Skip to main content
Log in

Progress of three-dimensional macroporous bioactive glass for bone regeneration

  • Review Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Bioactive glasses (BGs) are ideal materials for macroporous scaffolds due to their excellent osteoconductive, osteoinductive, biocompatible and biodegradable properties, and their high bone bonding rates. Macroporous scaffolds made from BGs are in high demand for bone regeneration because they can stimulate vascularized bone ingrowth and they enhance bonding between scaffolds and surrounding tissues. Engineering BG/biopolymers (BP) composites or hybrids may be a good way to prepare macroporous scaffolds with excellent properties. This paper summarizes the progress in the past few years in preparing three-dimensional macroporous BG and BG/BP scaffolds for bone regeneration. Since the brittleness of BGs is a major problem in developing macroporous scaffolds and this limits their use in load bearing applications, the mechanical properties of macroporous scaffolds are particularly emphasized in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hench L L, Thompson I. Twenty-first century challenges for biomaterials. Journal of the Royal Society, Interface, 2010, 7(Suppl_4): S379–S391

    Article  CAS  Google Scholar 

  2. Arcos D, Vallet-Regi M. Sol-gel silica-based biomaterials and bone tissue regeneration. Acta Biomaterialia, 2010, 6(8): 2874–2888

    Article  CAS  Google Scholar 

  3. Boccaccini A R, Keim S, Ma R, Li Y, Zhitomirsky I. Electrophoretic deposition of biomaterials. Journal of the Royal Society, Interface, 2010, 7(Suppl_5): S581–S613

    Article  CAS  Google Scholar 

  4. Gorustovich A A, Roether J A, Boccaccini A R. Effect of bioactive glasses on angiogenesis: a review of in vitro and in vivo evidences. Tissue Engineering Part B: Reviews, 2010, 16(2): 199–207

    Article  CAS  Google Scholar 

  5. Hertz A, Bruce I J. Inorganic materials for bone repair or replacement applications. Nanomedicine; Nanotechnology, Biology, and Medicine, 2007, 2: 899–918

    CAS  Google Scholar 

  6. Hench L L, Xynos I D, Polak J M. Bioactive glasses for in situ tissue regeneration. Journal of Biomaterials Science. Polymer Edition, 2004, 15(4): 543–562

    CAS  Google Scholar 

  7. Hench L L, Splinter R J, Allen W C, Greenlee T K. Bonding mechanisms at the interface of ceramic prosthetic materials. Journal of Biomedical Materials Research, 1971, 5(6): 117–141

    Article  Google Scholar 

  8. Hulbert S F, Young F A, Mathews R S, Klawitter J J, Talbert C D, Stelling F H. Potential of ceramic materials as permanently skeletal prostheses. Journal of Biomedical Materials Research, 1970, 4(3): 433–456

    Article  CAS  Google Scholar 

  9. Gauthier O, Bouler J M, Aguado E, Pilet P, Daculsi G. Macroporous biphasic calcium phosphate ceramics: influence of macropore diameter and macroporosity percentage on bone ingrowth. Biomaterials, 1998, 19(1–3): 133–139

    Article  CAS  Google Scholar 

  10. Hutmacher D W. Scaffold design and fabrication technologies for engineering tissues—state of the art and future perspectives. Journal of Biomaterials Science. Polymer Edition, 2001, 12(1): 107–124

    CAS  Google Scholar 

  11. Guarino V, Causa F, Ambrosio L. Bioactive scaffolds for bone and ligament tissue. Expert Review of Medical Devices, 2007, 4(3): 405–418

    Article  CAS  Google Scholar 

  12. Moroni L, de Wijn J R, van Blitterswijk C A. Integrating novel technologies to fabricate smart scaffolds. Journal of Biomaterials Science. Polymer Edition, 2008, 19(5): 543–572

    CAS  Google Scholar 

  13. Mourino V, Boccaccini A R. Bone tissue engineering therapeutics: controlled drug delivery in three-dimensional scaffolds. Journal of the Royal Society, Interface, 2010, 7(43): 209–227

    Article  CAS  Google Scholar 

  14. Baroli B. From natural bone grafts to tissue engineering therapeutics: brainstorming on pharmaceutical formulative requirements and challenges. Journal of Pharmaceutical Sciences, 2009, 98(4): 1317–1375

