Skip to main content
Log in

In situ growth of phosphorized ZIF-67-derived amorphous CoP/Cu2O@CF electrocatalyst for efficient hydrogen evolution reaction

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Transition metal phosphides have been extensively studied for catalytic applications in water splitting. Herein, we report an in situ phosphorization of zeolitic imidazole frameworks (ZIF-67) to generate amorphous cobalt phosphide/ZIF-67 heterojunction on a self-supporting copper foam (CF) substrate with excellent performance for hydrogen evolution reaction (HER). The needle-leaf like copper hydroxide was anchored on CF surface, which acted as implantation to grow ZIF-67. The intermediate product was phosphorized to obtain final electro-catalyst (CoP/Cu2O@CF) with uniform particle size, exhibiting a rhombic dodecahedron structure with wrinkles on the surface. The electrochemical measurement proved that CoP/Cu2O@CF catalyst exhibited excellent HER activity and long-term stability in 1.0 mol·L−1 KOH solution. The overpotential was only 62 mV with the Tafel slope of 83 mV·dec−1 at a current density of 10 mA·cm−2, with a large electrochemical active surface area. It also showed competitive performance at large current which indicated the potential application to industrial water electrolysis to produce hydrogen. First-principle calculations illustrated that benefit from the construction of CoP/ZIF-67 heterojunction, the d-band center of CoP downshifted after bonding with ZIF-67 and the Gibbs free energy (ΔGH*) changed from −0.18 to −0.11 eV, confirming both decrease in overpotential and excellent HER activity. This work illustrates the efficient HER activity of CoP/Cu2O@CF catalyst, which will act as a potential candidate for precious metal electrocatalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Zhang X. The development trend of and suggestions for hydrogen energy industry. Engineering, 2021, 7(6): 719–721

    Article  Google Scholar 

  2. Wang J, Gao Y, Kong H, Kim J, Choi S, Ciucci F, Hao Y, Yang S, Shao Z, Lim J. Non-precious-metal catalysts for alkaline water electrolysis: operando characterizations, theoretical calculations, and recent advances. Chemical Society Reviews, 2020, 49(24): 9154–9196

    Article  CAS  PubMed  Google Scholar 

  3. Cheng N, Stambula S, Wang D, Banis M N, Liu J, Riese A, Xiao B, Li R, Sham T K, Liu L M, Botton G A, Sun X. Platinum single-atom and cluster catalysis of the hydrogen evolution reaction. Nature Communications, 2016, 7(1): 13638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Shi Y, Zhang B. Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction. Chemical Society Reviews, 2016, 45(6): 1529–1541

    Article  CAS  PubMed  Google Scholar 

  5. Liang H, Liu J. Insights on the corrosion and degradation of MXenes as electrocatalysts for hydrogen evolution reaction. ChemCatChem, 2022, 14(6): e202101375

    Article  CAS  Google Scholar 

  6. Theerthagiri J, Murthy A P, Lee S J, Karuppasamy K, Arumugam S R, Yu Y, Hanafiah M M, Kim H S, Mittal V, Choi M Y. Recent progress on synthetic strategies and applications of transition metal phosphides in energy storage and conversion. Ceramics International, 2021, 47(4): 4404–4425

    Article  CAS  Google Scholar 

  7. Jiang Y, Lu Y, Lin J, Wang X, Shen Z. Water splitting: a hierarchical MoP nanoflake array supported on Ni foam: a bifunctional electrocatalyst for overall water splitting. Small Methods, 2018, 2(5): 1800028

    Article  Google Scholar 

  8. Wang R, Dong X Y, Du J, Zhao J Y, Zang S Q. MOF-derived bifunctional Cu3P nanoparticles coated by a N,P-codoped carbon shell for hydrogen evolution and oxygen reduction. Advanced Materials, 2018, 30(6): 1703711

