Skip to main content
Log in

Synthesis of boron modified CoMo/Al2O3 catalyst under different heating methods and its gasoline hydrodesulfurization performance

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Catalytic hydrodesulfurization (HDS) technique is widely used for clean gasoline production. However, traditional HDS catalyst (CoMo/γ-Al2O3) exhibits high hydrogenation performance of olefins (HYDO), resulting in the loss of gasoline octane number. To achieve high HDS/HYDO ratio, the key issue is to reduce the interaction between active metals and the support, therefore, in this research, the modified CoMo/γ-Al2O3 catalysts with various boron amounts were investigated under traditional or microwave heating. The effects of preparing methods as well as boron amounts on the active phase, acidic properties and HDS catalytic activities were examined. Results show that the modification, especially under microwave treatment, can significantly weaken the interaction between the active component and the support by enlarging the surface area and pore diameter, and reducing the acidity of the support. As a result, the stacking numbers of MoS2 slabs were obviously improved by the modification and microwave treatment, contributing to higher edge/ rim ratio, and resulting in higher HDS performance and selectivity to olefin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Song C S, Ma X L. Ultra-clean diesel fuels by deep desulfurization and deep dearomatization of middle distillates. Journal of Biomechanics, 2006, 43(3): 579–582

    Google Scholar 

  2. Singh R, Kunzru D, Sivakumar S. Monodispersed ultrasmall NiMo metal oxide nanoclusters as hydrodesulfurization catalyst. Applied Catalysis B: Environmental, 2016, 185: 163–173

    Article  CAS  Google Scholar 

  3. Song C S. An overview of new approaches to deep desulfurization for ultra-clean gasoline, diesel fuel and jet fuel. Catalysis Today, 2003, 86(1): 211–263

    Article  CAS  Google Scholar 

  4. Duan A J, Li T S, Zhao Z, Liu B J, Zhou X F, Jiang G Y, Liu J, Wei Y C, Pan H F. Synthesis of hierarchically porous L-KIT-6 silica-alumina material and the super catalytic performances for hydrodesulfurization of benzothiophene. Applied Catalysis B: Environmental, 2015, 165: 763–773

    Article  CAS  Google Scholar 

  5. Li M F, Li H F, Jiang F, Chu Y, Nie H. The relation between morphology of (Co)MoS2 phases and selective hydrodesulfurization for CoMo catalysts. Catalysis Today, 2010, 149(1-2): 35–39

    Article  CAS  Google Scholar 

  6. Topsøie H, Candia R, Topsøe N Y, Clausen B, Topsøe H. On the state of the Co-Mo-S model. Bulletin des Sociétés Chimiques Belges, 1984, 93(8-9): 783–806

    Article  Google Scholar 

  7. Topsøie H, Clausen B S, Topsøe N Y, Pedersen E. Recent basic research in hydrodesulfurization catalysis. Industrial & Engineering Chemistry Fundamentals, 1986, 25(1): 25–36

    Article  Google Scholar 

  8. Topsøe H, Clausen B S, Massoth F E. Hydrotreating Catalysis. Berlin: Springer, 1996, 116–118

    Google Scholar 

  9. Chen W B, Maugé F, van Gestel J, Nie H, Li D D, Long X Y. Effect of modification of the alumina acidity on the properties of supported Mo and CoMo sulfide catalysts. Journal of Catalysis, 2013, 304: 47–62

    Article  CAS  Google Scholar 

  10. Vatutina Y V, Klimov O V, Nadeina K A, Danilova I G, Gerasimov E Y, Prosvirin I P, Noskov A S. Influence of boron addition to alumina support by kneading on morphology and activity of HDS catalysts. Applied Catalysis B: Environmental, 2016, 199: 23–32

    Article  CAS  Google Scholar 

  11. Bautista F M, Campelo J M, Garcia A, Luna D, Marinas J M, Moreno M C, Romero A A, Navio J A, Macias M. Structural and textural characterization of AlPO4-B2O3 and Al2O3-B2O3(5-30 wt-% B2O3) systems obtained by boric acid impregnation. Journal of Catalysis, 1998, 173(2): 333–344

    Article  CAS  Google Scholar 

  12. Dhar G M, Srinivas B N, Rana M S, Kumar M, Maity S K. Mixed oxide supported hydrodesulfurization catalysts—a review. Catalysis Today, 2003, 86(1): 45–60

    Article  CAS  Google Scholar 

  13. de Farias A M D, Esteves A M L, Ziarelli F, Caldarelli S, Fraga M A, Appel L G. Boria modified alumina probed by methanol dehydration and IR spectroscopy. Applied Surface Science, 2004, 227(1): 132–138

