Skip to main content
Log in

One-step synthesis of recoverable CuCo2S4 anode material for high-performance Li-ion batteries

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

A facile one-step hydrothermal method has been adopted to directly synthesize the CuCo2S4 material on the surface of Ni foam. Due to the relatively large specific surface area and wide pore size distribution, the CuCo2S4 material not only effectively increases the reactive area, but also accommodates more side reaction products to avoid the difficulty of mass transfer. When evaluated as anode for Li-ion batteries, the CuCo2S4 material exhibits excellent electrochemical performance including high discharge capacity, outstanding cyclic stability and good rate performance. At the current density of 200 mA·g−1, the CuCo2S4 material shows an extremely high initial discharge capacity of 2510 mAh·g−1, and the cycle numbers of the material even reach 83 times when the discharge capacity is reduced to 500 mAh·g−1. Furthermore, the discharge capacity can reach 269 mAh·g−1 at a current of 2000 mA·g−1. More importantly, when the current density comes back to 200 mA·g−1, the discharge capacity could be recovered to 1436 mAh·g−1, suggesting an excellent capacity recovery characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Goodenough J B, Park K S. The Li-ion rechargeable battery: A perspective. Journal of the American Chemical Society, 2013, 135(4): 1167–1176

    Article  CAS  PubMed  Google Scholar 

  2. Loeffler N, Bresser D, Passerini S. Secondary lithium-ion battery anodes: From first commercial batteries to recent research activities. Platinum Metals Review, 2015, 59(1): 34–44

    CAS  Google Scholar 

  3. Goriparti S, Miele E, De Angelis F, Di Fabrizio E, Zaccaria R P, Capiglia C. Review on recent progress of nanostructured anode materials for Li-ion batteries. Journal of Power Sources, 2014, 257 (3): 421–443

    Article  CAS  Google Scholar 

  4. Lu L, Han X, Li J, Hua J, Ouyang M. A review on the key issues for lithium-ion battery management in electric vehicles. Journal of Power Sources, 2013, 226(3): 272–288

    Article  CAS  Google Scholar 

  5. Bruce P G, Scrosati B, Tarascon J M. Nanomaterials for rechargeable lithium batteries. Angewandte Chemie International Edition, 2010, 47(16): 2930–2946

    Article  CAS  Google Scholar 

  6. Mei J, Liao T, Sun Z. Two-dimensional metal oxide nanosheets for rechargeable batteries. Journal of Energy Chemistry, 2018, 27(1): 117–127

    Article  Google Scholar 

  7. Zhang J, Yu A. Nanostructured transition metal oxides as advanced anodes for lithium-ion batteries. Science Bulletin, 2015, 60(9): 823–838

    Article  CAS  Google Scholar 

  8. Chen X, Sun K. 3d transition-metal oxides as anode micro/nanomaterials for lithium ion batteries. Huaxue Jinzhan, 2011, 23(10): 2045–2054

    CAS  Google Scholar 

  9. Wang P, Zhang Y, Guan B, Fan L, Zhang N, Sun K. Fabrication of CuCo2S4 hollow sphere @N/S doped graphene composites as high performance anode materials for lithium ion batteries. Ceramics International, 2018, 44(10): 11905–11909

    Article  CAS  Google Scholar 

  10. Zhao Y, Li X, Yan B, Xiong D, Li D, Lawes S, Sun X. Recent developments and understanding of novel mixed transition metal oxides as anodes in lithium ion batteries. Advanced Energy Materials, 2016, 6(8): 1502175

    Article  CAS  Google Scholar 

  11. Mao J, Hou X, Wang X, Hu S, Xiang L. The cubic aggregated CoFe2O4 nanoparticle anode material for lithium ion battery with good performance. Materials Letters, 2015, 161: 652–655

    Article  CAS  Google Scholar 

  12. Niu F, Wang N, Yue J, Chen L, Yang J, Qian Y. Hierarchically porous CuCo2O4 microflowers: A superior anode material for Li-ion batteries and a stable cathode electrocatalyst for Li-O2 batteries. Electrochimica Acta, 2016, 208: 148–155

