Skip to main content
Log in

Aptamer-coded DNA nanoparticles for targeted doxorubicin delivery using pH-sensitive spacer

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

An anticancer drug delivery system consisting of DNA nanoparticles synthesized by rolling circle amplification (RCA) was developed for prostate cancer membrane antigen (PSMA) targeted cancer therapy. The template of RCA was a DNA oligodeoxynucleotide coded with PSMA-targeted aptamer, drug-loading domain, primer binding site and pH-sensitive spacer. Anticancer drug doxorubicin, as the model drug, was loaded into the drug-loading domain (multiple GC-pair sequences) of the DNA nanoparticles by intercalation. Due to the integrated pH-sensitive spacers in the nanoparticles, in an acidic environment, the cumulative release of doxorubicin was far more than the cumulative release of the drug in the normal physiological environment. In cell uptake experiments, treated with doxorubicin loaded DNA nanoparticles, PSMA-positive C4-2 cells could take up more doxorubicin than PSMA-null PC-3 cells. The prepared DNA nanoparticles showed the potential as drug delivery system for PSMA targeting prostate cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen W, Zheng R, Baade P D, Zhang S, Zeng H, Bray F, Jemal A, Yu X Q, He J. Cancer statistics in China, 2015. CA: A Cancer Journal for Clinicians, 2016, 66(2): 115–132

    Google Scholar 

  2. Billingham M E, Bristow M R, Glatstein E, Mason J W, Masek M A, Daniels J R. Adriamycin cardiotoxicity: Endomyocardial biopsy evidence of enhancement by irradiation. American Journal of Surgical Pathology, 1977, 1(1): 17–23

    Article  CAS  Google Scholar 

  3. Brannon-Peppas L, Blanchette J O. Nanoparticle and targeted systems for cancer therapy. Advanced Drug Delivery Reviews, 2004, 56(11): 1649–1659

    Article  CAS  Google Scholar 

  4. Ghosh A, Heston W D. Tumor target prostate specific membrane antigen (PSMA) and its regulation in prostate cancer. Journal of Cellular Biochemistry, 2004, 91(3): 528–539

    Article  CAS  Google Scholar 

  5. Farokhzad O C, Jon S, Khademhosseini A, Tran T N, Lavan D A, Langer R. Nanoparticle-aptamer bioconjugates: A new approach for targeting prostate cancer cells. Cancer Research, 2004, 64(21): 7668–7672

    Article  CAS  Google Scholar 

  6. Kanwar J, Roy K, Maremanda N, Subramanian K, Veedu R, Bawa R. Nucleic acid-based aptamers: Applications, development and clinical trials. Current Medicinal Chemistry, 2015, 22(21): 2539–2557

    Article  CAS  Google Scholar 

  7. Jia R, Wang T, Jiang Q, Wang Z, Song C, Ding B. Self-assembled DNA nanostructures for drug delivery. Chinese Journal of Chemistry, 2016, 34(3): 265–272

    Article  CAS  Google Scholar 

  8. Zhu G, Niu G, Chen X. Aptamer-drug conjugates. Bioconjugate Chemistry, 2015, 26(11): 2186–2197

    Article  CAS  Google Scholar 

  9. Stoltenburg R, Reinemann C, Strehlitz B. SELEX—a (r)evolutionary method to generate high-affinity nucleic acid ligands. Biomolecular Engineering, 2007, 24(4): 381–403

    Article  CAS  Google Scholar 

  10. Zhu H, Li J, Zhang X B, Ye M, Tan W. Nucleic acid aptamer—mediated drug delivery for targeted cancer therapy. ChemMedChem, 2015, 10(1): 39–45

    Article  CAS  Google Scholar 

  11. Keefe A D, Pai S, Ellington A. Aptamers as therapeutics. Nature Reviews. Drug Discovery, 2010, 9(7): 537–550

    Article  CAS  Google Scholar 

  12. Nimjee S M, Rusconi C P, Sullenger B A. Aptamers: An emerging class of therapeutics. Annual Review of Medicine, 2005, 56(1): 555–583

    Article  CAS  Google Scholar 

  13. Palchetti I, Mascini M. Nucleic acid biosensors for environmental pollution monitoring. Analyst (London), 2008, 133(7): 846–854

    Article  CAS  Google Scholar 

  14. Lupold S E, Hicke B J, Lin Y, Coffey D S. Identification and characterization of nuclease-stabilized RNA molecules that bind human prostate cancer cells via the prostate-specific membrane antigen. Cancer Research, 2002, 62(14): 4029–4033

    CAS  Google Scholar 

  15. Dhar S, Gu F X, Langer R, Farokhzad O C, Lippard S J. Targeted delivery of cisplatin to prostate cancer cells by aptamer functionalized Pt(IV) prodrug-PLGA-PEG nanoparticles. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(45): 17356–17361

    Article  CAS  Google Scholar 

  16. Bagalkot V, Farokhzad O C, Langer R, Jon S. An aptamerdoxorubicin physical conjugate as a novel targeted drug-delivery platform. Angewandte Chemie International Edition, 2006, 45(48): 8149–8152

    Article  CAS  Google Scholar 

  17. Lee I H, An S, Yu M K, Kwon H K, Im S H. Targeted chemoimmunotherapy using drug-loaded aptamer-dendrimer bioconjugates. Journal of Controlled Release, 2011, 155(3): 435–441

    Article  CAS  Google Scholar 

  18. Tan L, Neoh K G, Kang E T, Choe W S, Su X. PEGylated anti- MUC1 aptamer-doxorubicin complex for targeted drug delivery to MCF7 breast cancer cells. Macromolecular Bioscience, 2011, 11 (10): 1331–1335