    Article  Google Scholar 

  9. Liu T, Liu D, Qu F, Wang D, Zhang L, Ge R, Hao S, Ma Y, Du G, Asiri A M, Chen L, Sun X. Enhanced electrocatalysis for energy-efficient hydrogen production over CoP catalyst with nonelectroactive Zn as a promoter. Advanced Energy Materials, 2017, 7(15): 1700020

    Article  Google Scholar 

  10. Guan C, Xiao W, Wu H, Liu X, Zang W, Zhang H, Ding J, Feng Y P, Pennycook S J, Wang J. Hollow Mo-doped CoP nanoarrays for efficient overall water splitting. Nano Energy, 2018, 48: 73–80

    Article  Google Scholar 

  11. Guan C, Wu H, Ren W, Yang C, Liu X, Ouyang X, Song Z, Zhang Y, Pennycook S J, Cheng C, Wang J. Metal-organic framework-derived integrated nanoarrays for overall water splitting. Journal of Materials Chemistry A, 2018, 6(19): 9009–9018

    Article  CAS  Google Scholar 

  12. Suo N, Han X, Chen C, He X, Dou Z, Lin Z, Cui L, Xiang J. Engineering vanadium phosphide by iron doping as bifunctional electrocatalyst for overall water splitting. Electrochimica Acta, 2020, 333: 135531

    Article  CAS  Google Scholar 

  13. Wang S, McGuirk C M, d’Aquino A, Mason J A, Mirkin C A. Metal-organic framework nanoparticles. Advanced Materials, 2018, 30(37): 1800202

    Article  Google Scholar 

  14. He T, Kong X J, Li J R. Chemically stable metal–organic frameworks: rational construction and application expansion. Accounts of Chemical Research, 2021, 54(15): 3083–3094

    Article  CAS  PubMed  Google Scholar 

  15. Jadhav H S, Bandal H A, Ramakrishna S, Kim H. Critical review, recent updates on zeolitic imidazolate framework-67 (ZIF-67) and its derivatives for electrochemical water splitting. Advanced Materials, 2022, 34(11): e2107072

    Article  PubMed  Google Scholar 

  16. Kharissova O V, Kharisov B I, Ulyand I E, García T H. Catalysis using metal-organic framework-derived nanocarbons: recent trends. Journal of Materials Research, 2020, 35(16): 2190–2207

    Article  CAS  Google Scholar 

  17. Zhai Y, Ren X, Yan J, Liu S. High density and unit activity integrated in amorphous catalysts for electrochemical water splitting. Small Structures, 2020, 2(4): 2000096

    Article  Google Scholar 

  18. Guo C, Shi Y, Lu S, Yu Y, Zhang B. Amorphous nanomaterials in electrocatalytic water splitting. Chinese Journal of Catalysis, 2021, 42(8): 1287–1296

    Article  CAS  Google Scholar 

  19. Anantharaj S, Noda S. Amorphous catalysts and electrochemical water splitting: an untold story of harmony. Small, 2020, 16(2): e1905779

    Article  PubMed  Google Scholar 

  20. Yang M, Jiang Y, Qu M, Qin Y, Wang Y, Shen W, He R, Su W, Li M. Strong electronic couple engineering of transition metal phosphides-oxides heterostructures as multifunctional electrocatalyst for hydrogen production. Applied Catalysis B: Environmental, 2020, 269: 118803

    Article  CAS  Google Scholar 

  21. Wang Z, Xiao B, Lin Z, Xu Y, Lin Y, Meng F, Zhang Q, Gu L, Fang B, Guo S, Zhong W. PtSe2/Pt heterointerface with reduced coordination for boosted hydrogen evolution reaction. Angewandte Chemie International Edition, 2021, 60(43): 23388–23393

