. Schlom D G, Chen L Q, Pan X, Schmehl A, Zurbuchen M A. A thin film approach to engineering functionality into oxides. Journal of the American Ceramic Society, 2008, 91(8): 2429–2454

    Google Scholar 

  57. Locock A J, Mitchell R H. Perovskite classification: an excel spreadsheet to determine and depict end-member proportions for the perovskite- and vapnikite-subgroups of the perovskite supergroup. Computers & Geosciences, 2018, 113: 106–114

    Google Scholar 

  58. Li R, Yu C, Shen S. Partial oxidation of methane to syngas using lattice oxygen of La1 xSrxFeO3 perovskite oxide catalysts instead of molecular oxygen. Journal of Natural Gas Chemistry, 2002, 11: 137–144

    Google Scholar 

  59. El-Ads E. Perovskite nanomaterials-synthesis, characterization, and applications. InTech, 2016: 107–151

  60. Azad A K. Synthesis, structure, and magnetic properties of double perovskites of the type A2MnBO6 and A 2FeBO6 (A = Ca, Sr, Ba, La; B = W, Mo, Cr). 2004, available at http://lib.ugent.be website

  61. Azad A K, Mellergård A, Eriksson S G, Ivanov S A, Eriksen J, Rundlöf H. Preparation, crystal and magnetic structure of the double perovskite Ba2FeWO6. Applied Physics A: Materials Science & Processing, 2002, 74(Sup. 1): s763–s765

    Google Scholar 

  62. Azad A, Eriksson S G. Formation of a cubic Sr2MnWO6 phase at elevated temperature: a neutron powder diffraction study. Solid State Communications, 2003, 126(9): 503–508

    Google Scholar 

  63. Azad A, Eriksson S G, Ivanov S, Mathieu R, Svedlindh P, Eriksen J, Rundlöf H. Synthesis, structural and magnetic characterisation of the double perovskite A 2MnMoO6 (A = Ba, Sr). Journal of Alloys and Compounds, 2004, 364(1–2): 77–82

    Google Scholar 

  64. Azad A K, Ivanov S, Eriksson S G, Rundlöf H, Eriksen J, Mathieu R, Svedlindh P. Structural and magnetic properties of the double perovskite Sr2MnWO6. Journal of Magnetism and Magnetic Materials, 2001, 237(2): 124–134

    Google Scholar 

  65. Azad A K, Ivanov S A, Eriksson S G, Eriksen J, Rundlöf H, Mathieu R, Svedlindh P. Nuclear and magnetic structure of Ca2MnWO6: a neutron powder diffraction study. Materials Research Bulletin, 2001, 36(13–14): 2485–2496

    Google Scholar 

  66. Azad A K, Eriksson S G, Ivanov S A, Rundlöf H, Eriksen J, Mathieu R, Svedlindh P. Structural and magnetic characterisation of the double perovskites AA′MnWO6 (AA′ = Ba2, SrBa, Sr2, SrCa and Ca2). Ferroelectrics, 2002, 269(1): 105–110

    Google Scholar 

  67. Huang Y H, Dass R I, Xing Z L, Goodenough J B. Double perovskites as anode materials for solid-oxide fuel cells. Science, 2006, 312(5771): 254–257

    Google Scholar 

  68. Zhang P, Huang Y H, Cheng J G, Mao Z Q, Goodenough J B. Sr2CoMoO6 anode for solid oxide fuel cell running on {H2} and {CH4} fuels. Journal of Power Sources, 2011, 196(4): 1738–1743

    Google Scholar 

  69. Xiao G, Liu Q, Dong X, Huang K, Chen F. Sr2Fe4/3Mo2/3O6 as anodes for solid oxide fuel cells. Journal of Power Sources, 2010, 195(24): 8071–8074

    Google Scholar 

  70. Marrero-López D, Peña-Martínez J, Ruiz-Morales J C, Pérez-Coll D, Aranda MAG, Núñez P. Synthesis, phase stability and electrical conductivity of Sr2MgMoO6−δ anode. Materials Research Bulletin, 2008, 43(8–9): 2441–2450

    Google Scholar 

  71. Bernuy-Lopez C, Allix M, Bridges C A, Claridge J B, Rosseinsky M J. Sr2MgMoO6−δ: structure, phase stability, and cation site order control of reduction. Chemistry of Materials, 2007, 19(5): 1035–1043

    Google Scholar 

  72. Vasala S, Lehtimäki M, Huang Y H, Yamauchi H, Goodenough J B, Karppinen M. Degree of order and redox balance in B-site ordered double-perovskite oxides, Sr2MMoO6−δ (M = Mg, Mn, Fe, Co, Ni, Zn). Journal of Solid State Chemistry, 2010, 183(5): 1007–1012

    Google Scholar 

  73. Azizi F, Kahoul A, Azizi A. Effect of La doping on the electrochemical activity of double perovskite oxide Sr2FeMoO6 in alkaline medium. Journal of Alloys and Compounds, 2009, 484 (1–2): 555–560

    Google Scholar 

  74. Huang Y H, Dass R I, Denyszyn J C, Goodenough J B. Synthesis and characterization of Sr2MgMoO6−δ: an anode material for the solid oxide fuel cell. Journal of the Electrochemical Society, 2006, 153(7): A1266–A1272

    Google Scholar 

  75. Xie Z, Zhao H, Du Z, Chen T. Effects of Co doping on the electrochemical performance of double perovskite oxide Sr2MgMoO6−δ as an anode material for solid oxide fuel cells. Journal of Physical Chemistry, 2012, 116: 9734–9743

    Google Scholar 

  76. Pan X, Wang Z, He B, Wang S, Wu X, Xia C. Effect of Co doping on the electrochemical properties of Sr2Fe1.5Mo0.5O6 electrode for solid oxide fuel cell. International Journal of Hydrogen Energy, 2013, 38(10): 4108–4115

    Google Scholar 

  77. Xie Z, Zhao H, Chen T, Zhou X, Du Z. Synthesis and electrical properties of Al-doped Sr2MgMoO6−δ as an anode material for solid oxide fuel cells. International Journal of Hydrogen Energy, 2011, 36(12): 7257–7264

    Google Scholar 

  78. Goldschmidt V M. Die Gesetze der Krystallochemie. Naturwissenschaften, 1926, 14(21): 477–485

    Google Scholar 

  79. Shannon R D. Revised effective ionic radii and systematic studies of interatomie distances in halides and chaleogenides. Acta Crystallographica, 1976, 32(5): 751–767

    Google Scholar 

  80. Rebaza A V G, Toro C E D, Téllez D A L, Roa-Rojas J. Electronic structure of the double perovskite Ba2Er(Nb,Sb)O6. Journal of Physics: Conference Series, 2014, 480: 012041

    Google Scholar 

  81. Fu W T, IJdo D J W. X-ray and neutron powder diffraction study of the double perovskites Ba2LnSbO6 (Ln = La, Pr, Nd and Sm). Journal of Solid State Chemistry, 2005, 178(7): 2363–2367

    Google Scholar 

  82. Gopalakrishnan J, Chattopadhyay A, Ogale SB, Venkatesan T, Greene R L, Millis A J, Ramesha K, Hannoyer B, Marest G. Metallic and nonmetallic double perovskites: a case study of A 2FeReO6 (A = Ca, Sr, Ba). 2000, 62(14): 9538–9542