    Article  CAS  Google Scholar 

  15. Habraken W, Wolke J G C, Jansen J A. Ceramic composites as matrices and scaffolds for drug delivery in tissue engineering. Advanced Drug Delivery Reviews, 2007, 59(4–5): 234–248

    Article  CAS  Google Scholar 

  16. Lee S H, Shin H. Matrices and scaffolds for delivery of bioactive molecules in bone and cartilage tissue engineering. Advanced Drug Delivery Reviews, 2007, 59(4–5): 339–359

    Article  CAS  Google Scholar 

  17. Chung H J, Park T G. Surface engineered and drug releasing prefabricated scaffolds for tissue engineering. Advanced Drug Delivery Reviews, 2007, 59(4–5): 249–262

    Article  CAS  Google Scholar 

  18. Ginebra MP, Traykova T, Planell J A. Calcium phosphate cements as bone drug delivery systems: a review. Journal of Controlled Release, 2006, 113(2): 102–110

    Article  CAS  Google Scholar 

  19. Seeherman H, Wozney J M. Delivery of bone morphogenetic proteins for orthopedic tissue regeneration. Cytokine & Growth Factor Reviews, 2005, 16(3): 329–345

    Article  CAS  Google Scholar 

  20. Saltzman W M, Olbricht W L. Building drug delivery into tissue engineering. Nature Reviews. Drug Discovery, 2002, 1(3): 177–186

    Article  CAS  Google Scholar 

  21. Stevens M M, George J H. Exploring and engineering the cell surface interface. Science, 2005, 310(5751): 1135–1138

    Article  CAS  Google Scholar 

  22. Rezwan K, Chen Q Z, Blaker J J, Boccaccini A R. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials, 2006, 27(18): 3413–3431

    Article  CAS  Google Scholar 

  23. Li R, Clark A E, Hench L L. An investigation of bioactive glass powders by sol-gel processing. Journal of Applied Biomaterials, 1991, 2(4): 231–239

    Article  CAS  Google Scholar 

  24. Jones J R, Lin S, Yue S, Lee P D, Hanna J V, Smith M E, Newport R J. Bioactive glass scaffolds for bone regeneration and their hierarchical characterisation. Journal of Engineering in Medicine, 2010, 224(12): 1373–1387

    Article  CAS  Google Scholar 

  25. Qiu D, Martin R A, Knowles J C, Smith M E, Newport R J. A comparative study of the structure of sodium borophosphates made by sol-gel and melt-quench methods. Journal of Non-Crystalline Solids, 2010, 356(9–10): 490–494

    Article  CAS  Google Scholar 

  26. Li A, Wang D, Xiang J, Newport R J, Reinholdt M X, Mutin P H, Vantelon D, Bonhomme C, Smith M E, Laurencin D, Qiu D. Insights into new calcium phosphosilicate xerogels using an advanced characterization methodology. Journal of Non-Crystalline Solids, 2011, 357(19–20): 3548–3555

    Article  CAS  Google Scholar 

  27. Qiu D, Guerry P, Knowles J C, Smith M E, Newport R J. Formation of functional phosphosilicate gels from phytic acid and tetraethyl orthosilicate. Journal of Sol-Gel Science and Technology, 2008, 48(3): 378–383

    Article  CAS  Google Scholar 

  28. Li A, Qiu D. Phytic acid derived bioactive CaO-P2O5-SiO2 gelglasses. Journal of Materials Science. Materials in Medicine, 2011, 22(12): 2685–2691

    Article  CAS  Google Scholar 

  29. Brink M. The influence of alkali and alkaline earths on the working range for bioactive glasses. Journal of Biomedical Materials Research, 1997, 36(1): 109–117

    Article  CAS  Google Scholar 

  30. Vitale-Brovarone C, Verne E, Robiglio L, Appendino P, Bassi F, Martinasso G, Muzio G, Canuto R. Development of glass-ceramic scaffolds for bone tissue engineering: characterisation, proliferation of human osteoblasts and nodule formation. Acta Biomaterialia, 2007, 3(2): 199–208