    Article  CAS  Google Scholar 

  19. Boyacioglu O, Stuart C H, Kulik G, Gmeiner W H. Dimeric DNA aptamer complexes for high-capacity-targeted drug delivery using pH-sensitive covalent linkages. Mol Therapy-Nucleic Acids, 2013, 2(1): e107

    Article  Google Scholar 

  20. Stuart C H, Singh R, Smith T L, D’Agostino R Jr, Caudell D, Balaji K C, Gmeiner W H. Prostate-specific membrane antigen-targeted liposomes specifically deliver the Zn2+ chelator TPEN inducing oxidative stress in prostate cancer cells. Nanomedicine (London), 2016, 11(10): 1207–1222

    Article  CAS  Google Scholar 

  21. Fire A, Xu S Q. Rolling replication of short DNA circles. Proceedings of the National Academy of Sciences of the United States of America, 1995, 92(10): 4641–4645

    Article  CAS  Google Scholar 

  22. Zhao W, Ali M M, Brook M A, Li Y. Rolling circle amplification: Applications in nanotechnology and biodetection with functional nucleic acids. Angewandte Chemie International Edition, 2008, 47 (34): 6330–6337

    Article  CAS  Google Scholar 

  23. Ali M M, Li F, Zhang Z, Zhang K, Kang D K, Ankrum J A, Le X C, Zhao W. Rolling circle amplification: A versatile tool for chemical biology, materials science and medicine. Chemical Society Reviews, 2014, 43(10): 3324–3341

    Article  CAS  Google Scholar 

  24. Roh Y H, Lee J B, Shopsowitz K E, Dreaden E C, Morton S W, Poon Z, Hong J, Yamin I, Bonner D K, Hammond P T. Layer-bylayer assembled antisense DNA microsponge particles for efficient delivery of cancer therapeutics. ACS Nano, 2014, 8(10): 9767–9780

    Article  CAS  Google Scholar 

  25. Lee H Y, Jeong H, Jung I Y, Jang B, Seo Y C, Lee H, Lee H. DhITACT: DNA hydrogel formation by isothermal amplification of complementary target in fluidic channels. Advanced Materials, 2015, 27(23): 3513–3517

    Article  CAS  Google Scholar 

  26. Hamblin G D, Carneiro K M, Fakhoury J F, Bujold K E, Sleiman H F. Rolling circle amplification-templated DNA nanotubes show increased stability and cell penetration ability. Journal of the American Chemical Society, 2012, 134(6): 2888–2891

    Article  CAS  Google Scholar 

  27. Mei L, Zhu G, Qiu L, Wu C, Chen H, Liang H, Cansiz S, Lv Y, Zhang X, TanW. Self-assembled multifunctional DNA nanoflowers for the circumvention of multidrug resistance in targeted anticancer drug delivery. Nano Research, 2015, 8(11): 3447–3460

    Article  CAS  Google Scholar 

  28. Lizardi PM, Huang X, Zhu Z, Brayward P, Thomas D C,Ward D C. Mutation detection and single-molecule counting using isothermal rolling-circle amplification. Nature Genetics, 1998, 19(3): 225–232

    Article  CAS  Google Scholar 

  29. Am Hong C, Jang B, Jeong E H, Jeong H, Lee H. Self-assembled DNA nanostructures prepared by rolling circle amplification for the delivery of siRNA conjugates. Chemical Communications, 2014, 50 (86): 13049–13051

    Article  Google Scholar 

  30. Lv Y, Hu R, Zhu G, Zhang X, Mei L, Liu Q, Qiu L, Wu C, Tan W. Preparation and biomedical applications of programmable and multifunctional DNA nanoflowers. Nature Protocols, 2015, 10(10): 1508–1524

    Article  CAS  Google Scholar 

  31. Zhang L, Zhu G, Mei L, Wu C, Qiu L, Cui C, Liu Y, Teng I T, Tan W. Self-assembled DNA immuno nanoflowers as multivalent CpG nanoagents. ACS Applied Materials & Interfaces, 2015, 7(43): 24069–24074

    Article  CAS  Google Scholar 

  32. Sun W, Jiang T, Lu Y, Reiff M, Mo R, Gu Z. Cocoon-like selfdegradable DNA nanoclew for anticancer drug delivery. Journal of the American Chemical Society, 2014, 136(42): 14722–14725

    Article  CAS  Google Scholar 

  33. Malloy A. Count, size and visualize nanoparticles. Materials Today, 2011, 14(4): 170–173

    Article  CAS  Google Scholar 

  34. Zhu G, Hu R, Zhao Z, Chen Z, Zhang X, TanW. Noncanonical selfassembly of multifunctional DNA nanoflowers for biomedical applications. Journal of the American Chemical Society, 2013, 135 (44): 16438–16445

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by National Key Research and Development Plan (2016YFE0119200) and the National Natural Science Foundation of China (Grant Nos. 81402856, A3 project-81361140344 and 21402143). This research was also partially sponsored by Tianjin Municipal Science and Technology Commission (15JCYBJC28700 and 15JCQNJC13600) and National Students’ Innovation and Entrepreneurship Training Program (201510062008).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Junbo Gong, Huining He or Victor C. Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, P., Ye, J., Liu, E. et al. Aptamer-coded DNA nanoparticles for targeted doxorubicin delivery using pH-sensitive spacer. Front. Chem. Sci. Eng. 11, 529–536 (2017). https://doi.org/10.1007/s11705-017-1645-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-017-1645-z

Keywords

Navigation