    Article  CAS  Google Scholar 

  13. Leng X, Shao Y, Wei S, Jiang Z, Lian J, Wang G, Jiang Q. Ultrathin mesoporous NiCo2O4 nanosheet networks as high performance anodes for lithium storage. ChemPlusChem, 2015, 80(12): 1725–1731

    Article  CAS  PubMed  Google Scholar 

  14. Qiu Y, Yang S, Deng H, Jin L, Li W. A novel nanostructured spinel ZnCo2O4 electrode material: Morphology conserved transformation from a hexagonal shaped nanodisk precursor and application in lithium ion batteries. Journal of Materials Chemistry, 2010, 20(21): 4439–4444

    Article  CAS  Google Scholar 

  15. Rui X, Tan H, Yan Q. Nanostructured metal sulfides for energy storage. Nanoscale, 2014, 6(17): 9889–9924

    Article  CAS  PubMed  Google Scholar 

  16. Yu X, Yu L, Lou X. Metal sulfide hollow nanostructures for electrochemical energy storage. Advanced Energy Materials, 2016, 6(3): 1501333

    Article  CAS  Google Scholar 

  17. Yu D, Yuan Y, Zhang D, Zhang D, Yin S, Lin J, Rong Z, Yang J, Chen Y, Guo S. Nickel cobalt sulfide nanotube array on nickel foam as anode material for advanced lithium-ion batteries. Electrochimica Acta, 2016, 198: 280–286

    Article  CAS  Google Scholar 

  18. Ren Q, Liu C, Wang Z, Ke K, Zhang S, Yin B. 3D NiCo2S4 nanorod arrays as electrode materials for electrochemical energy storage application. Ceramics International, 2016, 42(16): 18173–18180

    Article  CAS  Google Scholar 

  19. Tang J, Ge Y, Shen J, Ye M. Facile synthesis of CuCo2S4 as a novel electrode material for ultrahigh supercapacitor performance. Chemical Communications, 2015, 52(7): 1509–1512

    Article  CAS  PubMed  Google Scholar 

  20. Ahmed A T A, Chavan H S, Jo Y, Cho S, Kim J, Pawar S M, Gunjakar J L, Inamdar A I, Kim H, Im H. One-step facile route to copper cobalt sulfide electrodes for supercapacitors with high-rate long-cycle life performance. Journal of Alloys and Compounds, 2017, 724: 744–751

    Article  CAS  Google Scholar 

  21. Wang T, Liu M, Ma H. Facile synthesis of flower-like copper-cobalt sulfide as binder-free faradaic electrodes for supercapacitors with improved electrochemical properties. Nanomaterials (Basel, Switzerland), 2017, 7(6): 140

    Article  CAS  Google Scholar 

  22. Moosavifard S E, Fani S, Rahmanian M. Hierarchical CuCo2S4 hollow nanoneedle arrays as novel binder-free electrodes for highperformance asymmetric supercapacitors. Chemical Communications, 2016, 52(24): 4517–4520

    Article  CAS  PubMed  Google Scholar 

  23. Wang Y, Yang D, Zhou T, Pan J, Wei T, Sun Y. Oriented CuCo2S4 nanograss arrays/Ni foam as an electrode for a high-performance all-solid-state supercapacitor. Nanotechnology, 2017, 28(46): 465402

    Article  CAS  PubMed  Google Scholar 

  24. Verma R, Kothandaraman R, Varadaraju U V. In-situ carbon coated CuCo2S4 anode material for Li-ion battery applications. Applied Surface Science, 2017, 418: 30–39

    Article  CAS  Google Scholar 

  25. Wang J G, Jin D, Zhou R, Shen C, Wei B. One-step synthesis of NiCo2S4 ultrathin nanosheets on conductive substrates as advanced electrodes for high-efficient energy storage. Journal of Power Sources, 2016, 306: 100–106

    Article  CAS  Google Scholar 

  26. Zhang Y, Ouyang S, Yu Q, Li P, Ye J. Modulation of sulfur partial pressure in sulfurization to significantly improve the photoelectrochemical performance over the Cu2ZnSnS4 photocathode. Chemical Communications, 2015, 51(74): 14057–14059