    Article  CAS  Google Scholar 

  31. Liu X, Rahaman M N, Fu Q A. Oriented bioactive glass (13–93) scaffolds with controllable pore size by unidirectional freezing of camphene-based suspensions: microstructure and mechanical response. Acta Biomaterialia, 2011, 7(1): 406–416

    Article  CAS  Google Scholar 

  32. Vitale-Brovarone C, Di Nunzio S, Bretcanu O, Verne E. Macroporous glass-ceramic materials with bioactive properties. Journal of Materials Science. Materials in Medicine, 2004, 15(3): 209–217

    Article  CAS  Google Scholar 

  33. Saboori A, Sheikhi M, Moztarzadeh F, Rabiee M, Hesaraki S, Tahriri M, Nezafati N. Sol-gel preparation, characterisation and in vitro bioactivity of Mg containing bioactive glass. Advances in Applied Ceramics, 2009, 108(3): 155–161

    Article  CAS  Google Scholar 

  34. Perez-Pariente J, Balas F, Roman J, Salinas A J, Vallet-Regi M. Influence of composition and surface characteristics on the in vitro bioactivity of SiO2-CaO-P2O5-MgO sol-gel glasses. Journal of Biomedical Materials Research, 1999, 47: 170–175

    Article  CAS  Google Scholar 

  35. Salinas A J, Roman J, Vallet-Regi M, Oliveira J M, Correia R N, Fernandes M H. In vitro bioactivity of glass and glass-ceramics of the 3CaO·P2O5-CaO·SiO2-CaO·MgO·2SiO2 system. Biomaterials, 2000, 21: 251–257

    Article  CAS  Google Scholar 

  36. Saboori A, Rabiee M, Mutarzadeh F, Sheikhi M, Tahriri M, Karimi M. Synthesis, characterization and in vitro bioactivity of sol-gelderived SiO2-CaO-P2O5-MgO bioglass. Mater Sci Eng C Biomim Supramol Syst, 2009, 29(1): 335–340

    Article  CAS  Google Scholar 

  37. Jones J R, Ehrenfried L M, Saravanapavan P, Hench L L. Controlling ion release from bioactive glass foam scaffolds with antibacterial properties. Journal of Materials Science. Materials in Medicine, 2006, 17(11): 989–996

    Article  CAS  Google Scholar 

  38. Vitale-Brovarone C, Miola M, Alagna C B, Verne E. 3D-glassceramic scaffolds with antibacterial properties for bone grafting. Chemical Engineering Journal, 2008, 137(1): 129–136

    Article  CAS  Google Scholar 

  39. Courtheoux L, Lao J, Nedelec J M, Jallot E. Controlled bioactivity in zinc-doped sol-gel-derived binary bioactive glasses. Journal of Physical Chemistry C, 2008, 112(35): 13663–13667

    Article  CAS  Google Scholar 

  40. Bini M, Grandi S, Capsoni D, Mustarelli P, Saino E, Visai L. SiO2-P2O5-CaO glasses and glass-ceramics with and without ZnO: relationships among composition, microstructure, and bioactivity. Journal of Physical Chemistry C, 2009, 113(20): 8821–8828

    Article  CAS  Google Scholar 

  41. Lao J, Jallot E, Nedelec J M. Strontium-delivering glasses with enhanced bioactivity: a new biomaterial for antiosteoporotic applications? Chemistry of Materials, 2008, 20(15): 4969–4973

    Article  CAS  Google Scholar 

  42. Nakamura T, Yamamuro T, Higashi S, Kokubo T, Itoo S. A new glass-ceramic for bone-replacement-evaluation of its bonding to bone tissue. Journal of Biomedical Materials Research, 1985, 19(6): 685–698

    Article  CAS  Google Scholar 

  43. Ono K, Yamamuro T, Nakamura T, Kokubo T. Mechanicalproperties of bone after implantation of apatite wollastonite containing glass ceramic fibrin mixture. Journal of Biomedical Materials Research, 1990, 24(1): 47–63

    Article  CAS  Google Scholar 

  44. Kawanabe K, Iida H, Matsusue Y, Nishimatsu H, Kasai R, Nakamura T. A-W glass ceramic as a bone substitute in cemented hip arthroplasty-15 hips followed 2–10 years. Acta Orthopaedica, 1998, 69(3): 237–242