  83. Davis M J, Mugavero S J III, Glab K I, Smith M D, zur Loye H C. The crystal growth and characterization of the lanthanide-containing double perovskites Ln 2NaIrO6 (Ln = La, Pr, Nd). Solid State Sciences, 2004, 6(5): 413–417

    Google Scholar 

  84. Yamamura K, Wakeshima M, Hinatsu Y. Structural phase transition and magnetic properties of double perovskites Ba2CaMO6 (M =W, Re, Os). Journal of Solid State Chemistry, 2006, 179(3): 605–612

    Google Scholar 

  85. Gens R, Fuger J, Morss L R, Williams C W. Thermodynamics of actinide perovskite-type oxides III. Molar enthalpies of formation of B2MAnO6 (M = Mg, Ca, or Sr; An = U, Np, or Pu) and M 3PuO6 (M = Ba or Sr). Journal of Chemical Thermodynamics, 1985, 17 (6): 561–573

    Google Scholar 

  86. Fu W T, IJdo D J W. Re-examination of the structure of Ba2MIrO6 (M= La, Y): space group revised. Journal of Alloys and Compounds, 2005, 394(1–2): 10–13

    Google Scholar 

  87. Bharti C, Sinha T P. Dielectric properties of rare earth double perovskite oxide Sr2CeSbO6. Solid State Sciences, 2010, 12(4): 498–502

    Google Scholar 

  88. Shaheen R, Bashir J. Ca2CoNbO6: a new monoclinically distorted double perovskite. Solid State Sciences, 2010, 12(8): 1496–1499

    Google Scholar 

  89. Gemmill W R, Smith M D, zur Loye H C. Synthesis, structural characterization, and magnetic properties of the antiferromagnetic double perovskites Ln 2LiOsO6 (Ln = La, Pr, Nd, Sm). Journal of Solid State Chemistry, 2006, 179(6): 1750–1756

    Google Scholar 

  90. Zhang Y, Ji V. Half-metallic ferromagnetic nature of the double perovskite Pb2FeMoO6 from first-principle calculations. Journal of Physics and Chemistry of Solids, 2012, 73(9): 1116–1121

    Google Scholar 

  91. Mugavero S J III, Smith M D, zur Loye H C. The crystal growth and magnetic properties of Ln 2LiIrO6 (Ln = La, Pr, Nd, Sm, Eu). Journal of Solid State Chemistry, 2005, 178(1): 200–206

  92. Zhou Q, Kennedy B J, Howard C J, Elcombe M M, Studer A J. Structural phase transitions in A 2 xSrxNiWO6 (A = Ca or Ba, 0⩽x⩽2) double perovskites. Chemistry of Materials, 2005, 17 (21): 5357–5365

    Google Scholar 

  93. Azad A, Eriksson S G, Ivanov S, Mathieu R, Svedlindh P, Eriksen J, Rundlöf H. Synthesis, structural and magnetic characterisation of the double perovskite A2MnMoO6 (A = Ba, Sr). Journal of Alloys and Compounds, 2004, 364(1–2): 77–82

    Google Scholar 

  94. Strandbakke R, Cherepanov V A, Zuev A Y, Tsvetkov D S, Argirusis C, Sourkouni G, Prünte S, Norby T. Gd- and Pr-based double perovskite cobaltites as oxygen electrodes for proton ceramic fuel cells and electrolyser cells. Solid State Ionics, 2015, 278: 120–132

    Google Scholar 

  95. Philipp J B, Majewski P, Alff L, Erb A, Gross R, Graf T, Brandt M S, Simon J, Walther T, Mader W, Topwal D, Sarma D D. Structural and doping effects in the half-metallic double perovskite A2CrWO6. Physical Review. B, 2003, 68(14): 144431

    Google Scholar 

  96. Popov G, Greenblatt M, Croft M. Large effects of A-site average cation size on the properties of the double perovskites Ba2−xSrx MnReO6:a d 5d 1 system. Physical Review. B, 2003, 67(2): 024406

    Google Scholar 

  97. Westerburg W, Lang O, Ritter C, Felser C, Tremel W, Jakob G. Magnetic and structural properties of the double-perovskite Ca2FeReO6. Solid State Communications, 2002, 122(3–4): 201–206

    Google Scholar 

  98. Falcón H, Barbero J A, Araujo G, Casaisc M T, Martínez-Lope M J, Alonso J A, Fierro J L G. Double perovskite oxides A 2FeMoO6−δ (A = Ca, Sr and Ba) as catalysts for methane combustion. Applied Catalysis B: Environmental, 2004, 53(1): 37–45

    Google Scholar 

  99. Retuerto M, Alonso J A, García-Hernández M, Martínez-Lope M J. Synthesis, structure and magnetic properties of the new double perovskite Ca2CrSbO6. Solid State Communications, 2006, 139 (1): 19–22

    Google Scholar 

  100. Hu R, Ding R, Chen J, Hu J, Zhang Y. Preparation and catalytic activities of the novel double perovskite-type oxide La2CuNiO6 for methane combustion. Catalysis Communications, 2012, 21: 38–41

    Google Scholar 

  101. Peña M A, Fierro J L G. Chemical structures and performance of perovskite oxides. Chemical Reviews, 2001, 101(7): 1981–2018

    Google Scholar 

  102. Parfitt D, Chroneos A, Tarancón A, Kilner J A. Oxygen ion diffusion in cation ordered/disordered GdBaCo2O5+δ. Journal of Materials Chemistry, 2011, 21(7): 2183–2186

    Google Scholar 

  103. Presto S, Kumar P, Varma S, Viviani M, Singh P. Electrical conductivity of NiMo-based double perovskites under SOFC anodic conditions. International Journal of Hydrogen Energy, 2018, 43(9): 4528–4533

    Google Scholar 

  104. Fu D, Jin F, He T. A-site calcium-doped Pr1−xCaxBaCo2O5+δ double perovskites as cathodes for intermediate-temperature solid oxide fuel cells. Journal of Power Sources, 2016, 313: 134–141

    Google Scholar 

  105. Anderson M T, Greenwood K B, Taylor G A, Poeppelmeier K. B-cation arrangements in double perovskites. Progress in Solid State Chemistry, 1993, 22(3): 197–233

    Google Scholar 

  106. Serrate D, De Teresa J M, Algarabel P A, Marquina C, Blasco J, Ibarra M R, Galibert J. Magnetoelastic coupling in Sr2(Fe1−xCrx) ReO6 double perovskites. Journal of Physics Condensed Matter, 2007, 19(43): 436226

    Google Scholar 

  107. Suntsov A Y, Leonidov I A, Patrakeev M V, Kozhevnikov V L. Defect formation in double perovskites PrBaCo2−xCuxO5+δ at elevated temperatures. Solid State Ionics, 2015, 274: 17–23

    Google Scholar 

  108. Niu B, Jin F, Yang X, Feng T, He T. Resisting coking and sulfur poisoning of double perovskite. 2018, 43(6): 3280–3290

  109. Kim J H, Manthiram A. Layered NdBaCo2−xNixO5+δ perovskite oxides as cathodes for intermediate temperature solid oxide fuel cells. Electrochimica Acta, 2009, 54(28): 7551–7557

    Google Scholar 

  110. Blasse G. New compounds with perovskite-like structures. Journal of Inorganic and Nuclear Chemistry, 1965, 27(5): 993–1003

