Skip to main content
Log in

Preparation of hemicellulolic oligosaccharides from Chamaecyparis obtuse (Hinoki) slurry using commercial enzymes

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Wood biomass is anticipated to serve as a substitute for carbon source, which has no feedstock competition with foods. Biomass is commonly used for the production of bio-ethanol by a series of processes such as pretreatment, enzymatic degradation, and fermentation. Hemicellulose, constituting 20 wt-%–40 wt-% of biomass materials, contains various kinds of saccharides known to be bioactive substrates. Practical usage of hemicellulose is generally limited to its conversion to bio-ethanol. Here, we aimed to prepare hemicellulolic oligosaccharides, more valuable products other than ethanol. Therefore, the Hinoki slurry was treated with lime at room temperature for 3 h, and then neutralized with HCl. The resulting sample was treated with 13 types of commercial enzymes, and the saccharides produced in the supernatant were evaluated. The result showed that the commercial enzyme Cellulase SS (Nagase & Co., LTD.) effectively degraded the slurry to produce disaccharides and trisaccharides. Analysis of sugar components by liquid chromatography/mass spectrography (LC/MS) after the derivation with ethyl 4-aminobenzoate (ABEE) showed that mannobiose, mannotriose, and cellobiose were the major oligosaccharides. These results indicate valuable oligosaccharides can be successfully produced from Hinoki softwood slurry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nishiyama Y, Johnson G P, French A D, Forsyth V T, Langan P. Neutron crystallography, molecular dynamics, and quantum mechanics studies of the nature of hydrogen bonding in cellulose I beta. Biomacromolecules, 2008, 9(11): 3133–3140

    Article  CAS  Google Scholar 

  2. Shrestha P, Khanal S K, Pometto A L III, Leeuwen J V. Ethanol production via in situ fungal saccharification and fermentation of mild alkali and steam pretreated corn fiber. Bioresource Technology, 2010, 101: 8698–8705

    Article  CAS  Google Scholar 

  3. Cervero J M, Skovgaard P A, Felby C, Sorensen H R, Jorgensen H. Enzymatic hydrolysis and fermentation of palm kernel press cake for production of bioethanol. Enzyme and Microbial Technology, 2010, 46(3–4): 177–184

    Article  CAS  Google Scholar 

  4. Luo X, Zhan H, Chai X S, Fu S, Liu J. A novel method for determination of aromatic aldehyde monomers in lignin degradation liquor. Industrial & Engineering Chemistry Research, 2009, 48(5): 2713–2716

    Article  CAS  Google Scholar 

  5. Voitl T, Rohr P R V. Demonstration of a process for the conversion of kraft lignin into vanillin and methyl vanillate by acidic oxidation in aqueous methanol. Industrial & Engineering Chemistry Research, 2010, 49(2): 520–525

    Article  CAS  Google Scholar 

  6. Jin Y, Cheng X, Zheng Z. Preparation and characterization of phenol-formaldehyde adhesives modified with enzymatic hydrolysis lignin. Bioresource Technology, 2010, 101(6): 2046–2048

    Article  CAS  Google Scholar 

  7. Madhavan A, Tamalampudi S, Ushida K, Kanai D, Katahira S, Srivastava A, Fukuda H, Bisaria V S, Kondo A. Xylose isomerase from polycentric fungus Orpinomyces: gene sequencing, cloning, and expression in Saccharomyces cerevisiae for bioconversion of xylose to ethanol. Applied Microbiology and Biotechnology, 2009, 82(6): 1067–1078

    Article  CAS  Google Scholar 

  8. Matsushika A, Inoue H, Kodaki T, Sawayama S. Ethanol production from xylose in engineered Saccharomyces cerevisiaestrains: current state and perspectives. Applied Microbiology and Biotechnology, 2009, 84(1): 37–53

    Article  CAS  Google Scholar 

  9. Kabel M A, Kortenoeven L, Schols H A, Voragen A G J. In vitro fermentability of differently substituted xylo-oligosaccharides. Journal of Agricultural and Food Chemistry, 2002, 50(21): 6205–6210

    Article  CAS  Google Scholar 

  10. Zhao Z, Egashira Y, Sanada H. Digestion and absorption of ferulic acid sugar esters in rat gastrointestinal tract. Journal of Agricultural and Food Chemistry, 2003, 51(18): 5534–5539

    Article  CAS  Google Scholar 

  11. Bruzzese E, Volpicelli M, Squeglia V, Bruzzese D, Salvini F, Bisceglia M, Lionetti P, Cinquetti M, Lacono G, Amarri S, Guarino A. A formula containing galacto- and fructo-oligosaccharides prevents intestinal and extra-intestinal infections: An observational study. Clinical Nutrition (Edinburgh, Lothian), 2009, 28(2): 156–161

    Article  CAS  Google Scholar 

  12. Kumar P, Barrett D M, Delwiche M J, Stroeve P. Methods for pretreatment of lignocellulosic baiomass for efficient hydrolysis and biofuel production. Industrial & Engineering Chemistry Research, 2009, 48(8): 3713–3729

    Article  CAS  Google Scholar 

  13. Hendriks A T W M, Zeeman G. Pretreatments to enhance the digestilibity of lignocellulosic biomass. Bioresource Technology, 2009, 100(1): 10–18

    Article  CAS  Google Scholar 

  14. Sassner P, Martensson C G, Galbe M, Zacchi G. Steam pretreatment of H2SO4-impregnated Salixfor the production of bioethanol. Bioresource Technology, 2008, 99(1): 137–145