    Article  CAS  Google Scholar 

  45. Yang W, Zhou D, Yin G, Zheng C. Research and development of A-W bioactive glass ceramic. Journal of Biomedical Engineer, 2003, 20(3): 541–545 (in Chinese)

    CAS  Google Scholar 

  46. Yang W, Zhou D, Yin G, Chen H, Xiao B, Zhang Y. Study on a new type of apatite/wollastonite porous bioactive glass-ceramic. Journal of Biomedical Engineer, 2004, 21: 913–916 (in Chinese)

    CAS  Google Scholar 

  47. Shinzato S, Kobayashi M, Mousa W F, Kamimura M, Neo M, Kitamura Y, Kokubo T, Nakamura T. Bioactive polymethyl methacrylate-based bone cement: comparison of glass beads, apatite- and wollastonite-containing glass-ceramic, and hydroxyapatite fillers on mechanical and biological properties. Journal of Biomedical Materials Research, 2000, 51(2): 258–272

    Article  CAS  Google Scholar 

  48. Juhasz J A, Best S M, Brooks R, Kawashita M, Miyata N, Kokubo T, Nakamura T, Bonfield W. Mechanical properties of glassceramic A-W-polyethylene composites: effect of filler content and particle size. Biomaterials, 2004, 25(6): 949–955

    Article  CAS  Google Scholar 

  49. Van de Velde K, Kiekens P. Biopolymers: overview of several properties and consequences on their applications. Polymer Testing, 2002, 21(4): 433–342

    Article  Google Scholar 

  50. Suyatma N E, Tighzert L, Copinet A, Coma V. Effects of hydrophilic plasticizers on mechanical, thermal, and surface properties of chitosan films. Journal of Agricultural and Food Chemistry, 2005, 53(10): 3950–3957

    Article  CAS  Google Scholar 

  51. Wang Y, Qiu D, Cosgrove T, Denbow M L. A small-angle neutron scattering and rheology study of the composite of chitosan and gelatin. Colloids and Surfaces B: Biointerfaces, 2009, 70: 254–258

    Article  CAS  Google Scholar 

  52. Arvanitoyannis I, Kolokuris I, Nakayama A, Yamamoto N, Aiba S. Physico-chemical studies of chitosan-poly(vinyl alcohol) blends plasticized with sorbitol and sucrose. Carbohydrate Polymers, 1997, 34(1–2): 9–19

    Article  CAS  Google Scholar 

  53. Van Vlierberghe S, Dubruel P, Schacht E. Biopolymer-based hydrogels as scaffolds for tissue engineering applications: a review. Biomacromolecules, 2011, 12(5): 1387–1408

    Article  CAS  Google Scholar 

  54. Suyatma N E, Copinet A, Tighzert L, Coma V. Mechanical and barrier properties of biodegradable films made from chitosan and poly (lactic acid) blends. Journal of Polymers and the Environment, 2004, 12(1): 1–6

    Article  CAS  Google Scholar 

  55. Sarasam A, Madihally S V. Characterization of chitosanpolycaprolactone blends for tissue engineering applications. Biomaterials, 2005, 26(27): 5500–5508

    Article  CAS  Google Scholar 

  56. Santos C, Seabra P, Veleirinho B, Delgadillo I, da Silva J A L. Acetylation and molecular mass effects on barrier and mechanical properties of shortfin squid chitosan membranes. European Polymer Journal, 2006, 42(12): 3277–3285

    Article  CAS  Google Scholar 

  57. Costa E S, Barbosa-Stancioli E F, Mansur A A P, Vasconcelos W L, Mansur H S. Preparation and characterization of chitosan/poly (vinyl alcohol) chemically crosslinked blends for biomedical applications. Carbohydrate Polymers, 2009, 76(3): 472–481

    Article  CAS  Google Scholar 

  58. Khan M, Ferdous S, Mustafa A I. Improvement of physicomechanical properties of chitosan films by photocuring with acrylic monomers. Journal of Polymers and the Environment, 2005, 13(2): 193–201

