Skip to main content
Log in

Enzyme-instructed self-assembly of peptides containing phosphoserine to form supramolecular hydrogels as potential soft biomaterials

  • Communication
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Enzyme-instructed self-assembly (EISA) offers a facile approach to explore the supramolecular assemblies of small molecules in cellular milieu for a variety of biomedical applications. One of the commonly used enzymes is phosphatase, but the study of the substrates of phosphatases mainly focuses on the phosphotyrosine containing peptides. In this work, we examine the EISA of phosphoserine containing small peptides for the first time by designing and synthesizing a series of precursors containing only phosphoserine or both phosphoserine and phosphotyrosine. Conjugating a phosphoserine to the C-terminal of a well-established selfassembling peptide backbone, (naphthalene-2-ly)-acetyldiphenylalanine (NapFF), affords a novel hydrogelation precursor for EISA. The incorporation of phosphotyrosine, another substrate of phosphatase, into the resulting precursor, provides one more enzymatic trigger on a single molecule, and meanwhile increases the precursors’ propensity to aggregate after being fully dephosphorylated. Exchanging the positions of phosphorylated serine and tyrosine in the peptide backbone provides insights on how the specific molecular structures influence self-assembling behaviors of small peptides and the subsequent cellular responses. Moreover, the utilization of D-amino acids largely enhances the biostability of the peptides, thus providing a unique soft material for potential biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Strobel S A, Cochrane J C. Rna catalysis: Ribozymes, ribosomes, and riboswitches. Current Opinion in Chemical Biology, 2007, 11 (6): 636–643

    Article  CAS  Google Scholar 

  2. Green D R, Reed J C. Mitochondria and apoptosis. Science, 1998, 281(5381): 1309–1312

    Article  CAS  Google Scholar 

  3. Hershko A, Ciechanover A. The ubiquitin system. Annual Review of Biochemistry, 1998, 67(1): 425–479

    Article  CAS  Google Scholar 

  4. Mitchison T, Kirschner M. Dynamic instability of microtubule growth. Nature, 1984, 312(5991): 237–242

    Article  CAS  Google Scholar 

  5. Schiff P B, Fant J, Horwitz S B. Promotion of microtubule assembly in vitro by taxol. Nature, 1979, 277(5698): 665–667

    Article  CAS  Google Scholar 

  6. Meyers M A, Chen P Y, Lin A Y M, Seki Y. Biological materials: Structure and mechanical properties. Progress in Materials Science, 2008, 53(1): 1–206

    Article  CAS  Google Scholar 

  7. Kirschner M, Mitchison T. Beyond self-assembly—from microtubules to morphogenesis. Cell, 1986, 45(3): 329–342

    Article  CAS  Google Scholar 

  8. Korn E D, Carlier M F, Pantaloni D. Actin polymerization and Atp hydrolysis. Science, 1987, 238(4827): 638–644

    Article  CAS  Google Scholar 

  9. Whitesides G M. Bioinspiration: Something for everyone. Interface Focus, 2015, 5(4): 20150031

    Article  Google Scholar 

  10. Gao Y, Shi J, Yuan D, Xu B. Imaging enzyme-triggered selfassembly of small molecules inside live cells. Nature Communications, 2012, 3: 1033

    Article  Google Scholar 

  11. Li J, Kuang Y, Shi J, Gao Y, Zhou J, Xu B. The conjugation of nonsteroidal anti-inflammatory drugs (Nsaid) to small peptides for generating multifunctional supramolecular nanofibers/hydrogels. Beilstein Journal of Organic Chemistry, 2013, 9: 908–917

    Article  CAS  Google Scholar 

  12. Thornton K, Smith A M, Merry C L R, Ulijn R V. Controlling stiffness in nanostructured hydrogels produced by enzymatic dephosphorylation. Biochemical Society Transactions, 2009, 37 (4): 660–664

    Article  CAS  Google Scholar 

  13. Wang W, Qian J, Tang A, An L, Zhong K, Liang G. Using magnetic resonance imaging to study enzymatic hydrogelation. Analytical Chemistry, 2014, 86(12): 5955–5961

    Article  CAS  Google Scholar 

  14. Yang Z, Ho P L, Liang G, Chow K H, Wang Q, Cao Y, Guo Z, Xu B. Using beta-L-actamase to trigger supramolecular hydrogelation. Journal of the American Chemical Society, 2007, 129(2): 266–267