    Google Scholar 

  111. Battle P D, Jones C W. The crystal and magnetic structures of Sr2LuRuO6,Ba2YRuO6, and Ba2LuRuO6. Journal of Solid State Chemistry, 1989, 78(1): 108–116

    Google Scholar 

  112. Azad A K, Ivanov S A, Eriksson S G, Eriksen J, Rundlöf H, Mathieu R, Svedlindh P. Synthesis, crystal structure, and magnetic characterization of the double perovskite Ba2MnWO6. Materials Research Bulletin, 2001, 36(12): 2215–2228

    Google Scholar 

  113. Azad A K, Eriksson S G, Mellergård A, Ivanov S A, Eriksen J, Rundlöf H. A study on the nuclear and magnetic structure of the double perovskites A 2FeWO6 (A = Sr, Ba) by neutron powder diffraction and reverse Monte Carlo modeling. Materials Research Bulletin, 2002, 37(11): 1797–1813

    Google Scholar 

  114. Anderson M T, Poeppelmeier K R. La2CuSnO6: a new perovskite-related compound with an unusual arrangement of B cations. Chemistry of Materials, 1991, 3(3): 476–482

    Google Scholar 

  115. Glazer A M. The classification of tilted octahedra in perovskites. Acta Crystallographica. Section B, Structural Crystallography and Crystal Chemistry, 1972, 28(11): 3384–3392

    Google Scholar 

  116. Blasse G. New compounds with perovskite-like structures. Journal of Inorganic and Nuclear Chemistry, 1965, 27(5): 993–1003

    Google Scholar 

  117. Prellier W, Smolyaninova V, Biswas A, Galley C, Greene R L, Ramesha K, Gopalakrishnan J. Properties of the ferrimagnetic double perovskites A2FeReO6 (A = Ba and Ca). Journal of Physics Condensed Matter, 2000, 12(6): 965–973

    Google Scholar 

  118. Anderson M T, Poeppelmeier K R. Lanthanum copper tin oxide (La2CuSnO6): a new perovskite-related compound with an unusual arrangement of B cations. Chemistry of Materials, 1991, 3(3): 476–482

    Google Scholar 

  119. Azad A K, Basheer F, Iskandar Petra P M, Ghosh A, Irvine J T S. Structure-property relationship in Mg-doped La0.75Sr0.25Mn0.5 Cr0.5O3 anode for solid oxide fuel cell. In: 5th Brunei International Conference on Engineering and Technology (BICET 2014), Bandar Seri Begawan, Brunei, 2014: 1115

  120. Wang Y, Zhang H, Chen F, Xia C. Electrochemical characteristics of nano-structured PrBaCo2O5+x cathodes fabricated with ion impregnation process. Journal of Power Sources, 2012, 203: 34–41

    Google Scholar 

  121. Ghosh A, Azad A K, Irvine J T S. Study of Ga doped LSCM as an anode for SOFC. ECS Transactions, 2011, 35(1): 1337–1343

    Google Scholar 

  122. Shaikh S P S, Muchtar A, Somalu M R. A review on the selection of anode materials for solid-oxide fuel cells. Renewable & Sustainable Energy Reviews, 2015, 51: 1–8

    Google Scholar 

  123. Xia C, Liu M. Microstructures, conductivities, and electrochemical properties of Ce0.9Gd0.1O2 and GDC-Ni anodes for low-temperature SOFCs. Solid State Ionics, 2002, 152–153: 423–430

    Google Scholar 

  124. Brett D J L, Atkinson A, Brandon N P, Skinner S J. Intermediate temperature solid oxide fuel cells. Chemical Society Reviews, 2008, 37(8): 1568

    Google Scholar 

  125. Park S, Vohs J M, Gorte R J. Direct oxidation of hydrocarbons in a solid-oxide fuel cell. Nature, 2000, 404(6775): 265–267

    Google Scholar 

  126. Gorte R J, Vohs J M. Novel SOFC anodes for the direct electrochemical oxidation of hydrocarbons. Journal of Catalysis, 2003, 216(1–2): 477–486

    Google Scholar 

  127. Shri Prakash B, Senthil Kumar S, Aruna S T. Properties and development of Ni/YSZ as an anode material in solid oxide fuel cell: a review. Renewable & Sustainable Energy Reviews, 2014, 36: 149–179

    Google Scholar 

  128. Huan Y, Li Y, Yin B, Ding D, Wei T. High conductive and long-term phase stable anode materials for SOFCs: A 2FeMoO6 (A = Ca, Sr, Ba). Journal of Power Sources, 2017, 359: 384–390

    Google Scholar 

  129. Zheng K, Świerczek K, Zając W, Klimkowicz A. Rock salt ordered-type double perovskite anode materials for solid oxide fuel cells. Solid State Ionics, 2014, 257: 9–16

    Google Scholar 

  130. Rath M K, Lee K T. Superior electrochemical performance of non-precious Co-Ni-Mo alloy catalyst-impregnated Sr2FeMoO6−δ as an electrode material for symmetric solid oxide fuel cells. Electro-chimica Acta, 2016, 212: 678–685

    Google Scholar 

  131. dos Santos-Gómez L, León-Reina L, Porras-Vázquez J M, Losilla E R, Marrero-López D. Chemical stability and compatibility of double perovskite anode materials for SOFCs. Solid State Ionics, 2013, 239: 1–7

    Google Scholar 

  132. Kumar P, Presto S, Sinha A S K, Varma S, Viviani M, Singh P. Effect of samarium (Sm3+) doping on structure and electrical conductivity of double perovskite Sr2NiMoO6 as anode material for SOFC. Journal of Alloys and Compounds, 2017, 725: 1123–1129

    Google Scholar 

  133. Ding H, Tao Z, Liu S, Yang Y. A redox-stable direct-methane solid oxide fuel cell (SOFC) with Sr2FeNb0.2Mo0.8O6−δ double perovskite as anode material. Journal of Power Sources, 2016, 327: 573–579

    Google Scholar 

  134. Sun Y F, Zhang Y Q, Hua B, Behnamian Y, Li J, Cui S H, Li J H, Luo J L. Molybdenum doped Pr0.5Ba0.5MnO3−δ (Mo-PBMO) double perovskite as a potential solid oxide fuel cell anode material. Journal of Power Sources, 2016, 301: 237–241

    Google Scholar 

  135. Tomkiewicz A C, Tamimi M A, Huq A, McIntosh S. Structural analysis of PrBaMn2O5+δ under SOFC anode conditions by in-situ neutron powder diffraction. Journal of Power Sources, 2016, 330: 240–245

    Google Scholar 

  136. Xu L, Yin Y M, Zhou N, Wang Z, Ma Z F. Sulfur tolerant redox stable layered perovskite SrLaFeO4−δ as anode for solid oxide fuel cells. Electrochemistry Communications, 2017, 76: 51–54

    Google Scholar 

  137. Wang F Y, Zhong G B, Luo S, Xia L, Fang L H, Song X, Hao X, Yan G. Porous Sr2MgMo1 xVxO6 d ceramics as anode materials for SOFCs using biogas fuel. Catalysis Communications, 2015, 67: 108–111

    Google Scholar 

  138. He B, Wang Z, Zhao L, Pan X, Wu X, Xia C. Ti-doped molybdenum-based perovskites as anodes for solid oxide fuel cells. Journal of Power Sources, 2013, 241: 627–633