    Article  CAS  Google Scholar 

  59. Ji B, Gao H. Mechanical properties of nanostructure of biological materials. Journal of the Mechanics and Physics of Solids, 2004, 52(9): 1963–1990

    Article  Google Scholar 

  60. Sionkowska A, Wisniewski M, Skopinska J, Poggi G F, Marsano E, Maxwell C A, Wess T J. Thermal and mechanical properties of UV irradiated collagen/chitosan thin films. Polymer Degradation & Stability, 2006, 91(12): 3026–3032

    Article  CAS  Google Scholar 

  61. Saito H, Murabayashi S, Mitamura Y, Taguchi T. Characterization of alkali-treated collagen gels prepared by different crosslinkers. Journal of Materials Science. Materials in Medicine, 2008, 19(3): 1297–1305

    Article  CAS  Google Scholar 

  62. Sheu M T, Huang J C, Yeh G C, Ho H O. Characterization of collagen gel solutions and collagen matrices for cell culture. Biomaterials, 2001, 22(13): 1713–1719

    Article  CAS  Google Scholar 

  63. Yang L, Van der Werf K O, Fitie C F C, Bennink M L, Dijkstra P J, Feijen J. Mechanical properties of native and cross-linked type I collagen fibrils. Biophysical Journal, 2008, 94(6): 2204–2211

    Article  CAS  Google Scholar 

  64. van der Rijt J A J, van der Werf K O, Bennink M L, Dijkstra P J, Feijen J. Micromechanical testing of individual collagen fibrils. Macromolecular Bioscience, 2006, 6(9): 697–702

    Article  CAS  Google Scholar 

  65. Sionkowska A, Skopinska-Wisniewska J, Gawron M, Kozlowska J, Planecka A. Chemical and thermal cross-linking of collagen and elastin hydrolysates. International Journal of Biological Macromolecules, 2010, 47(4): 570–577

    Article  CAS  Google Scholar 

  66. Nam K, Kimura T, Kishida A. Preparation and characterization of cross-linked collagen-phospholipid polymer hybrid gels. Biomaterials, 2007, 28(1): 1–8

    Article  CAS  Google Scholar 

  67. Liu W, Deng C, McLaughlin C R, Fagerholm P, Lagali N S, Heyne B, Scaiano J C, Watsky MA, Kato Y, Munger R, Shinozaki N, Li F F, Griffith M. Collagen-phosphorylcholine interpenetrating network hydrogels as corneal substitutes. Biomaterials, 2009, 30(8): 1551–1559

    Article  CAS  Google Scholar 

  68. Yamauchi K, Takeuchi N, Kurimoto A, Tanabe T. Films of collagen crosslinked by S-S bonds: preparation and characterization. Biomaterials, 2001, 22(8): 855–863

    Article  CAS  Google Scholar 

  69. Lim L T, Mine Y, Tung M A. Barrier and tensile properties of transglutaminase cross-linked gelatin films as affected by relative humidity, temperature, and glycerol content. Journal of Food Science, 1999, 64(4): 616–622

    Article  CAS  Google Scholar 

  70. Usta M, Piech D L, MacCrone R K, Hillig W B. Behavior and properties of neat and filled gelatins. Biomaterials, 2003, 24(1): 165–172

    Article  CAS  Google Scholar 

  71. de Carvalho R A, Grosso C R F. Characterization of gelatin based films modified with transglutaminase, glyoxal and formaldehyde. Food Hydrocolloids, 2004, 18(5): 717–722

    Article  CAS  Google Scholar 

  72. Cao N, Fu Y, He J. Mechanical properties of gelatin films crosslinked, respectively, by ferulic acid and tannin acid. Food Hydrocolloids, 2007, 21(4): 575–584

    Article  CAS  Google Scholar 

  73. Fakirov Z S. Anbar T, Boz B, Bahar I, Evstatiev M, Apostolov A A, Mark J E, Kloczkowski A. Mechanical properties and transition temperatures of cross-linked oriented gelatin: 1.Static and dynamic mechanical properties of cross-linked gelatin. Colloid & Polymer Science, 1996, 274: 334–341

    Article  CAS  Google Scholar 

  74. Santin M, Huang S J, Iannace S, Ambrosio L, Nicolais L, Peluso G. Synthesis and characterization of a new interpenetrated poly(2-hydroxyethylmethacrylate)-gelatin composite polymer. Biomaterials, 1996, 17(15): 1459–1467