    Article  CAS  Google Scholar 

  14. Torres-Mancera P, Ramírez J, Cuevas R, Gutiérrez-Alejandre A, Murrieta F, Luna R. Hydrodesulfurization of 4,6-DMDBT on NiMo and CoMo catalysts supported on B2O3-Al2O3. Catalysis Today, 2005, 107-108: 551–558

    Article  CAS  Google Scholar 

  15. Ding L H, Zhang Z S, Zheng Y, Ring Z, Chen J W. Effect of fluorine and boron modification on the HDS, HDN and HDA activity of hydrotreating catalysts. Applied Catalysis A, General, 2006, 301(2): 241–250

    Article  CAS  Google Scholar 

  16. Usman, Kubota T, Hiromitsu I, Okamoto Y. Effect of boron addition on the surface structure of Co-Mo/Al2O3 catalysts. Journal of Catalysis, 2007, 247(1): 78–85

    Article  CAS  Google Scholar 

  17. Palcheva R, Kaluza L, Spojakina A, Jiratova K, Tyuliev G. NiMo/γ-Al2O3 catalysts from Ni heteropolyoxomolybdate and effect of alumina modification by B, Co, or Ni. Chinese Journal of Catalysis, 2012, 33(6): 952–961

    Article  CAS  Google Scholar 

  18. Peil K P, Galya L G, Marcelin G. Acid and catalytic properties of nonstoichiometric aluminum borates. Journal of Catalysis, 1989, 115(2): 441–451

    Article  CAS  Google Scholar 

  19. Pérez-Martínez D J, Eloy P, Gaigneaux E M A, Giraldo S, Centeno A. Study of the selectivity in FCC naphtha hydrotreating by modifying the acid-base balance of CoMo/γ-Al2O3 catalysts. Applied Catalysis A, General, 2010, 390(1): 59–70

    Article  CAS  Google Scholar 

  20. Houalla M, Delmon B. Joint use of xps and diffuse reflectance spectroscopy for the study of cobalt oxide supported on boron modified alumina. Applied Catalysis, 1981, 1(5): 285–289

    Article  CAS  Google Scholar 

  21. Morishige H, Akai Y. Effect of boron addition on the state and dispersion of Mo supported on alumina. Bulletin des Sociétés Chimiques Belges, 1995, 104(4-5): 253–257

    Article  CAS  Google Scholar 

  22. Lewandowski M, Sarbak Z. Acid-base properties and the hydrofining activity of NiMo catalysts incorporated on alumina modified with F and Cl. Applied Catalysis A, General, 1997, 156(2): 181–192

    Article  CAS  Google Scholar 

  23. Lewandowski M, Sarbak Z. The effect of boron addition on hydrodesulfurization and hydrodenitrogenation activity of NiMo/Al2O3 catalysts. Fuel, 2000, 79(5): 487–495

    Article  CAS  Google Scholar 

  24. Rashidi F, Sasaki T, Rashidi A M, Kharat A N, Jozani K J. Ultradeep hydrodesulfurization of diesel fuels using highly efficient nanoalumina-supported catalysts: impact of support, phosphorus, and/or boron on the structure and catalytic activity. Journal of Catalysis, 2013, 299: 321–335

    Article  CAS  Google Scholar 

  25. Klimov O V, Nadeina K A, Vatutina Y V, Stolyarova E A, Danilova I G, Gerasimov E Y, Prosvirin I P, Noskov A S. CoMo/Al2O3 hydrotreating catalysts of diesel fuel with improved hydrodenitrogenation activity. Catalysis Today, 2018, 307: 73–83

    Article  CAS  Google Scholar 

  26. Shang H, Zhang H C, Du W, Liu Z C. Development of microwave assisted oxidative desulfurization of petroleum oils: a review. Journal of Industrial and Engineering Chemistry, 2013, 19(5): 1426–1432

    Article  CAS  Google Scholar 

  27. Wang H, Wu Y, Liu Z W, He L, Yao Z Y, Zhao W Y. Deposition of WO3 on Al2O3 via a microwave hydrothermal method to prepare highly dispersed W/Al2O3 hydrodesulfurization catalyst. Fuel, 2014, 136: 185–193

    Article  CAS  Google Scholar 

  28. Wang H, Yao Z Y, Zhan X C, Wu Y, Li M. Preparation of highly dispersed W/ZrO2-Al2O3 hydrodesulfurization catalysts at high WO3 loading via a microwave hydrothermal method. Fuel, 2015, 158: 918–926

    Article  CAS  Google Scholar 

  29. Wang H, Liu Z W, Wu Y, Yao Z Y, Zhao W Y, Duan W Z, Guo K. Preparation of highly dispersed W/Al2O3 hydrodesulfurization catalysts via a microwave hydrothermal method: effect of oxalic acid. Arabian Journal of Chemistry, 2016, 9(1): 18–24