    Google Scholar 

  139. Escudero M J, Gómez deParada I, Fuerte A, Daza L. Study of Sr2Mg(Mo0.8Nb0.2)O6−δ as anode material for solid oxide fuel cells using hydrocarbons as fuel. Journal of Power Sources, 2013, 243: 654–660

    Google Scholar 

  140. Zhang Q, Wei T, Huang Y H. Electrochemical performance of double-perovskite Ba2MMoO6 (M = Fe, Co, Mn, Ni) anode materials for solid oxide fuel cells. Journal of Power Sources, 2012, 198: 59–65

    Google Scholar 

  141. Marrero-López D, Peña-Martínez J, Ruiz-Morales J C, Martín-Sedeño M C, Núñez P. High temperature phase transition in SOFC anodes based on Sr2MgMoO6−δ. Journal of Solid State Chemistry, 2009, 182(5): 1027–1034

    Google Scholar 

  142. Han Z, Wang Y, Yang Y, Li L, Yang Z, Han M. High-performance SOFCs with impregnated Sr2Fe1.5Mo0.5O6−δ anodes toward sulfur resistance. Journal of Alloys and Compounds, 2017, 703: 258–263

    Google Scholar 

  143. Gansor P, Xu C, Sabolsky K, Zondlo J W, Sabolsky E M. Phosphine impurity tolerance of Sr2MgMoO6−δ composite SOFC anodes. Journal of Power Sources, 2012, 198: 7–13

    Google Scholar 

  144. Li H, Zhao Y, Wang Y, Li Y. Sr2Fe2−xMoxO6−δ perovskite as an anode in a solid oxide fuel cell: effect of the substitution ratio. Catalysis Today, 2016, 259: 417–422

    Google Scholar 

  145. Zhang L, Zhou Q, He Q, He T. Double-perovskites A 2FeMoO6−δ (A = Ca, Sr, Ba) as anodes for solid oxide fuel cells. Journal of Power Sources, 2010, 195(19): 6356–6366

    Google Scholar 

  146. Jiang L, Liang G, Han J, Huang Y. Effects of Sr-site deficiency on structure and electrochemical performance in Sr2MgMoO6 for solid-oxide fuel cell. Journal of Power Sources, 2014, 270: 441–448

    Google Scholar 

  147. Marrero-López D, Peña-Martínez J, Ruiz-Morales J C, Gabás M, Núñez P, Aranda M A G, Ramos-Barrado J R. Redox behaviour, chemical compatibility and electrochemical performance of Sr2MgMoO6−δ as SOFC anode. Solid State Ionics, 2010, 180 (40): 1672–1682

    Google Scholar 

  148. Howell T G, Kuhnell C P, Reitz T L, Sukeshini A M, Singh R N. {A 2MgMoO6}(A = Sr,Ba) for use as sulfur tolerant anodes. Journal of Power Sources, 2013, 231: 279–284

    Google Scholar 

  149. Zhang P, Huang Y H, Cheng J G, Mao Z Q, Goodenough J B. Sr2CoMoO6 anode for solid oxide fuel cell running on H2 and CH4 fuels. Journal of Power Sources, 2011, 196(4): 1738–1743

    Google Scholar 

  150. Vasala S, Lehtimäki M, Haw S C, Chen J M, Liu R S, Yamauchi H, Karppinen M. Isovalent and aliovalent substitution effects on redox chemistry of Sr2MgMoO6−δ SOFC-anode material. Solid State Ionics, 2010, 181(15–16): 754–759

    Google Scholar 

  151. Liu Q, Bugaris D E, Xiao G, Chmara M, Ma S, zur Loye H C, Amiridis M D, Chen F. Sr2Fe1.5Mo0.5O6−δ as a regenerative anode for solid oxide fuel cells. Journal of Power Sources, 2011, 196(22): 9148–9153

    Google Scholar 

  152. Karim A H, Park K Y, Lee T H, Muhammed Ali S A, Hossain S, Absah H Q H H, Park J Y, Azad A K. Synthesis, structure and electrochemical performance of double perovskite oxide Sr2Fe1−x TixNbO6−δas SOFC electrode. Journal of Alloys and Compounds, 2017, 724: 666–673

    Google Scholar 

  153. Martínez-Coronado R, Aguadero A, Alonso J A, Fernández-Díaz M T. Reversible oxygen removal and uptake in the La2ZnMnO6 double perovskite: performance in symmetrical SOFC cells. Solid State Sciences, 2013, 18: 64–70

    Google Scholar 

  154. Li W, Cheng Y, Zhou Q, Wei T, Li Z, Yan H, Wang Z, Han X. Evaluation of double perovskite Sr2FeTiO6−δ as potential cathode or anode materials for intermediate-temperature solid oxide fuel cells. Ceramics International, 2015, 41(9): 12393–12400

    Google Scholar 

  155. Ding H, Sullivan N P, Ricote S. Double perovskite Ba2FeMoO6−δ as fuel electrode for protonic-ceramic membranes. Solid State Ionics, 2017, 306: 97–103

    Google Scholar 

  156. Zheng K, Świerczek K, Bratek J, Klimkowicz A. Cation-ordered perovskite-type anode and cathode materials for solid oxide fuel cells. Solid State Ionics, 2014, 262: 354–358

    Google Scholar 

  157. Song Y, Zhong Q, Tan W, Pan C. Effect of cobalt-substitution Sr2Fe1.5−xCoxMo0.5O6−δ for intermediate temperature symmetrical solid oxide fuel cells fed with H2-H2S. Electrochimica Acta, 2014, 139: 13–20

    Google Scholar 

  158. Tarancón A, Marrero-López D, Peña-Martínez J, Ruizmorales J, Nunez P. Effect of phase transition on high-temperature electrical properties of GdBaCo2O5+x layered perovskite. Solid State Ionics, 2008, 179(17–18): 611–618

    Google Scholar 

  159. Song Y, Zhong Q, Wang D, Xu Y, Tan W. Interaction between electrode materials Sr2FeCo0.5Mo0.5O6−δ and hydrogen sulfide in symmetrical solid oxide fuel cells. International Journal of Hydrogen Energy, 2017, 42(34): 22266–22272

    Google Scholar 

  160. Wright J H, Virkar A V, Liu Q, Chen F. Electrical characterization and water sensitivity of Sr2Fe1.5Mo0.5O6−δ as a possible solid oxide fuel cell electrode. Journal of Power Sources, 2013, 237: 13–18

    Google Scholar 

  161. Kim J H, Cassidy M, Irvine J T S, Bae J. Advanced electrochemical properties of LnBa0.5Sr0.5Co2O5−δ (Ln = Pr, Sm, and Gd) as cathode materials for IT-SOFC. Journal of the Electrochemical Society, 2009, 156(6): B682–B689

    Google Scholar 

  162. Haile S M. Fuel cell materials and components. Acta Materialia, 2003, 51(19): 5981–6000

    Google Scholar 

  163. Jiang S P. Issues on development of (La,Sr)MnO3 cathode for solid oxide fuel cells. Journal of Power Sources, 2003, 124(2): 390–402

    Google Scholar 

  164. Carter S, Selcuk A, Chater R J, Kajda J, Kilner J A, Steele B C H. Oxygen transport in selected nonstoichiometric perovskite-structure oxides. Solid State Ionics, 1992, 53–56: 597–605

    Google Scholar 

  165. Kim G, Wang S, Jacobson A J, Reimus L, Brodersen P, Mims C A. Rapid oxygen ion diffusion and surface exchange kinetics in PrBaCo2O5+x with a perovskite related structure and ordered A cations. Journal of Materials Chemistry, 2007, 17(24): 2500

