Skip to main content

Advertisement

Log in

The evolution of image guidance in robotic-assisted laparoscopic prostatectomy (RALP): a glimpse into the future

  • Review Article
  • Published:
Journal of Robotic Surgery Aims and scope Submit manuscript

Abstract

Objectives

To describe the innovative intraoperative technologies emerging to aid surgeons during minimally invasive robotic-assisted laparoscopic prostatectomy.

Methods

We searched multiple electronic databases reporting on intraoperative imaging and navigation technologies, robotic surgery in combination with 3D modeling and 3D printing used during laparoscopic or robotic-assisted laparoscopic prostatectomy. Additional searches were conducted for articles that considered the role of artificial intelligence and machine learning and their application to robotic surgery. We excluded studies using intraoperative navigation technologies during open radical prostatectomy and studies considering technology to visualize lymph nodes.

Summary of findings

Intraoperative imaging using either transrectal ultrasonography or augmented reality was associated with a potential decrease in positive surgical margins rates. Improvements in detecting capsular involvement may be seen with augmented reality. The benefit, feasibility and applications of other imaging modalities such as 3D-printed models and optical imaging are discussed.

Conclusion

The application of image-guided surgery and robotics has led to the development of promising new intraoperative imaging technologies such as augmented reality, fluorescence imaging, optical coherence tomography, confocal laser endomicroscopy and 3D printing. Currently challenges regarding tissue deformation and automatic tracking of prostate movements remain and there is a paucity in the literature supporting the use of these technologies. Urologic surgeons are encouraged to improve and test these advanced technologies in the clinical arena, preferably with comparative, randomized, trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Reproduced with permission from Elsevier Inc [11]

Fig. 2

Reproduced with permission from Elsevier Inc [11]

Fig. 3

Reproduced with permission from Elsevier Inc [23]

Fig. 4

Reproduced with permission from Elsevier Inc [23]

Fig. 5

Reproduced with permission from Springer Nature [27]

Fig. 6

Reproduced with permission from Mary Ann Liebert Inc [29]

Fig. 7

Reproduced with permission from Mary Ann Liebert Inc [34]

Fig. 8

Reproduced with permission from Wolters Kluwer Health Inc [36]

Similar content being viewed by others

Availability of data and material

The authors confirm that the data supporting the findings of this study are openly available within this article or those referenced.

Code availability

Not applicable.

References

  1. Ferlay J et al (2015) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 136(5):E359–E386

    Article  CAS  PubMed  Google Scholar 

  2. Chang SL et al (2015) The impact of robotic surgery on the surgical management of prostate cancer in the USA. BJU Int 115(6):929–936

    Article  PubMed  Google Scholar 

  3. Coughlin GD et al (2018) Robot-assisted laparoscopic prostatectomy versus open radical retropubic prostatectomy: 24-month outcomes from a randomised controlled study. Lancet Oncol 19(8):1051–1060

    Article  PubMed  Google Scholar 

  4. Tosoian JJ, Loeb S (2012) Radical retropubic prostatectomy: comparison of the open and robotic approaches for treatment of prostate cancer. Rev Urol 14(1–2):20–27

    PubMed  PubMed Central  Google Scholar 

  5. Ou YC et al (2013) The trifecta outcome in 300 consecutive cases of robotic-assisted laparoscopic radical prostatectomy according to D’Amico risk criteria. Eur J Surg Oncol 39(1):107–113

    Article  CAS  PubMed  Google Scholar 

  6. Walz J et al (2016) A critical analysis of the current knowledge of surgical anatomy of the prostate related to optimisation of cancer control and preservation of continence and erection in candidates for radical prostatectomy: an update. Eur Urol 70(2):301–311

    Article  PubMed  Google Scholar 

  7. Bianco Jr FJ, Scardino PT, Eastham JA (2005) Radical prostatectomy: long-term cancer control and recovery of sexual and urinary function (“trifecta”). Urology 66(5 Suppl):83–94