    Article  CAS  PubMed  Google Scholar 

  27. Guo P, Song H, Liu Y, Wang C. CuFeS2 quantum dots anchored in carbon frame: Superior lithium storage performances and the study of electrochemical mechanism. ACS Applied Materials & Interfaces, 2017, 9(37): 31752–31762

    Article  CAS  Google Scholar 

  28. Wang P, Zhang Y, Yin Y, Fan L, Zhang N, Sun K. In-situ synthesis of CuCo2S4@N/S doped graphene composites with pseudocapacitive properties for high performance lithium ion batteries. ACS Applied Materials & Interfaces, 2018, 10(14): 11708–11714

    Article  CAS  Google Scholar 

  29. Zhu C, Wen D, Leubner S, Oschatz M, Liu W, Holzschuh M, Simon F, Kaskel S, Eychmuller A. Nickel cobalt oxide hollow nanosponges as advanced electrocatalysts for the oxygen evolution reaction. Chemical Communications, 2015, 51(37): 7851–7854

    Article  CAS  PubMed  Google Scholar 

  30. Yang L, Xie L, Ren X, Wang Z, Liu Z, Du G, Asiri A M, Yao Y, Sun X. Hierarchical CuCo2S4 nanoarrays for high-efficient and durable water oxidation electrocatalysis. Chemical Communications, 2017, 54(1): 78–81

    Article  PubMed  Google Scholar 

  31. Mondal A K, Su D, Chen S, Xie X, Wang G. Highly porous NiCo2O4 nanoflakes and nanobelts as anode materials for lithiumion batteries with excellent rate capability. ACS Applied Materials & Interfaces, 2014, 6(17): 14827–14835

    Article  CAS  Google Scholar 

  32. Nitta N, Wu F, Lee J T, Yushin G. Li-ion battery materials: Present and future. Materials Today, 2015, 18(5): 252–264

    Article  CAS  Google Scholar 

  33. Jin R, Yang L, Li G, Chen G. Hierarchical worm-like CoS composed of ultrathin nanosheets as an anode material for lithium-ion batteries. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(20): 10677–10680

    Article  CAS  Google Scholar 

  34. Cheng J, Pan Y, Zhu J, Li Z, Pan J, Ma Z. Hybrid network CuS monolith cathode materials synthesized via facile in situ melt-diffusion for Li-ion batteries. Journal of Power Sources, 2014, 257 (2): 192–197

    Article  CAS  Google Scholar 

  35. Liu S, Zhang S, Xing Y, Wang S, Lin R, Wei X, He L. Facile synthesis of hierarchical mesoporous CuxCo3xO4 material array on conductive substrates with high-rate performance for Li-ion batteries. Electrochimica Acta, 2014, 150: 75–82

    Article  CAS  Google Scholar 

  36. Liu L. Nano-aggregates of cobalt nickel oxysulfide as a highperformance electrode material for supercapacitors. Nanoscale, 2013, 5(23): 11615–11619

    Article  CAS  PubMed  Google Scholar 

  37. Zhang Y, Ma M, Yang J, Sun C, Dong X. Shape-controlled synthesis of NiCo2S4 and their charge storage characteristics in supercapacitors. Nanoscale, 2014, 6(16): 9824–9830

    Article  CAS  PubMed  Google Scholar 

  38. Zhu Y, Chen X, Zhou W, Xiang K, Hu W, Chen H. Controllable preparation of highly uniform CuCo2S4 materials as battery electrode for energy storage with enhanced electrochemical performances. Electrochimica Acta, 2017, 249: 64–71

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We sincerely wish to thank Professor Yongming Zhu for his support and encouragement in this work. We also thank the project ZR2019MB027 supported by Shandong Provincial Natural Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongming Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, T., Zhang, Y., Cheng, C. et al. One-step synthesis of recoverable CuCo2S4 anode material for high-performance Li-ion batteries. Front. Chem. Sci. Eng. 14, 595–604 (2020). https://doi.org/10.1007/s11705-019-1818-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-019-1818-z

Keywords

Navigation