    Google Scholar 

  166. Choi S, Kucharczyk C J, Liang Y, Zhang X, Takeuchi I, Ji H I, Haile S M. Exceptional power density and stability at intermediate temperatures in protonic ceramic fuel cells. Nature Energy, 2018, 3 (3): 202–210

    Google Scholar 

  167. Sun C, Hui R, Roller J. Cathode materials for solid oxide fuel cells: a review. Journal of Solid State Electrochemistry, 2010, 14(7): 1125–1144

    Google Scholar 

  168. Lü S, Meng X, Ji Y, Fu C, Sun C, Zhao H. Electrochemical performances of NdBa0.5Sr0.5Co2O5+x as potential cathode material for intermediate-temperature solid oxide fuel cells. Journal of Power Sources, 2010, 195(24): 8094–8096

    Google Scholar 

  169. Jiang X, Wang J, Jia G, Qie Z, Shi Y, Idrees A, Zhang Q, Jiang L. Characterization of PrBa0.92CoCuO6 δ as a potential cathode material of intermediate-temperature solid oxide fuel cell. International Journal of Hydrogen Energy, 2017, 42(9): 6281–6289

    Google Scholar 

  170. Tomkiewicz A C, Meloni M, McIntosh S. On the link between bulk structure and surface activity of double perovskite based SOFC cathodes. Solid State Ionics, 2014, 260: 55–59

    Google Scholar 

  171. Li H, Sun L P, Li Q, Xia T, Zhao H, Huo L H, Bassat J M, Rougier A, Fourcade S, Grenier J C. Electrochemical performance of double perovskite Pr2NiMnO6 as a potential IT-SOFC cathode. International Journal of Hydrogen Energy, 2015, 40(37): 12761–12769

    Google Scholar 

  172. Mao X, Wang W, Ma G. A novel cobalt-free double-perovskite NdBaFe1.9Nb0.1O5−δ cathode material for proton-conducting IT-SOFC. Ceramics International, 2015, 41(8): 10276–10280

    Google Scholar 

  173. Jin F J, Liu J, Niu B, Ta L, Li R, Wang Y, Yang X, He T. Evaluation and performance optimization of double-perovskite LaSrCoTiO5+δ cathode for intermediate-temperature solid-oxide fuel cells. International Journal of Hydrogen Energy, 2016, 41(46): 21439–21449

    Google Scholar 

  174. Fu D, Jin F, He T. A-site calcium-doped Pr1 xCaxBaCo2O5+δ double perovskites as cathodes for intermediate-temperature solid oxide fuel cells. Journal of Power Sources, 2016, 313: 134–141

    Google Scholar 

  175. Pelosato R, Cordaro G, Stucchi D, Cristiani C, Dotelli G. Cobalt based layered perovskites as cathode material for intermediate temperature solid oxide fuel cells: a briefreview. Journal of Power Sources, 2015, 298: 46–67

    Google Scholar 

  176. Mao X, Yu T, Ma G. Performance ofcobalt-free double-perovskite NdBaFe2 xMnxO5+δ cathode materials for proton-conducting IT-SOFC. Journal of Alloys and Compounds, 2015, 637: 286–290

    Google Scholar 

  177. Pang S, Wang W, Chen T, Wang Y, Xu K, Shen X, Xi X, Fan J. The effect of potassium on the properties of PrBa1−xCo2O5+δ (x = 0.00-0.10) cathodes for intermediate-temperature solid oxide fuel cells. International Journal of Hydrogen Energy, 2016, 41(31): 13705–13714

    Google Scholar 

  178. Xia L N, He Z P, Huang X W, Yu Y. Synthesis and properties of SmBaCo2 xNixO5+δ perovskite oxide for IT-SOFC cathodes. Ceramics International, 2016, 42(1): 1272–1280

    Google Scholar 

  179. Jin F, Xu H, Long W, Shen Y, He T. Characterization and evaluation of double perovskites LnBaCoFeO5+δ (Ln = Pr and Nd) as intermediate-temperature solid oxide fuel cell cathodes. Journal of Power Sources, 2013, 243: 10–18

    Google Scholar 

  180. Seymour I D, Tarancón A, Chroneos A, Parfitt D, Kilner J A, Grimes R W. Anisotropic oxygen diffusion in PrBaCo2O5.5 double perovskites. Solid State Ionics, 2012, 216: 41–43

    Google Scholar 

  181. Suntsov A Y, Leonidov I A, Patrakeev M V, Kozhevnikov V L. Defect formation in double perovskites PrBaCo2 xCuxO5+δ at elevated temperatures. Solid State Ionics, 2015, 274: 17–23

    Google Scholar 

  182. Saccoccio M, Jiang C, Gao Y, Chen D, Ciucci F. Nb-substituted PrBaCo2O5+δ as a cathode for solid oxide fuel cells: a systematic study of structural, electrical, and electrochemical properties. International Journal of Hydrogen Energy, 2017, 42(30): 19204–19215

    Google Scholar 

  183. Jin F, Li L, He T. NdBaCo2/3Fe2/3Cu2/3O5+δ double perovskite as a novel cathode material for CeO2- and LaGaO3-based solid oxide fuel cells. Journal of Power Sources, 2015, 273: 591–599

    Google Scholar 

  184. Li L, Jin F, Shen Y, He T. Cobalt-free double perovskite cathode GdBaFeNiO5+δ and electrochemical performance improvement by Ce0.8Sm0.2O1.9 impregnation for intermediate-temperature solid oxide fuel cells. Electrochimica Acta, 2015, 182: 682–692

    Google Scholar 

  185. Li S, Xia T, Li Q, Sun L, Huo L, Zhao H. A-site Ba-deficiency layered perovskite EuBa1 xCo2O6 δ cathodes for intermediate-temperature solid oxide fuel cells: electrochemical properties and oxygen reduction reaction kinetics. International Journal of Hydrogen Energy, 2017, 42(38): 24412–24425

    Google Scholar 

  186. Jin F, Shen Y, Wang R, He T. Double-perovskite PrBaCo2/3 Fe2/3Cu2/3O5+δ as cathode material for intermediate-temperature solid-oxide fuel cells. Journal of Power Sources, 2013, 234: 244–251

    Google Scholar 

  187. Meng F, Xia T, Wang J, Shi Z, Zhao H. Praseodymium-deficiency Pr0.94BaCo2O6 δ double perovskite: a promising high performance cathode material for intermediate-temperature solid oxide fuel cells. Journal of Power Sources, 2015, 293: 741–750

    Google Scholar 

  188. Jin F, Liu J, Shen Y, He T. Improved electrochemical performance and thermal expansion compatibility of LnBaCoFeO5+δSm0.2-Ce0.8O1.9 (Ln = Pr and Nd) composite cathodes for IT-SOFCs. Journal of Alloys and Compounds, 2016, 685: 483–491

    Google Scholar 

  189. Xue J, Shen Y, He T. Double-perovskites YBaCo2 xFexO5+δ cathodes for intermediate-temperature solid oxide fuel cells. Journal of Power Sources, 2011, 196(8): 3729–3735

    Google Scholar 

  190. Zhou Q, He T, Ji Y. SmBaCo2O5+x double-perovskite structure cathode material for intermediate-temperature solid-oxide fuel cells. Journal of Power Sources, 2008, 185(2): 754–758