    Article  CAS  Google Scholar 

  75. Vemuri S. A screening technique to study the mechanical strength of gelatin formulations. Drug Development and Industrial Pharmacy, 2000, 26(10): 1115–1120

    Article  CAS  Google Scholar 

  76. Bigi A, Bracci B, Cojazzi G, Panzavolta S, Roveri N. Drawn gelatin films with improved mechanical properties. Biomaterials, 1998, 19(24): 2335–2340

    Article  CAS  Google Scholar 

  77. Bigi A, Cojazzi G, Panzavolta S, Rubini K, Roveri N. Mechanical and thermal properties of gelatin films at different degrees of glutaraldehyde crosslinking. Biomaterials, 2001, 22(8): 763–768

    Article  CAS  Google Scholar 

  78. Yakimets I, Wellner N, Smith A C, Wilson R H, Farhat I, Mitchell J. Mechanical properties with respect to water content of gelatin films in glassy state. Polymer, 2005, 46(26): 12577–12585

    Article  CAS  Google Scholar 

  79. Lee K Y, Shim J, Lee H G. Mechanical properties of gellan and gelatin composite films. Carbohydrate Polymers, 2004, 56(2): 251–254

    Article  CAS  Google Scholar 

  80. Bigi A, Panzavolta S, Rubini K. Relationship between triple-helix content and mechanical properties of gelatin films. Biomaterials, 2004, 25(25): 5675–5680

    Article  CAS  Google Scholar 

  81. Gómez-Guillén M C, Perez-Mateos M, Gomez-Estaca J, Lopez-Caballero E, Gimenez B, Montero P. Fish gelatin: a renewable material for developing active biodegradable films. Trends in Food Science & Technology, 2009, 20(1): 3–16

    Article  CAS  Google Scholar 

  82. Arvanitoyannis I, Nakayama A, Aiba S I. Edible films made from hydroxypropyl starch and gelatin and plasticized by polyols and water. Carbohydrate Polymers, 1998, 36(2–3): 105–119

    Article  CAS  Google Scholar 

  83. Arvanitoyannis I S, Nakayama A, Aiba S I. Chitosan and gelatin based edible films: state diagrams, mechanical and permeation properties. Carbohydrate Polymers, 1998, 37(4): 371–382

    Article  CAS  Google Scholar 

  84. Park J W, Scott Whiteside W, Cho S Y. Mechanical and water vapor barrier properties of extruded and heat-pressed gelatin films. LWT-Food Science and Technology, 2008, 41(4): 692–700

    Article  CAS  Google Scholar 

  85. Koob T J, Hernandez D J. Mechanical and thermal properties of novel polymerized NDGA-gelatin hydrogels. Biomaterials, 2003, 24(7): 1285–1292

    Article  CAS  Google Scholar 

  86. Karageorgiou V, Kaplan D. Porosity of 3D biornaterial scaffolds and osteogenesis. Biomaterials, 2005, 26(27): 5474–5491

    Article  CAS  Google Scholar 

  87. Jones J R, Ehrenfried L M, Hench L L. Optimising bioactive glass scaffolds for bone tissue engineering. Biomaterials, 2006, 27(7): 964–973

    Article  CAS  Google Scholar 

  88. FitzGerald V, Martin R A, Jones J R, Qiu D, Wetherall K M, Moss R M, Newport R J. Bioactive glass sol-gel foam scaffolds: Evolution of nanoporosity during processing and in situ monitoring of apatite layer formation using small- and wide-angle X-ray scattering. Journal of Biomedical Materials Research. Part A, 2009, 91A(1): 76–83

    CAS  Google Scholar 

  89. Wu Z Y, Hill R G, Yue S, Nightingale D, Lee P D, Jones J R. Meltderived bioactive glass scaffolds produced by a gel-cast foaming technique. Acta Biomaterialia, 2011, 7(4): 1807–1816

    Article  CAS  Google Scholar 

  90. Chen Q Z Z, Thompson I D, Boccaccini A R. 45S5 Bioglass®- derived glass-ceramic scaffolds for bone tissue engineering. Biomaterials, 2006, 27(11): 2414–2425