    Article  Google Scholar 

  8. Ukimura O, Gill IS (2006) Real-time transrectal ultrasound guidance during nerve sparing laparoscopic radical prostatectomy: pictorial essay. J Urol 175(4):1311–1319

    Article  PubMed  Google Scholar 

  9. Sauvain JL et al (2003) Value of power Doppler and 3D vascular sonography as a method for diagnosis and staging of prostate cancer. Eur Urol 44(1):21–30 (discussion 30–1)

    Article  CAS  PubMed  Google Scholar 

  10. Ukimura O, Magi-Galluzzi C, Gill IS (2006) Real-time transrectal ultrasound guidance during laparoscopic radical prostatectomy: impact on surgical margins. J Urol 175(4):1304–1310

    Article  PubMed  Google Scholar 

  11. Han M et al (2011) Tandem-robot assisted laparoscopic radical prostatectomy to improve the neurovascular bundle visualization: a feasibility study. Urology 77(2):502–506

    Article  PubMed  Google Scholar 

  12. Long JA et al (2012) Real-time robotic transrectal ultrasound navigation during robotic radical prostatectomy: initial clinical experience. Urology 80(3):608–613

    Article  PubMed  Google Scholar 

  13. Hung AJ et al (2012) Robotic transrectal ultrasonography during robot-assisted radical prostatectomy. Eur Urol 62(2):341–348

    Article  PubMed  Google Scholar 

  14. Matsuoka Y et al (2014) Integrated image navigation system using head-mounted display in “RoboSurgeon” endoscopic radical prostatectomy. Wideochir Inne Tech Maloinwazyjne 9(4):613–618

    PubMed  PubMed Central  Google Scholar 

  15. Mohareri O et al (2015) Intraoperative registered transrectal ultrasound guidance for robot-assisted laparoscopic radical prostatectomy. J Urol 193(1):302–312

    Article  PubMed  Google Scholar 

  16. van der Poel HG et al (2008) Peroperative transrectal ultrasonography-guided bladder neck dissection eases the learning of robot-assisted laparoscopic prostatectomy. BJU Int 102(7):849–852

    Article  PubMed  Google Scholar 

  17. Shoji S et al (2014) Intraoperative ultrasonography with a surgeon-manipulated microtransducer during robotic radical prostatectomy. Int J Urol 21(7):736–739

    Article  PubMed  Google Scholar 

  18. Tang SL et al (1998) Augmented reality systems for medical applications. IEEE Eng Med Biol Mag 17(3):49–58

    Article  CAS  PubMed  Google Scholar 

  19. Thompson S et al (2013) Design and evaluation of an image-guidance system for robot-assisted radical prostatectomy. BJU Int 111(7):1081–1090

    Article  PubMed  Google Scholar 

  20. Simpfendörfer T et al (2011) Augmented reality visualization during laparoscopic radical prostatectomy. J Endourol 25(12):1841–1845

    Article  PubMed  Google Scholar 

  21. Rassweiler J et al (2014) Surgical navigation in urology: European perspective. Curr Opin Urol 24(1):81–97

    Article  PubMed  Google Scholar 

  22. Ukimura O et al (2014) Three-dimensional surgical navigation model with TilePro display during robot-assisted radical prostatectomy. J Endourol 28(6):625–630

    Article  PubMed  Google Scholar 

  23. Porpiglia F et al (2018) Augmented reality robot-assisted radical prostatectomy: preliminary experience. Urology 115:184

    Article  PubMed  Google Scholar 

  24. Porpiglia F et al (2019) Three-dimensional elastic augmented-reality robot-assisted radical prostatectomy using hyperaccuracy three-dimensional reconstruction technology: a step further in the identification of capsular involvement. Eur Urol 76(4):505–514

    Article  PubMed  Google Scholar 

  25. Ebbing J et al (2018) Comparison of 3D printed prostate models with standard radiological information to aid understanding of the precise location of prostate cancer: a construct validation study. PLoS ONE 13(6):e0199477

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Shin T, Ukimura O, Gill IS (2016) Three-dimensional printed model of prostate anatomy and targeted biopsy-proven index tumor to facilitate nerve-sparing prostatectomy. Eur Urol 69(2):377–379