    Google Scholar 

  191. Kong X, Liu G, Yi Z, Ding X. NdBaCu2O5+δ and NdBa0.5Sr0.5 Cu2O5+δ layered perovskite oxides as cathode materials for IT-SOFCs. International Journal of Hydrogen Energy, 2015, 40(46): 16477–16483

    Google Scholar 

  192. Wei B, Chen K, Wang C C, Lü Z, Jiang S P. Performance degradation of SmBaCo2O5+δ cathode induced by chromium deposition for solid oxide fuel cells. Electrochimica Acta, 2015, 174: 327–331

    Google Scholar 

  193. Lü S, Yu B, Meng X, Zhang Y, Ji Y, Fu C, Yang L, Li X, Sui Y, Yang J. Performance of double-perovskite YBa0.5Sr0.5Co1.4Cu0.6 O5+δ as cathode material for intermediate-temperature solid oxide fuel cells. Ceramics International, 2014, 40(9, Part B): 14919–14925

    Google Scholar 

  194. Kuroda C, Zheng K, Swierczek K. Characterization of novel GdBa0.5Sr0.5Co2 xFexO5+δperovskites for application in IT-SOFC cells. International Journal of Hydrogen Energy, 2013, 38(2): 1027–1038

    Google Scholar 

  195. Subardi A, Chen C C, Cheng M H, Chang W K, Fu Y P. Electrical, thermal and electrochemical properties of SmBa1−xSrxCo2O5+δ cathode materials for intermediate-temperature solid oxide fuel cells. Electrochimica Acta, 2016, 204: 118–127

    Google Scholar 

  196. Yu L, Chen Y, Gu Q, Tian D, Lu X, Meng G, Lin B. Layered perovskite oxide Y0.8Ca0.2BaCoFeO5+δ as a novel cathode material for intermediate-temperature solid oxide fuel cells. Journal of Rare Earths, 2015, 33(5): 519–523 (in Chinese)

    Google Scholar 

  197. Donazzi A, Pelosato R, Cordaro G, Stucchi D, Cristiani C, Dotelli G, Sora I N. Evaluation of Ba deficient NdBaCo2O5+δ oxide as cathode material for IT-SOFC. Electrochimica Acta, 2015, 182: 573–587

    Google Scholar 

  198. Che X, Shen Y, Li H, He T. Assessment of LnBaCo16Ni0.4O5+δ (Ln = Pr, Nd, and Sm) double-perovskites as cathodes for intermediate-temperature solid-oxide fuel cells. Journal of Power Sources, 2013, 222: 288–293

    Google Scholar 

  199. Pérez-Flores J C, Gómez-Pérez A, Yuste M, Canales-Vázquez J, Climent-Pascual E, Ritter C, Azcondo M T, Amador U, García-Alvarado F. Characterization of La2 xSrxCoTiO6 (0.6⩽x⩽1.0) series as new cathodes of solid oxide fuel cells. International Journal of Hydrogen Energy, 2014, 39(10): 5440–5450

    Google Scholar 

  200. Wang W, Pang S, Su Y, Shen X, Wang Y, Xu K, Xi X, Xiang J. The effect of calcium on the properties of SmBa1−xCaxCoCuO5+δ as a cathode material for intermediate-temperature solid oxide fuel cells. Journal of the European Ceramic Society, 2017, 37(4): 1557–1562

    Google Scholar 

  201. Cascos V, Troncoso L, Alonso J A. New families of Mn+-doped SrCo1 xMxO3 δ perovskites performing as cathodes in solid-oxide fuel cells. International Journal of Hydrogen Energy, 2015, 40(34): 11333–11341

    Google Scholar 

  202. Zhu Z, Tao Z, Bi L, Liu W. Investigation of SmBaCuCoO5+δ double-perovskite as cathode for proton-conducting solid oxide fuel cells. Materials Research Bulletin, 2010, 45(11): 1771–1774

    Google Scholar 

  203. Pang S L, Jiang X N, Li X N, Xu H X, Jiang L, Xu Q L, Shi Y C, Zhang Q Y. Structure and properties of layered-perovskite LaBa1 x Co2O5+δ (x = 0–0.15) as intermediate-temperature cathode material. Journal of Power Sources, 2013, 240: 54–59

    Google Scholar 

  204. Dai N, Wang Z, Jiang T, Feng J, Sun W, Qiao J, Rooney D, Sun K. A new family of barium-doped Sr2Fe1.5Mo0.5O5+δ perovskites for application in intermediate temperature solid oxide fuel cells. Journal of Power Sources, 2014, 268: 176–182

    Google Scholar 

  205. Tsvetkova N S, Zuev A Y, Tsvetkov D S. Investigation of GdBaCo2 xFexO6+δ (x = 0, 0.2)-Ce0.8Sm0.2O2 composite cathodes for intermediate temperature solid oxide fuel cells. Journal of Power Sources, 2013, 243: 403–408

    Google Scholar 

  206. Zhou Q, Wei W C J, Guo Y, Jia D. LaSrMnCoO5+δ as cathode for intermediate-temperature solid oxide fuel cells. Electrochemistry Communications, 2012, 19: 36–38

    Google Scholar 

  207. Jiang X, Xu Q, Shi Y, Li X, Zhou W, Xu H, Zhang Q. Synthesis and properties of Sm3+-deficient Sm1−xBaCo2O5+δ perovskite oxides as cathode materials. International Journal of Hydrogen Energy, 2014, 39(21): 10817–10823

    Google Scholar 

  208. Zhen S, Sun W, Tang G, Rooney D, Sun K, Ma X. Evaluation of strontium-site-deficient Sr2Fe1.4Co0.1Mo0.5O6 δ-based perovskite oxides as intermediate temperature solid oxide fuel cell cathodes. International Journal of Hydrogen Energy, 2016, 41(22): 9538–9546

    Google Scholar 

  209. Zhang K, Ge L, Ran R, Shao Z, Liu S. Synthesis, characterization and evaluation of cation-ordered LnBaCo2O5+δ as materials of oxygen permeation membranes and cathodes of SOFCs. Acta Materialia, 2008, 56(17): 4876–4889

    Google Scholar 

  210. Gómez-Pérez A, Yuste M, Pérez-Flores J C, Ritter C, Azcondo M T, Canales-Vázquez J, Gálvez-Sánchez M, Boulahya K, García-Alvarado F, Amador U. The role of the Co2+/Co3+ redox-pair in the properties of La2 xSrxCoTiO6 (0⩽x⩽0.5) perovskites as components for solid oxide fuel cells. Journal of Power Sources, 2013, 227: 309–317

    Google Scholar 

  211. Wang B, Long G, Ji Y, Pang M, Meng X. Layered perovskite PrBa0.5Sr0.5CoCuO5+δ as a cathode for intermediate-temperature solid oxide fuel cells. Journal of Alloys and Compounds, 2014, 606: 92–96

    Google Scholar 

  212. Yi K, Sun L, Li Q, Xia T, Huo L, Zhao H, Li J, Lü Z, Bassat J M, Rougier A, Fourcade S, Grenier J C. Effect of Nd-deficiency on electrochemical properties of NdBaCo2O6−δ cathode for intermediate-temperature solid oxide fuel cells. International Journal of Hydrogen Energy, 2016, 41(24): 10228