    Article  CAS  Google Scholar 

  91. Liu X, Huang W H, Fu H L, Yao A H, Wang D P, Pan H B, Lu W W. Bioactive borosilicate glass scaffolds: improvement on the strength of glass-based scaffolds for tissue engineering. Journal of Materials Science. Materials in Medicine, 2009, 20(1): 365–372

    Article  CAS  Google Scholar 

  92. Xue M, Feng D G, Li G D, Yang W Z, Zhou D L. Preparation of porous apatite-wollastonite bioactive glass ceramic (AW-GC) by dipping with polymer foams. Chinese Journal of Inorganic Chemistry, 2007, 23: 708–712

    CAS  Google Scholar 

  93. Cao B, Zhou D, Xue M, Li G, Yang W, Long Q, Ji L. Study on surface modification of porous apatite-wollastonite bioactive glass ceramic scaffold. Applied Surface Science, 2008, 255(2): 505–508

    Article  CAS  Google Scholar 

  94. Baino F, Verne E, Vitale-Brovarone C. 3-D high-strength glassceramic scaffolds containing fluoroapatite for load-bearing bone portions replacement. Materials Science and Engineering: C, 2009, 29(6): 2055–2062

    Article  CAS  Google Scholar 

  95. Bellucci D, Cannillo V, Sola A, Chiellini F, Gazzarri M, Migone C. Macroporous Bioglass®-derived scaffolds for bone tissue regeneration. Ceramics International, 2011, 37(5): 1575–1585

    Article  CAS  Google Scholar 

  96. Yan H, Zhang K, Blanford C F, Francis L F, Stein A. In vitro hydroxycarbonate apatite mineralization of CaO-SiO2 sol-gel glasses with a three-dimensionally ordered macroporous structure. Chemistry of Materials, 2001, 13(4): 1374–1382

    Article  CAS  Google Scholar 

  97. Yan P H, Wang J Q, Ou J F, Li Z P, Lei Z Q, Yang S R. Synthesis and characterization of three-dimensional ordered mesoporousmacroporous bioactive glass. Materials Letters, 2010, 64(22): 2544–2547

    Article  CAS  Google Scholar 

  98. Wei G F, Yan X X, Yi J, Zhao L Z, Zhou L, Wang Y H, Yu C Z. Synthesis and in-vitro bioactivity of mesoporous bioactive glasses with tunable macropores. Microporous and Mesoporous Materials, 2011, 143(1): 157–165

    Article  CAS  Google Scholar 

  99. Hajiali H, Karbasi S, Hosseinalipour M, Rezaie H R. Preparation of a novel biodegradable nanocomposite scaffold based on poly (3-hydroxybutyrate)/bioglass nanoparticles for bone tissue engineering. Journal of Materials Science, 2010, 21(7): 2125–2133

    CAS  Google Scholar 

  100. Ryszkowska J L, Auguscik M, Sheikh A, Boccaccini A R. Biodegradable polyurethane composite scaffolds containing Bio- glass® for bone tissue engineering. Composites Science and Technology, 2010, 70(13): 1894–1908

    Article  CAS  Google Scholar 

  101. Mozafari M, Moztarzadeh F, Rabiee M, Azami M, Maleknia S, Tahriri M, Moztarzadeh Z, Nezafati N. Development of macroporous nanocomposite scaffolds of gelatin/bioactive glass prepared through layer solvent casting combined with lamination technique for bone tissue engineering. Ceramics International, 2010, 36(8): 2431–2439

    Article  CAS  Google Scholar 

  102. Hong Z K, Reis R L, Mano J F. Preparation and in vitro characterization of scaffolds of poly(L-lactic acid) containing bioactive glass ceramic nanoparticles. Acta Biomaterialia, 2008, 4(5): 1297–1306

    Article  CAS  Google Scholar 

  103. Barroca N, Daniel-da-Silva A L, Vilarinho PM, Fernandes MH V. Tailoring the morphology of high molecular weight PLLA scaffolds through bioglass addition. Acta Biomaterialia, 2010, 6(9): 3611–3620