    Article  CAS  PubMed  Google Scholar 

  22. Yu Z, Li Y, Martin-Diaconescu V, Simonelli L, Ruiz Esquius J, Amorim I, Araujo A, Meng L, Faria J L, Liu L. Highly efficient and stable saline water electrolysis enabled by self-supported nickel-iron phosphosulfide nanotubes with heterointerfaces and under-coordinated metal active sites. Advanced Functional Materials, 2022, 32(38): 2206138

    Article  CAS  Google Scholar 

  23. Zhang L, Zheng Y, Wang J, Geng Y, Zhang B, He J, Xue J, Frauenheim T, Li M. Ni/Mo bimetallic-oxide-derived heterointerface-rich sulfide nanosheets with Co-doping for efficient alkaline hydrogen evolution by boosting volmer reaction. Small, 2021, 17(10): e2006730

    Article  PubMed  Google Scholar 

  24. Inta H R, Ghosh S, Mondal A, Tudu G, Koppisetti H V S R M, Mahalingam V. Ni0.85Se/MoSe2 interfacial structure: an efficient electrocatalyst for alkaline hydrogen evolution reaction. ACS Applied Energy Materials, 2021, 4(3): 2828–2837

    Article  CAS  Google Scholar 

  25. Wang T, Tao L, Zhu X, Chen C, Chen W, Du S, Zhou Y, Zhou B, Wang D, Xie C, Long P, Li W, Wang Y, Chen R, Zou Y, Fu X Z, Li Y, Duan X, Wang S. Combined anodic and cathodic hydrogen production from aldehyde oxidation and hydrogen evolution reaction. Nature Catalysis, 2021, 5(1): 66–73

    Article  Google Scholar 

  26. Guo X, Xing T, Lou Y, Chen J. Controlling ZIF-67 crystals formation through various cobalt sources in aqueous solution. Journal of Solid State Chemistry, 2016, 235: 107–112

    Article  CAS  Google Scholar 

  27. Qazi U Y, Javaid R, Tahir N, Jamil A, Afzal A. Design of advanced self-supported electrode by surface modification of copper foam with transition metals for efficient hydrogen evolution reaction. International Journal of Hydrogen Energy, 2020, 45(58): 33396–33406

    Article  CAS  Google Scholar 

  28. Jiang Y, Liang J, Yue L, Luo Y, Liu Q, Kong Q, Kong X, Asiri A M, Zhou K, Sun X. Reduced graphene oxide supported ZIF-67 derived CoP enables high-performance potassium ion storage. Journal of Colloid and Interface Science, 2021, 604: 319–326

    Article  CAS  PubMed  Google Scholar 

  29. Liu H, Guan J, Yang S, Yu Y, Shao R, Zhang Z, Dou M, Wang F, Xu Q. Metal–organic-framework-derived Co2P nanoparticle/multi-doped porous carbon as a trifunctional electrocatalyst. Advanced Materials, 2020, 32(36): e2003649

    Article  PubMed  Google Scholar 

  30. Zhang X, Zheng R, Jin M, Shi R, Ai Z, Amini A, Lian Q, Cheng C, Song S. NiCoSx@cobalt carbonate hydroxide obtained by surface sulfurization for efficient and stable hydrogen evolution at large current densities. ACS Applied Materials & Interfaces, 2021, 13(30): 35647–35656

    Article  CAS  Google Scholar 

  31. Yang H, Chen Z, Guo P, Fei B, Wu R. B-doping-induced amorphization of LDH for large-current-density hydrogen evolution reaction. Applied Catalysis B: Environmental, 2020, 261: 118240

    Article  CAS  Google Scholar 

  32. Shan X, Liu J, Mu H, Xiao Y, Mei B, Liu W, Lin G, Jiang Z, Wen L, Jiang L. An engineered superhydrophilic/superaerophobic electrocatalyst composed of the supported CoMoSx chalcogel for overall water splitting. Angewandte Chemie International Edition, 2020, 59(4): 1659–1665

