Skip to main content
Log in

In vitro degradation of MAO/PLA coating on Mg-1.21Li-1.12Ca-1.0Y alloy

  • Research Article
  • Published:
Frontiers of Materials Science Aims and scope Submit manuscript

Abstract

Magnesium and its alloys are promising biomaterials due to their biocompatibility and osteoinduction. The plasticity and corrosion resistance of commercial magnesium alloys cannot meet the requirements for degradable biomaterials completely at present. Particularly, the alkalinity in the microenvironment surrounding the implants, resulting from the degradation, arouses a major concern. Micro-arc oxidation (MAO) and poly(lactic acid) (PLA) composite (MAO/PLA) coating on biomedical Mg-1.21Li-1.12Ca-1.0Y alloy was prepared to manipulate the pH variation in an appropriate range. Surface morphologies were discerned using SEM and EMPA. And corrosion resistance was evaluated via electrochemical polarization and impedance and hydrogen volumetric method. The results demonstrated that the MAO coating predominantly consisted of MgO, Mg2SiO4 and Y2O3. The composite coating markedly improved the corrosion resistance of the alloy. The rise in solution pH for the MAO/PLA coating was tailored to a favorable range of 7.5–7.8. The neutralization caused by the alkalinity of MAO and Mg substrate and acidification of PLA was probed. The result designates that MAO/PLA composite coating on Mg-1.21Li-1.12Ca-1.0Y alloys may be a promising biomedical coating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Staiger M P, Pietak A M, Huadmai J, et al. Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials, 2006, 27(9): 1728–1734

    Article  Google Scholar 

  2. Zhao L, Cui C, Wang Q, et al. Growth characteristics and corrosion resistance of micro-arc oxidation coating on pure magnesium for biomedical applications. Corrosion Science, 2010, 52(7): 2228–2234

    Article  Google Scholar 

  3. Witte F, Fischer J, Nellesen J, et al. In vitro and in vivo corrosion measurements of magnesium alloys. Biomaterials, 2006, 27(7): 1013–1018

    Article  Google Scholar 

  4. Li Z, Gu X, Lou S, et al. The development of binary Mg-Ca alloys for use as biodegradable materials within bone. Biomaterials, 2008, 29(10): 1329–1344

    Article  Google Scholar 

  5. Song G, Song S. A possible biodegradable magnesium implant material. Advanced Engineering Materials, 2007, 9(4): 298–302

    Article  Google Scholar 

  6. Witte F. The history of biodegradable magnesium implants: a review. Acta Biomaterialia, 2010, 6(5): 1680–1692

    Article  Google Scholar 

  7. Gray J, Luan B. Protective coatings on magnesium and its alloys —a critical review. Journal of Alloys and Compounds, 2002, 336(1–2): 88–113

    Article  Google Scholar 

  8. Xin Y, Hu T, Chu P K. In vitro studies of biomedical magnesium alloys in a simulated physiological environment: a review. Acta Biomaterialia, 2011, 7(4): 1452–1459

    Article  Google Scholar 

  9. Witte F, Kaese V, Haferkamp H, et al. In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials, 2005, 26(17): 3557–3563

    Article  Google Scholar 

  10. Liu C L, Wang Y J, Zeng R C, et al. In vitro corrosion degradation behaviour of Mg-Ca alloy in the presence of albumin. Corrosion Science, 2010, 52(10): 3341–3347

    Article  Google Scholar 

  11. Kim WC, Kim J G, Lee J Y, et al. Influence of Ca on the corrosion properties of magnesium for biomaterials. Materials Letters, 2008, 62(25): 4146–4148

    Article  Google Scholar 

  12. Zhang S, Li J, Song Y, et al. In vitro degradation, hemolysis and MC3T3-E1 cell adhesion of biodegradable Mg-Zn alloy. Materials Science and Engineering C, 2009, 29(6): 1907–1912

    Article  Google Scholar 

  13. Zhang C-Y, Zeng R-C, Liu C-L, et al. Comparison of calcium phosphate coatings on Mg-Al and Mg-Ca alloys and their corrosion behavior in Hank’s solution. Surface and Coatings Technology, 2010, 204(21–22): 3636–3640

    Google Scholar 

  14. Zhang C Y, Zeng R C, Chen R S, et al. Preparation of calcium phosphate coatings on Mg-1.0Ca alloy. Transactions of Nonferrous Metals Society of China, 2010, 20: s655–s659

    Article  Google Scholar 

  15. Zeng R C, Dietzel W, Witte F, et al. Progress and challenge for magnesium alloys as biomaterials. Advanced Engineering Materials, 2008, 10(8): B3–B14

    Article  Google Scholar 

  16. Zeng R C, Guo X L, Liu C L, et al. Study on corrosion of medical Mg-Ca and Mg-Li-Ca alloys. Acta Metallurgica Sinica, 2012, 47: 1477–1482

    Google Scholar 

  17. Zeng R C, Sun L, Zheng Y F, et al. Corrosion and characterisation of dual phase Mg-Li-Ca alloy in Hank’s solution: The influence of microstructural features. Corrosion Science, 2014, 79: 69–82

    Article  Google Scholar 

  18. Witte F, Fischer J, Nellesen J, et al. In vitro corrosion and corrosion protection of magnesium alloy LAE442. Acta Biomaterialia, 2010, 6(5): 1792–1799