    Article  CAS  Google Scholar 

  104. Fabbri P, Cannillo V, Sola A, Dorigato A, Chiellini F. Highly porous polycaprolactone-45S5 Bioglass® scaffolds for bone tissue engineering. Composites Science and Technology, 2010, 70(13): 1869–1878

    Article  CAS  Google Scholar 

  105. Minaberry Y, Jobbagy M. Macroporous bioglass scaffolds prepared by coupling sol-gel with freeze drying. Chemistry of Materials, 2011, 23(9): 2327–2332

    Article  CAS  Google Scholar 

  106. Doiphode N D, Huang T S, Leu M C, Rahaman M N, Day D E. Freeze extrusion fabrication of 13–93 bioactive glass scaffolds for bone repair. Journal of Materials Science. Materials in Medicine, 2011, 22(3): 515–523

    Article  CAS  Google Scholar 

  107. Garcia A, Izquierdo-Barba I, Colilla M, de Laorden C L, Vallet-Regí M. Lopez de laorden C, Vallet-Regi M. Preparation of 3-D scaffolds in the SiO2-P2O5 system with tailored hierarchical mesomacroporosity. Acta Biomaterialia, 2011, 7(3): 1265–1273

    Article  CAS  Google Scholar 

  108. Yun H S, Kim S E, Park E K. Bioactive glass-poly(epsiloncaprolactone) composite scaffolds with 3 dimensionally hierarchical pore networks. Materials Science and Engineering: C, 2011, 31(2): 198–205

    Article  CAS  Google Scholar 

  109. Valliant E M, Jones J R. Softening bioactive glass for bone regeneration: sol-gel hybrid materials. Soft Matter, 2011, 7(11): 5083–5095

    Article  CAS  Google Scholar 

  110. Mahony O, Tsigkou O, Ionescu C, Minelli C, Ling L, Hanly R, Smith M E, Stevens M M, Jones J R. Silica-gelatin hybrids with tailorable degradation and mechanical properties for tissue regeneration. Advanced Functional Materials, 2010, 20(22): 3835–3845

    Article  CAS  Google Scholar 

  111. Pereira M M, Jones J R, Orefice R L, Hench L L. Preparation of bioactive glass-polyvinyl alcohol hybrid foams by the sol-gel method. Journal of Materials Science. 2005, 16(11): 1045–1050

    CAS  Google Scholar 

  112. Costa H S, Rocha MF, Andrade G I, Barbosa-Stancioli E F, Pereira M M, Orefice R L, Vasconcelos W L, Mansur H S. Sol-gel derived composite from bioactive glass-polyvinyl alcohol. Journal of Materials Science, 2008, 43(2): 494–502

    Article  CAS  Google Scholar 

  113. Costa H S, Stancioli E F B, Pereira MM, Orefice R L, Mansur H S. Synthesis, neutralization and blocking procedures of organic/inorganic hybrid scaffolds for bone tissue engineering applications. Journal of Materials Science, 2009, 20(2): 529–535

    CAS  Google Scholar 

  114. de Oliveira A A R, Ciminelli V, Dantas MSS, Mansur H S, Pereira M M. Acid character control of bioactive glass/polyvinyl alcohol hybrid foams produced by sol-gel. Journal of Sol-Gel Science and Technology, 2008, 47(3): 335–346

    Article  CAS  Google Scholar 

  115. Costa H S, Mansur A A P, Pereira M M, Mansur H S. Engineered hybrid scaffolds of poly(vinyl alcohol)/bioactive glass for potential bone engineering applications: synthesis, characterization, cytocompatibility, and degradation. Journal of Nanomaterials, 2012, 2012: 1–16

    Article  CAS  Google Scholar 

  116. Lin S, Ionescu C, Pike K J, Smith M E, Jones J R. Nanostructure evolution and calcium distribution in sol-gel derived bioactive glass. Journal of Materials Chemistry, 2009, 19(9): 1276–1282

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lijun Ji or Dong Qiu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ji, L., Si, Y., Li, A. et al. Progress of three-dimensional macroporous bioactive glass for bone regeneration. Front. Chem. Sci. Eng. 6, 470–483 (2012). https://doi.org/10.1007/s11705-012-1217-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-012-1217-1

Keywords

Navigation