    Article  CAS  Google Scholar 

  15. Guilbaud J B, Vey E, Boothroyd S, Smith AM, Ulijn R V, Saiani A, Miller A F. Enzymatic catalyzed synthesis and triggered gelation of ionic peptides. Langmuir, 2010, 26(13): 11297–11303

    Article  CAS  Google Scholar 

  16. Das A K, Collins R, Ulijn R V. Exploiting enzymatic (reversed) hydrolysis in directed self-assembly of peptide nanostructures. Small, 2008, 4(2): 279–287

    Article  CAS  Google Scholar 

  17. Williams R J, Gardiner J, Sorensen A B, Marchesan S, Mulder R J, Mc Lean KM, Hartley P G. Monitoring the early stage self-assembly of enzyme-assisted peptide hydrogels. Australian Journal of Chemistry, 2013, 66(5): 572–578

    CAS  Google Scholar 

  18. Toledano S, Williams R J, Jayawarna V, Ulijn R V. Enzymetriggered self-assembly of peptide hydrogels via reversed hydrolysis. Journal of the American Chemical Society, 2006, 128(4): 1070–1071

    Article  CAS  Google Scholar 

  19. Yang Z, Ma M, Xu B. Using matrix metalloprotease-9 (Mmp-9) to trigger supramolecular hydrogelation. Soft Matter, 2009, 5(13): 2546–2548

    CAS  Google Scholar 

  20. Bremmer S C, Mc Neil A J, Soellner M B. Enzyme-triggered gelation: Targeting proteases with internal cleavage sites. Chemical Communications, 2014, 50(14): 1691–1693

    Article  CAS  Google Scholar 

  21. Kalafatovic D, Nobis M, Son J, Anderson K I, Ulijn R V. Mmp-9 triggered self-assembly of doxorubicin nanofiber depots halts tumor growth. Biomaterials, 2016, 98: 192–202

    Article  CAS  Google Scholar 

  22. Qin X, Xie W, Tian S, Cai J, Yuan H, Yu Z, Butterfoss G L, Khuong A C, Gross R A. Enzyme-triggered hydrogelation via self-assembly of alternating peptides. Chemical Communications, 2013, 49(42): 4839–4841

    Article  CAS  Google Scholar 

  23. Bremmer S C, Chen J, McNeil A J, Soellner MB. A General method for detecting protease activity via gelation and its application to artificial clotting. Chemical Communications, 2012, 48(44): 5482–5484

    Article  CAS  Google Scholar 

  24. Song F, Zhang L M. Enzyme-catalyzed formation and structure characteristics of a protein-based hydrogel. Journal of Physical Chemistry B, 2008, 112(44): 13749–13755

    Article  CAS  Google Scholar 

  25. Choi Y C, Choi J S, Jung Y J, Cho Y W. Human gelatin tissueadhesive hydrogels prepared by enzyme-mediated biosynthesis of dopa and Fe3+ ion crosslinking. Journal of Materials Chemistry. B, Materials for Biology and Medicine, 2014, 2(2): 201–209

    Article  CAS  Google Scholar 

  26. Zhou R, Kuang Y, Zhou J, Du XW, Li J, Shi J F, Haburcak R, Xu B. Nanonets collect cancer secretome from pericellular space. PLoS One, 2016, 11(4): e0154126

    Article  Google Scholar 

  27. Zhou J, Xu B. Enzyme-instructed self-assembly: A multistep process for potential cancer therapy. Bioconjugate Chemistry, 2015, 26(6): 987–999

    Article  CAS  Google Scholar 

  28. Zhou J, Du X W, Yamagata N, Xu B. Enzyme-instructed selfassembly of small D-peptides as a multiple-step process for selectively killing cancer cells. Journal of the American Chemical Society, 2016, 138(11): 3813–3823

    Article  CAS  Google Scholar 

  29. Zhou J, Du X W, Xu B. Regulating the rate of molecular selfassembly for targeting cancer cells. Angewandte Chemie International Edition, 2016, 55(19): 5770–5775

    Article  CAS  Google Scholar 

  30. Shi J F, Du X W, Yuan D, Zhou J, Zhou N, Huang Y B, Xu B. D-Amino acids modulate the cellular response of enzymaticinstructed supramolecular nanofibers of small peptides. Biomacromolecules, 2014, 15(10): 3559–3568

    Article  CAS  Google Scholar 

  31. Wang H, Feng Z, Wu D, Fritzsching K J, Rigney M, Zhou J, Jiang Y, Schmidt-Rohr K, Xu B. Enzyme-regulated supramolecular assemblies of cholesterol conjugates against drug-resistant ovarian cancer cells. Journal of the American Chemical Society, 2016, 138 (34): 10758–10761