    Article  CAS  PubMed  Google Scholar 

  33. Beltrán-Suito R, Menezes P W, Driess M. Amorphous outperforms crystalline nanomaterials: surface modifications of molecularly derived CoP electro(pre)catalysts for efficient water-splitting. Journal of Materials Chemistry A, 2019, 7(26): 15749–15756

    Article  Google Scholar 

  34. Anjum M A R, Okyay M S, Kim M, Lee M H, Park N, Lee J S. Bifunctional sulfur-doped cobalt phosphide electrocatalyst outperforms all-noble-metal electrocatalysts in alkaline electrolyzer for overall water splitting. Nano Energy, 2018, 53: 286–295

    Article  CAS  Google Scholar 

  35. Zhao Y, Jin B, Zheng Y, Jin H, Jiao Y, Qiao S Z. Charge state manipulation of cobalt selenide catalyst for overall seawater electrolysis. Advanced Energy Materials, 2018, 8(29): 1801926

    Article  Google Scholar 

  36. Li J, Xu Y, Liang L, Ge R, Yang J, Liu B, Feng J, Li Y, Zhang J, Zhu M, Li S, Li W. Metal–organic frameworks-derived nitrogen-doped carbon with anchored dual-phased phosphides as efficient electrocatalyst for overall water splitting. Sustainable Materials and Technologies, 2022, 32: e00421

    Article  CAS  Google Scholar 

  37. Song M, Zhang Z, Li Q, Jin W, Wu Z, Fu G, Liu X. Ni-foam supported Co(OH)F and Co-P nanoarrays for energy-efficient hydrogen production via urea electrolysis. Journal of Materials Chemistry A, 2019, 7(8): 3697–3703

    Article  CAS  Google Scholar 

  38. Wei C, Sun S, Mandler D, Wang X, Qiao S Z, Xu Z J. Approaches for measuring the surface areas of metal oxide electrocatalysts for determining their intrinsic electrocatalytic activity. Chemical Society Reviews, 2019, 48(9): 2518–2534

    Article  CAS  PubMed  Google Scholar 

  39. McCrory C C, Jung S, Peters J C, Jaramillo T F. Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. Journal of the American Chemical Society, 2013, 135(45): 16977–16987

    Article  CAS  PubMed  Google Scholar 

  40. Kitchin J R, Norskov J K, Barteau M A, Chen J G. Modification of the surface electronic and chemical properties of Pt(111) by subsurface 3d transition metals. Journal of Chemical Physics, 2004, 120(21): 10240–10246

    Article  CAS  PubMed  Google Scholar 

  41. Medford A J, Vojvodic A, Hummelshøj J S, Voss J, Abild-Pedersen F, Studt F, Bligaard T, Nilsson A, Nørskov J K. From the Sabatier principle to a predictive theory of transition-metal heterogeneous catalysis. Journal of Catalysis, 2015, 328: 36–42

    Article  CAS  Google Scholar 

  42. Jiao S, Fu X, Huang H. Descriptors for the evaluation of electrocatalytic reactions: d-band theory and beyond. Advanced Functional Materials, 2021, 32(4): 2107651

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 41573103) and the Shandong Natural Science Foundation (Grant Nos. ZR2021MB049, ZR2022QB211) of China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Junwei Ma or Hongtao Gao.

Ethics declarations

There are no conflicts to declare.

Electronic Supplementary Material

11705_2023_2320_MOESM1_ESM.pdf

In situ growth of phosphorized ZIF-67-derived amorphous CoP/Cu2O@CF electrocatalyst for efficient hydrogen evolution reaction

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, R., Liu, X., Bu, H. et al. In situ growth of phosphorized ZIF-67-derived amorphous CoP/Cu2O@CF electrocatalyst for efficient hydrogen evolution reaction. Front. Chem. Sci. Eng. 17, 1430–1439 (2023). https://doi.org/10.1007/s11705-023-2320-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-023-2320-1

Keywords

Navigation