    Article  CAS  Google Scholar 

  30. Liu X F, Zhang L, Shi Y H, Nie H, Long X Y. Preparation of NiW/ Al2O3 hydrodesulfurization catalyst by ultrasound-microwave treatment. Chinese Journal of Catalysis, 2004, 25(9): 748–752

    CAS  Google Scholar 

  31. Liu B J, Zha X J, Meng Q M, Hou H J, Gao S S, Zhang J X, Sheng S S, Yang W S. Preparation of NiW/TiO2-Al2O3 hydrodesulfurization catalyst with microwave technique. Chinese Journal of Catalysis, 2005, 26(6): 458–462

    Google Scholar 

  32. Meredith R. Engineers Handbook of Industrial Microwave Heating. London: Institute of Electrical Engineers, 1998, 19–20

    Book  Google Scholar 

  33. Badoga S, Sharma R V, Dalai A K, Adjaye J. Synthesis and characterization of mesoporous aluminas with different pore sizes: application in NiMo supported catalyst for hydrotreating of heavy gas oil. Applied Catalysis A, General, 2015, 489: 86–97

    Article  CAS  Google Scholar 

  34. Zhang C, Liu X Y, Liu T F, Jiang Z X, Li C. Optimizing both the CoMo/Al2O3 catalyst and the technology for selectivity enhancement in the hydrodesulfurization of FCC gasoline. Applied Catalysis A, General, 2019, 575: 187–197

    Article  CAS  Google Scholar 

  35. Zhou W W, Yang L, Liu L, Chen Z P, Zhou A N, Zhang Y T, He X F, Shi F X, Zhao Z G. Synthesis of novel NiMo catalysts supported on highly ordered TiO2-Al2O3 composites and their superior catalytic performance for 4,6-dimethyldibenzothiophene hydrode- sulfurization. Applied Catalysis B: Environmental, 2020, 268: 118428

    Article  CAS  Google Scholar 

  36. Shan S F, Yuan P, Han W, Shi G, Bao X J. Supported NiW catalysts with tunable size and morphology of active phases for highly selective hydrodesulfurization of fluid catalytic cracking naphtha. Journal of Catalysis, 2015, 330: 288–301

    Article  CAS  Google Scholar 

  37. Wang X, Zhao Z, Zheng P, Chen Z, Duan A, Xu C, Jiao J, Zhang H, Cao Z, Ge B. Synthesis of NiMo catalysts supported on mesoporous Al2O3 with different crystal forms and superior catalytic performance for the hydrodesulfurization of dibenzothiophene and 4,6-dimethyldibenzothiophene. Journal of Catalysis, 2016, 344: 680–691

    Article  CAS  Google Scholar 

  38. Brito J L, Barbosa A L. Effect of phase composition of the oxidic precursor on the HDS activity of the sulfided molybdates of Fe(II), Co(II), and Ni(II). Journal of Catalysis, 1997, 171(2): 467–475

    Article  CAS  Google Scholar 

  39. Lizama L, Klimova T. Highly active deep HDS catalysts prepared using Mo and W heteropolyacids supported on SBA-15. Applied Catalysis B: Environmental, 2008, 82(3-4): 139–150

    Article  CAS  Google Scholar 

  40. Zhang C, Brorson M, Li P, Liu X, Liu T, Jiang Z, Li C. CoMo/Al2O3 catalysts prepared by tailoring the surface properties of alumina for highly selective hydrodesulfurization of FCC gasoline. Applied Catalysis A, General, 2019, 570: 84–95

    Article  CAS  Google Scholar 

  41. Xia B T, Cao L Y, Luo K W, Zhao L, Wang X Q, Gao J S, Xu C M. Effects of the active phase of CoMo/γ-Al2O3 catalysts modified using cerium and phosphorus on the HDS performance for FCC gasoline. Energy & Fuels, 2019, 33(5): 4462–4473

    Article  CAS  Google Scholar 

  42. Huang T T, Xu J D, Fan Y. Effects of concentration and microstructure of active phases on the selective hydrodesulfurization performance of sulfided CoMo/Al2O3 catalysts. Applied Catalysis B: Environmental, 2018, 220: 42–56

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 21476258).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Shang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shang, H., Guo, C., Ye, P. et al. Synthesis of boron modified CoMo/Al2O3 catalyst under different heating methods and its gasoline hydrodesulfurization performance. Front. Chem. Sci. Eng. 15, 1088–1098 (2021). https://doi.org/10.1007/s11705-020-1969-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-020-1969-y

Keywords

Navigation