    Article  CAS  Google Scholar 

  15. Lee S H, Doherty T V, Linhardt R J, Dordick J S. Ionic liquidmediated selective extraction of lignin from wood leading to enhanced enzymatic cellulose hydrolysis. Biotechnology and Bioengineering, 2009, 102(5): 1368–1376

    Article  CAS  Google Scholar 

  16. Samuel R, Pu Y, Raman B, Ragauskas A J. Structural characterization and comparison of switchgrass ball-milled lignin before and after dilute acid pretreatment. Applied Biochemistry and Biotechnology, 2009, 162(1): 62–74

    Article  Google Scholar 

  17. Geddes C C, Peterson J J, Roslander C, Zacchi G, Mullinnix M T, Shanmugam K T, Ingram L O. Optimizing the saccharification of sugar cone bagasse using dilute phosphoric acid followed by fungal cellulases. Bioresource Technology, 2010, 101(6): 1851–1857

    Article  CAS  Google Scholar 

  18. Gupta R, Lee Y Y. Investigation of biomass degradation mechanism in pretreatment of switchgrass by aqueous ammonia and sodium hydroxide. Bioresource Technology, 2010, 101(21): 8185–8191

    Article  CAS  Google Scholar 

  19. Wang W T, Ledonne N C Jr, Ackerman B, Sweeley C C. Structural characterization of oligosaccharides by high-performance liquid chromatography, fast-atom bombardment-mass spectrometry, and exoglycosidase digestion. Analytical Biochemistry, 1984, 141(2): 366–381

    Article  CAS  Google Scholar 

  20. Yasuno S, Kokubo K, Kamei M. New method for determining the sugar composition of glycoproteins, glycolipids, and oligosaccharides by high-performance liquid chromatography. Bioscience, Biotechnology, and Biochemistry, 1999, 63(8): 1353–1359

    Article  CAS  Google Scholar 

  21. Miller G L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 1959, 31(3): 426–428

    Article  CAS  Google Scholar 

  22. Gupta H, Fan L S. Carbonation-calcination cycle using high reactivity calcium oxide for carbon dioxide separation from flue gas. Industrial & Engineering Chemistry Research, 2002, 41(16): 4035–4042

    Article  CAS  Google Scholar 

  23. Park J Y, Shiroma R, Al-Haq M I, Zhang Y, Ike M, Arai-Sanoh Y, Ida A, Kondo M, Tokuyasu K. A novel lime pretreatment for subsequent bioethanol production from rice straw-calcium capturing by carbonation (CaCCO) process. Bioresource Technology, 2010, 101(17): 6805–6811

    Article  CAS  Google Scholar 

  24. Kumagai Y, Usuki H, Yamamoto Y, Yamasato A, Arima J, Mukaihara T, Hatanaka T. Characterization of calcium ion sensitive region for β-mannanase from Streptomyces thermolilacinus. Biochimica et Biophysica Acta, 2011, 1814(9): 1127–1133

    CAS  Google Scholar 

  25. Biely P, Mackenzie C R, Puls J, Schneider H. Cooporativity of esterases and xylanases in the enzymatic degradation of acetylxylan. Nature Biotechnology, 1986, 4(8): 731–733

    Article  CAS  Google Scholar 

  26. Johnson K G, Harrison B A, Schneider H, MacKenzie C R, Fontana J D. Xylan-hydrolysing enzymes from Streptomyces spp. Enzyme and Microbial Technology, 1988, 10(7): 403–409

    Article  CAS  Google Scholar 

  27. Clarke J H, Davidson K, Rixon J E, Halstead J R, Fransen M P, Gilbert H J, Hazlewood G P. A comparison of enzyme-aided bleaching of softwood paper pulp using combinations of xylanase, mannanase and α-galactosidase. Applied Microbiology and Biotechnology, 2000, 53(6): 661–667

    Article  CAS  Google Scholar 

  28. Janardhana V, Broadway M M, Bruce M, Lowenthal J W, Geier M S, Hughes R J, Bean A G D. Prebiotics modulate immune responses in the gut-associated lymphoid tissue of chickens. Journal of Nutrition, 2009, 139(7): 1404–1409

    Article  CAS  Google Scholar 

  29. Chee S H, Iji P A, Choct M, Mikkelsen L L, Kocher A. Characterisation and response of intestinal microflora and mucins to manno-oligosaccharide and antibiotic supplementation in broiler chickens. British Poultry Science, 2010, 51(3): 368–380

    Article  CAS  Google Scholar 

  30. Ibuki M, Kovacs-Nolan J, Fukui K, Kanatani H, Mine Y. β-1–4 Mannobiose enhances Salmonella-killing activity and activates innate immune responses in chicken macrophages. Veterinary Immunology and Immunopathology, 2011, 139(2–4): 289–295

    Article  CAS  Google Scholar 

  31. Sanz M L, Gibson G R, Rastall R A. Influence of disaccharide structure on prebiotic selectivity in Vitro. Journal of Agricultural and Food Chemistry, 2005, 53(13): 5192–5199

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tadashi Hatanaka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumagai, Y., Usuki, H., Yamamoto, Y. et al. Preparation of hemicellulolic oligosaccharides from Chamaecyparis obtuse (Hinoki) slurry using commercial enzymes. Front. Chem. Sci. Eng. 6, 224–231 (2012). https://doi.org/10.1007/s11705-012-1280-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-012-1280-7

Keywords

Navigation