    Google Scholar 

  213. Zhou Q, Cheng Y, Li W, Yang X, Liu J, An D, Tong X, Zhong B, Wang W. Investigation of cobalt-free perovskite Sr2FeTi0.75 Mo0.25O6 δ as new cathode for solid oxide fuel cells. Materials Research Bulletin, 2016, 74: 129–133

    Google Scholar 

  214. Xue J, Shen Y, He T. Performance of double-proveskite YBa0.5Sr0.5Co2O5+δas cathode material for intermediate-temperature solid oxide fuel cells. International Journal of Hydrogen Energy, 2011, 36(11): 6894–6898

    Google Scholar 

  215. Wang Y, Zhao X, Lü S, Meng X, Zhang Y, Yu B, Li X, Sui Y, Yang J, Fu C, Ji Y. Synthesis and characterization of SmSrCo2−x MnxO5+δ (x = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0) cathode materials for intermediate-temperature solid-oxide fuel cells. Ceramics International, 2014, 40(7): 11343–11350

    Google Scholar 

  216. Lü S, Long G, Meng X, Ji Y, Lü B, Zhao H. PrBa0.5Sr0.5Co2O5+δ as cathode material based on LSGM and GDC electrolyte for intermediate-temperature solid oxide fuel cells. International Journal of Hydrogen Energy, 2012, 37(7): 5914–5919

    Google Scholar 

  217. Lee S J, Kim D S, Jo S H, Muralidharan P, Kim D K. Electrochemical properties of GdBaCo2/3Fe2/3Cu2/3O5+-CGO composite cathodes for solid oxide fuel cell. Ceramics International, 2012, 38(Sup. 1): S493–496

    Google Scholar 

  218. Li X, Jiang X, Xu H, Xu Q, Jiang L, Shi Y, Zhang Q. Scandium-doped PrBaCo2−xScxO6−δ oxides as cathode material for intermediate-temperature solid oxide fuel cells. International Journal of Hydrogen Energy, 2013, 38(27): 12035–12042

    Google Scholar 

  219. Choi S, Shin J, Kim G. The electrochemical and thermodynamic characterization of PrBaCo2−xFexO5+δ (x = 0, 0.5, 1) infiltrated into yttria-stabilized zirconia scaffold as cathodes for solid oxide fuel cells. Journal of Power Sources, 2012, 201: 10–17

    Google Scholar 

  220. Zhu C, Liu X, Yi C, Yan D, Su W. Electrochemical performance of PrBaCo2O5+δ layered perovskite as an intermediate-temperature solid oxide fuel cell cathode. Journal of Power Sources, 2008, 185 (1): 193–196

    Google Scholar 

  221. Tarancón A, Morata A, Dezanneau G, Skinner S J, Kilner J A, Estradé S, Hernández-Ramírez F, Peiró F, Morante J R. GdBaCo2O5+x layered perovskite as an intermediate temperature solid oxide fuel cell cathode. Journal of Power Sources, 2007, 174 (1): 255–263

    Google Scholar 

  222. Ding H, Xue X, Liu X, Meng G. High performance layered SmBa0.5Sr0.5Co2O5+δ cathode for intermediate-temperature solid oxide fuel cells. Journal of Power Sources, 2009, 194(2): 815–817

    Google Scholar 

  223. Hou M, Sun W, Li P, Feng J, Yang G, Qiao J, Wang Z, Rooney D, Feng J, Sun K. Investigation into the effect of molybdenum-site substitution on the performance of Sr2Fe1.5Mo0.5O6−δ for intermediate temperature solid oxide fuel cells. Journal of Power Sources, 2014, 272: 759–765

    Google Scholar 

  224. Li X, Jiang X, Shi Y, Zhou W, Xu Q, Xu H, Zhang Q. One-step synthesized nano-composite cathode material of Pr0.83 BaCo1.33Sc0.5O6−δ-0.17PrCoO3 for intermediate-temperature solid oxide fuel cell. International Journal of Hydrogen Energy, 2014, 39(27): 15039–15045

    Google Scholar 

  225. Zou J, Park J, Kwak B, Yoon H, Chung J. Effect of Fe doping on PrBaCo2O5+δ as cathode for intermediate-temperature solid oxide fuel cells. Solid State Ionics, 2012, 206: 112–119

    Google Scholar 

  226. Zhang Y, Yu B, Lu S, Meng X, Zhao X, Ji Y, Wang Y, Fu C, Liu X, Li X, Sui Y, Lang J, Yang J. Effect of Cu doping on YBaCo2O5+δ as cathode for intermediate-temperature solid oxide fuel cells. Electrochimica Acta, 2014, 134: 107–115

    Google Scholar 

  227. Lü S, Long G, Ji Y, Meng X, Zhao H, Sun C. SmBaCoCuO5+x as cathode material based on GDC electrolyte for intermediate-temperature solid oxide fuel cells. Journal of Alloys and Compounds, 2011, 509(6): 2824–2828

    Google Scholar 

  228. Azad A K, Kim J H, Irvine J T S. Structure-property relationship in layered perovskite cathode LnBa0.5Sr0.5Co2O5+δ (Ln = Pr, Nd) for solid oxide fuel cells. Journal of Power Sources, 2011, 196(17): 7333–7337

    Google Scholar 

  229. Hu Y, Bogicevic C, Bouffanais Y, Giot M, Hernandez O, Dezanneau G. Synthesis, physical-chemical characterization and electrochemical performance of GdBaCo2 xNixO5+δ(x = 0−0.8) as cathode materials for IT-SOFC application. Journal of Power Sources, 2013, 242: 50–56

    Google Scholar 

  230. Xia T, Lin N, Zhao H, Huo L, Wang J, Grenier J C. Co-doped Sr2FeNbO6 as cathode materials for intermediate-temperature s olid oxide fuel cells. Journal of Power Sources, 2009, 192(2): 291–296

    Google Scholar 

  231. Subardi A, Cheng M H, Fu Y P. Chemical bulk diffusion and electrochemical properties of SmBa0.6Sr0.4Co2O5+δ cathode for intermediate solid oxide fuel cells. International Journal of Hydrogen Energy, 2014, 39(35): 20783–20790

    Google Scholar 

  232. Mitchell R H. Perovskites: Modern and Ancient. Ontario, Canada: Almaz Press, 2002

    Google Scholar 

  233. Horita T, Kishimoto H, Yamaji K, Brito M E, Xiong Y, Yokokawa H, Hori Y, Miyachi I. Effects of impurities on the degradation and long-term stability for solid oxide fuel cells. Journal of Power Sources, 2009, 193(1): 194–198

    Google Scholar 

  234. Tao S W, Irvine J T S. A redox-stable efficient anode for solidoxide fuel cells. Nature Materials, 2003, 2(5): 320–323

    Google Scholar 

  235. Fu Q X, Tietz F. Ceramic-based anode materials for improved redox cycling of solid oxide fuel cells. Fuel Cells (Weinheim), 2008, 8(5): 283–293

    Google Scholar 

  236. Azad A K, Hakem A, Iskandar Petra P M. Titanium doped LSCM anode for hydrocarbon fuelled SOFCs. AIP Conference Proceedings, 2015, 070069

  237. Tao S W, Canales-Vazquez J, Irvine J T S. Structural and electrical properties of the perovskite oxide Sr2FeNbO6. Chemistry of Materials, 2004, 16(11): 2309–2316