    Article  PubMed  Google Scholar 

  27. Porpiglia F et al (2018) Development and validation of 3D printed virtual models for robot-assisted radical prostatectomy and partial nephrectomy: urologists’ and patients’ perception. World J Urol 36(2):201–207

    Article  PubMed  Google Scholar 

  28. Weissleder R, Nahrendorf M (2015) Advancing biomedical imaging. Proc Natl Acad Sci U S A 112(47):14424–14428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ganzer R et al (2009) Intraoperative photodynamic evaluation of surgical margins during endoscopic extraperitoneal radical prostatectomy with the use of 5-aminolevulinic acid. J Endourol 23(9):1387–1394

    Article  PubMed  Google Scholar 

  30. Schaafsma BE et al (2011) The clinical use of indocyanine green as a near-infrared fluorescent contrast agent for image-guided oncologic surgery. J Surg Oncol 104(3):323–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Porpiglia F et al (2018) Selective clamping during laparoscopic partial nephrectomy: the use of near infrared fluorescence guidance. Minerva Urol Nefrol 70(3):326–332

    PubMed  Google Scholar 

  32. Mangano MS et al (2018) Robot-assisted nerve-sparing radical prostatectomy using near-infrared fluorescence technology and indocyanine green: initial experience. Urologia 85(1):29–31

    Article  PubMed  Google Scholar 

  33. Huang D et al (1991) Optical coherence tomography. Science 254(5035):1178–1181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Aron M et al (2007) Second prize: preliminary experience with the Niris optical coherence tomography system during laparoscopic and robotic prostatectomy. J Endourol 21(8):814–818

    Article  PubMed  Google Scholar 

  35. Chen SP, Liao JC (2014) Confocal laser endomicroscopy of bladder and upper tract urothelial carcinoma: a new era of optical diagnosis? Curr Urol Rep 15(9):437

    Article  PubMed  PubMed Central  Google Scholar 

  36. Lopez A et al (2016) Intraoperative optical biopsy during robotic assisted radical prostatectomy using confocal endomicroscopy. J Urol 195(4 Pt 1):1110–1117

    Article  PubMed  Google Scholar 

  37. Navaratnam A, Abdul-Muhsin H, Humphreys M (2018) Updates in urologic robot assisted surgery. F1000Res 7:1948

    Article  Google Scholar 

  38. Aruni G, Amit G, Dasgupta P (2018) New surgical robots on the horizon and the potential role of artificial intelligence. Investig Clin Urol 59(4):221–222

    Article  PubMed  PubMed Central  Google Scholar 

  39. Panesar S et al (2019) Artificial intelligence and the future of surgical robotics. Ann Surg 270(2):223–226

    Article  PubMed  Google Scholar 

  40. Shademan A et al (2016) Supervised autonomous robotic soft tissue surgery. Sci Transl Med 8(337):337ra64

    Article  PubMed  Google Scholar 

  41. Kassahun Y et al (2016) Surgical robotics beyond enhanced dexterity instrumentation: a survey of machine learning techniques and their role in intelligent and autonomous surgical actions. Int J Comput Assist Radiol Surg 11(4):553–568

    Article  PubMed  Google Scholar 

  42. Hughes-Hallett A et al (2015) The current and future use of imaging in urological robotic surgery: a survey of the European Association of Robotic Urological Surgeons. Int J Med Robot 11(1):8–14

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We also would like to acknowledge Riccardo Bertolo in assisting in the initial design of this review article.

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua Makary.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

This a review article and evidence synthesis of existing, ethically approved data, thus no dedicated ethical approval is required for this study.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makary, J., van Diepen, D.C., Arianayagam, R. et al. The evolution of image guidance in robotic-assisted laparoscopic prostatectomy (RALP): a glimpse into the future. J Robotic Surg 16, 765–774 (2022). https://doi.org/10.1007/s11701-021-01305-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11701-021-01305-5

Keywords

Navigation