    Article  Google Scholar 

  19. Zhao X, Shi L L, Xu J. A comparison of corrosion behavior in saline environment: rare earth metals (Y, Nd, Gd, Dy) for alloying of biodegradable magnesium alloys. Journal of Materials Science and Technology, 2013, 29(9): 781–787

    Article  Google Scholar 

  20. Chen J, Zeng R C, Huang W J, et al. Characterization and wear resistance of macro-arc oxidation coating on magnesium alloy AZ91 in simulated body fluids. Transactions of Nonferrous Metals Society of China, 2008, 18: s361–s364

    Article  Google Scholar 

  21. Sankara Narayanan T S N, Park I S, Lee M H. Strategies to improve the corrosion resistance of microarc oxidation (MAO) coated magnesium alloys for degradable implants: Prospects and challenges. Progress in Materials Science, 2014, 60: 1–71

    Article  Google Scholar 

  22. Xu L, Pan F, Yu G, et al. In vitro and in vivo evaluation of the surface bioactivity of a calcium phosphate coated magnesium alloy. Biomaterials, 2009, 30(8): 1512–1523

    Article  Google Scholar 

  23. Xu L, Yamamoto A. In vitro degradation of biodegradable polymer-coated magnesium under cell culture condition. Applied Surface Science, 2012, 258(17): 6353–6358

    Article  Google Scholar 

  24. Hornberger H, Virtanen S, Boccaccini A R. Biomedical coatings on magnesium alloys —a review. Acta Biomaterialia, 2012, 8(7): 2442–2455

    Article  Google Scholar 

  25. Gu X N, Li N, Zhou W R, et al. Corrosion resistance and surface biocompatibility of a microarc oxidation coating on an Mg-Ca alloy. Acta Biomaterialia, 2011, 7(4): 1880–1889

    Article  Google Scholar 

  26. Xu L, Yamamoto A. Characteristics and cytocompatibility of biodegradable polymer film on magnesium by spin coating. Colloids and Surfaces B: Biointerfaces, 2012, 93: 67–74

    Article  Google Scholar 

  27. Wu Y H, Li N, Cheng Y, et al. In vitro study on biodegradable AZ31 magnesium alloy fibers reinforced PLGA composite. Journal of Materials Science and Technology, 2013, 29(6): 545–550

    Article  Google Scholar 

  28. Wong H M, Yeung K W, Lam K O, et al. A biodegradable polymer-based coating to control the performance of magnesium alloy orthopaedic implants. Biomaterials, 2010, 31(8): 2084–2096

    Article  Google Scholar 

  29. Ostrowski N J, Lee B, Roy A, et al. Biodegradable poly(lactidecoglycolide) coatings on magnesium alloys for orthopedic applications. Journal of Materials Science: Materials in Medicine, 2013, 24(1): 85–96

    Google Scholar 

  30. Guo M, Cao L, Lu P, et al. Anticorrosion and cytocompatibility behavior of MAO/PLLA modified magnesium alloy WE42. Journal of Materials Science: Materials in Medicine, 2011, 22(7): 1735–1740

    Google Scholar 

  31. Lu P, Cao L, Liu Y, et al. Evaluation of magnesium ions release, biocorrosion, and hemocompatibility of MAO/PLLA-modified magnesium alloy WE42. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2011, 96B(1): 101–109

    Article  Google Scholar 

  32. Zhang R F, Zhang S F, Duo S W. Influence of phytic acid concentration on coating properties obtained by MAO treatment on magnesium alloys. Applied Surface Science, 2009, 255(18): 7893–7897

    Article  Google Scholar 

  33. Gaurava S, Ankita M, Pradeep S. Characterization and in vitro degradation studies of synthesized polylactide (PLA). Research Journal of Chemistry and Environment, 2012, 16: 2

    Google Scholar 

  34. Bonilla F, Berkani A, Skeldon P, et al. Enrichment of alloying elements in anodized magnesium alloys. Corrosion Science, 2002, 44(9): 1941–1948

    Article  Google Scholar 

  35. Sreekanth D, Rameshbabu N, Venkateswarlu K, et al. Effect of K2TiF6 and Na2B4O7 as electrolyte additives on pore morphology and corrosion properties of plasma electrolytic oxidation coatings on ZM21 magnesium alloy. Surface and Coatings Technology, 2013, 222: 31–37

    Article  Google Scholar 

  36. Piemonte V, Gironi F. Kinetics of hydrolytic degradation of PLA. Journal of Polymers and the Environment, 2013, 21(2): 313–318

    Article  Google Scholar 

  37. Ghasemi A, Raja V S, Blawert C, et al. The role of anions in the formation and corrosion resistance of the plasma electrolytic oxidation coatings. Surface and Coatings Technology, 2010, 204(9–10): 1469–1478

    Article  Google Scholar 

  38. Wang L, Pan C. Characterisation of microdischarge evolution and coating morphology transition in plasma electrolytic oxidation of magnesium alloy. Surface Engineering, 2007, 23(5): 324–328

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong-Chang Zeng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, RC., Qi, WC., Song, YW. et al. In vitro degradation of MAO/PLA coating on Mg-1.21Li-1.12Ca-1.0Y alloy. Front. Mater. Sci. 8, 343–353 (2014). https://doi.org/10.1007/s11706-014-0264-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11706-014-0264-6

Keywords

Navigation