    Google Scholar 

  238. Téllez Lozano H, Druce J, Cooper S J, Kilner J A. Double perovskite cathodes for proton-conducting ceramic fuel cells: are they triple mixed ionic electronic conductors? Science and Technology of Advanced Materials, 2017, 18(1): 977–986

    Google Scholar 

  239. Peña-Martínez J, Marrero-López D, Ruiz-Morales J C, Savaniu C, Núñez P, Irvine J T S. Anodic performance and intermediate temperature fuel cell testing of La0.75Sr0.25Cr0.5Mn0.5O3−δ at lanthanum gallate electrolytes. Chemistry of Materials, 2006, 18 (4): 1001–1006

    Google Scholar 

  240. Danilovic N, Luo J L, Chuang K T, Sanger A R. Ce0.9Sr0.1VOx (x = 3, 4) as anode materials for H2S-containing {CH4} fueled solid oxide fuel cells. Journal of Power Sources, 2009, 192(2): 247–257

    Google Scholar 

  241. Azad A K, Irvine J T S. Characterization of YSr2Fe3O8−δ as electrode materials for SOFC. Solid State Ionics, 2011, 192(1): 225–228

    Google Scholar 

  242. Huang Y H, Liang G, Croft M, Lehtimäki M, Karppinen M, Goodenough J B. Double-perovskite anode materials Sr2MMoO6 (M= Co, Ni) for solid oxide fuel cells. Chemistry of Materials, 2009, 21(11): 2319–2326

    Google Scholar 

  243. Ralph J M, Schoeler A C, Krumpelt M. Materials for lower temperature solid oxide fuel cells. Electrochemical Technology, 2001, 6(5): 1161–1172

    Google Scholar 

  244. Adler S B. Factors governing oxygen reduction in solid oxide fuel cell cathodes. Chemical Reviews, 2004, 104(10): 4791–4844

    Google Scholar 

  245. Tao S W, Irvine J T S. Synthesis and characterization of (La0.75Sr0.25)Cr0.5Mn0.5O3−δ, a redox-stable, efficient perovskite anode for SOFCs. Journal of the Electrochemical Society, 2004, 151(2): A252

    Google Scholar 

  246. Tao S W, Irvine J T S. Catalytic properties of the perovskite oxide La0.75Sr0.25Cr0.5Fe0.5O3−δ in relation to its potential as a solid oxide fuel cell anode material. Chemistry of Materials, 2004, 16 (21): 4116–4121

    Google Scholar 

  247. Ruiz-Morales J C, Canales-Vázquez J, Savaniu C, Marrero-López D, Zhou W, Irvine J T S. Disruption of extended defects in solid oxide fuel cell anodes for methane oxidation. Nature, 2006, 439 (7076): 568–571

    Google Scholar 

  248. Zhu W Z, Deevi S C. A review on the status of anode materials for solid oxide fuel cells. Materials Science and Engineering A, 2003, 362(1–2): 228–239

    Google Scholar 

  249. Fagg D P, Kharton V V, Kovalevsky A V, Viskup A P, Naumovich E N, Frade J R. The stability and mixed conductivity in La and Fe doped SrTiO3 in the search for potential anode materials. Journal of the European Ceramic Society, 2001, 21(10–11): 1831–1835

    Google Scholar 

  250. Touleva A, Yufit V, Simons S, Maskell W C, Brett D J L. A review of liquid metal anode solid oxide fuel cells. Journal of Electrochemical Science and Engineering, 2013, 3(3): 91–105

    Google Scholar 

  251. Wang X, Yu B, Zhang W, Chen J, Luo X, Stephan K. Microstructural modification of the anode/electrolyte interface of SOEC for hydrogen production. International Journal of Hydrogen Energy, 2012, 37(17): 12833–12838

    Google Scholar 

  252. dos Santos-Gómez L, León-Reina L, Porras-Vázquez J M, Losilla E R, Marrero-López D. Chemical stability and compatibility of double perovskite anode materials for SOFCs. Solid State Ionics, 2013, 239: 1–7

    Google Scholar 

  253. Saines P J, Kennedy B J. Phase segregation in mixed Nb-Sb double perovskites Ba2LnNb1−xSbxO6−δ. Journal of Solid State Chemistry, 2008, 181(2): 298–305

    Google Scholar 

  254. Tonus F, Bahout M, Dorcet V, Sharma R K, Djurado E, Paofai S, Smith R I, Skinner S J. A-site order-disorder in the NdBaMn2O5+δ SOFC electrode material monitored in situ by neutron diffraction under hydrogen flow. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(22): 11078–11085

    Google Scholar 

  255. Deng Z Q, Smit J P, Niu H J, Evans G, Li M R, Xu Z L, Claridge J B, Rosseinsky M J. B cation ordered double perovskite Ba2CoMo0.5Nb0.5O6−δ as a potential SOFC cathode. Chemistry of Materials, 2009, 21(21): 5154–5162

    Google Scholar 

  256. Afroze S, Abdalla A M, Radenahmad N, et al. Synthesis, structural and thermal properties of double perovskite NdSrMn2O6 as potential anode materials for solid oxide fuel cells. In: 7th Brunei International Conference on Engineering and Technology 2017 (BICET 2017), Antalya, Turkey, 2018

  257. Falcón H, Barbero J A, Araujo G, Casais M T, Martínez-Lope M J, Alonso J A, Fierro J L G. Double perovskite oxides A 2FeMoO6−δ (A = Ca, Sr and Ba) as catalysts for methane combustion. Applied Catalysis B: Environmental, 2004, 53(1): 37–45

    Google Scholar 

  258. Philipp B, Majewski P, Alff L, Erb A, Gross R, Graf T, Brandt M S, Simon J, Walther T, Mader W, Topwal D, Sarma D D. Structural and doping effects in the half-metallic double perovskite A 2CrWO6 (A = Sr, Ba, and Ca). Physical Review B: Condensed Matter and Materials Physics, 2003, 68(14): 144431

    Google Scholar 

  259. Karim A H, Park K Y, Lee T H, Muhammed Ali S A, Hossain S, Absah HQHH, Park J Y, Azad A K. Synthesis, structure and electrochemical performance of double perovskite oxide Sr2Fe1 xTixNbO6 δ as SOFC electrode. Journal of Alloys and Compounds, 2017, 724: 666–673

    Google Scholar 

  260. Zhang L, He T. Performance of double-perovskite Sr2−x SmxMgMoO6−δ as solid-oxide fuel-cell anodes. Journal of Power Sources, 2011, 196(20): 8352–8359

    Google Scholar 

  261. Zhang L L, Zhou Q J, He Q, He T. Double-perovskites A 2FeMoO6−δ (A = Ca, Sr, Ba) as anodes for solid oxide fuel cells. Journal of Power Sources, 2010, 195(19): 6356–6366

    Google Scholar 

  262. Pickett W E. Spin-density-functional-based search for half-metallic antiferromagnets. Physical Review. B, 1998, 57(17): 10613–10619

    Google Scholar 

Download references

Acknowledgements

The University Graduate Scholarship (UGS) of Universiti Brunei Darussalam is gratefully acknowledged. This work was supported by the project No. UBD/RSCH/URC/RG(6)2018/002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abul K. Azad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afroze, S., Karim, A., Cheok, Q. et al. Latest development of double perovskite electrode materials for solid oxide fuel cells: a review. Front. Energy 13, 770–797 (2019). https://doi.org/10.1007/s11708-019-0651-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11708-019-0651-x

Keywords

Navigation