    Article  CAS  Google Scholar 

  32. Du X W, Zhou J, Xu B. Ectoenzyme switches the surface of magnetic nanoparticles for selective binding of cancer cells. Journal of Colloid and Interface Science, 2015, 447: 273–277

    Article  CAS  Google Scholar 

  33. Pires R A, Abul-Haija Y M, Costa D S, Novoa-Carballal R, Reis R L, Ulijn R V, Pashkuleva I. Controlling cancer cell fate using localized biocatalytic self-assembly of an aromatic carbohydrate amphiphile. Journal of the American Chemical Society, 2015, 137 (2): 576–579

    Article  CAS  Google Scholar 

  34. Lv L, Liu H, Chen X, Yang Z. Glutathione-triggered formation of molecular hydrogels for 3D cell culture. Colloids and Surfaces. B, Biointerfaces, 2013, 108: 352–357

    Article  CAS  Google Scholar 

  35. Wang H M, Yang Z M. Short-peptide-based molecular hydrogels: Novel gelation strategies and applications for tissue engineering and drug delivery. Nanoscale, 2012, 4(17): 5259–5267

    Article  CAS  Google Scholar 

  36. Cai Y, Shi Y, Wang H, Wang J, Ding D, Wang L, Yang Z. Environment-sensitive fluorescent supramolecular nanofibers for imaging applications. Analytical Chemistry, 2014, 86(4): 2193–2199

    Article  CAS  Google Scholar 

  37. Wang H, Luo Z, Wang Y, He T, Yang C, Ren C, Ma L, Gong C, Li X, Yang Z. Enzyme-catalyzed formation of supramolecular hydrogels as promising vaccine adjuvants. Advanced Functional Materials, 2016, 26(11): 1822–1829

    Article  CAS  Google Scholar 

  38. Tian Y, Wang H, Liu Y, Mao L, Chen W, Zhu Z, Liu W, Zheng W, Zhao Y, Kong D, Yang Z, Zhang W, Shao Y, Jiang X. A peptidebased nanofibrous hydrogel as a promising DNA nanovector for optimizing the efficacy of Hiv vaccine. Nano Letters, 2014, 14(3): 1439–1445

    Article  CAS  Google Scholar 

  39. Sargeant T D, Aparicio C, Goldberger J E, Cui H G, Stupp S I. Mineralization of peptide amphiphile nanofibers and its effect on the differentiation of human mesenchymal stem cells. Acta Biomaterialia, 2012, 8(7): 2456–2465

    Article  CAS  Google Scholar 

  40. Zhang Y, Kuang Y, Gao Y A, Xu B. Versatile small-molecule motifs for self-assembly in water and the formation of biofunctional supramolecular hydrogels. Langmuir, 2011, 27(2): 529–537

    Article  CAS  Google Scholar 

  41. Yang Z, Liang G, Xu B. Enzymatic hydrogelation of small molecules. Accounts of Chemical Research, 2008, 41(2): 315–326

    Article  CAS  Google Scholar 

  42. Cui H, Cheetham A G, Pashuck E T, Stupp S I. Amino acid sequence in constitutionally isomeric tetrapeptide amphiphiles dictates architecture of one-dimensional nanostructures. Journal of the American Chemical Society, 2014, 136(35): 12461–12468

    Article  CAS  Google Scholar 

  43. Cui H, Muraoka T, Cheetham A G, Stupp S I. Self-assembly of giant peptide nanobelts. Nano Letters, 2009, 9(3): 945–951

    Article  CAS  Google Scholar 

  44. Zhou J, Du X, Berciu C, He H, Shi J, Nicastro D, Xu B. Enzymeinstructed self-assembly for spatiotemporal profiling of the activities of alkaline phosphatases on live cells. Chem, 2016, 1(2): 246–263

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by NIH (CA142746), NSF (MRSEC-1420382) and the W. M. Keck Foundation. We thank Brandeis EM and Optical Imaging facilities for TEM. JZ is an HHMI student fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, J., Du, X., Wang, J. et al. Enzyme-instructed self-assembly of peptides containing phosphoserine to form supramolecular hydrogels as potential soft biomaterials. Front. Chem. Sci. Eng. 11, 509–515 (2017). https://doi.org/10.1007/s11705-017-1613-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-017-1613-7

Keywords

Navigation