Skip to main content
Log in

Robotic technique improves entry point alignment for intramedullary nailing of femur fractures compared to the conventional technique: a cadaveric study

  • Original Article
  • Published:
Journal of Robotic Surgery Aims and scope Submit manuscript

Abstract

We aimed to test whether a robotic technique would offer more accurate access to the proximal femoral medullary cavity for insertion of an intramedullary nail compared to the conventional manual technique. The medullary cavity of ten femur specimens was accessed in a conventional fashion using fluoroscopic control. In ten additional femur specimens, ISO-C 3D scans were obtained and a computer program calculated the ideal location of the cavity opening based on the trajectory of the medullary canal. In both techniques, the surgeon opened the cavity using a drill and inserted a radiopaque tube that matched the diameter of the cavity. The mean difference in angle between the proximal opening and the medullary canal in the shaft of the femur was calculated for both groups. Robotic cavity opening was more accurate than the manual technique, with a mean difference in trajectory between the proximal opening and the shaft canal of 2.0° (95% CI 0.6°–3.5°) compared to a mean difference of 4.3° (95% CI 2.11°–6.48°) using the manual technique (P = 0.0218). The robotic technique was more accurate than the manual procedure for identifying the optimal location for opening the medullary canal for insertion of an intramedullary nail. Additional advantages may include a reduction in total radiation exposure, as only one ISO-C 3D scan is needed, as opposed to multiple radiographs when using the manual technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ricci WM, Gallagher B, Haidukewych GJ (2009) Intramedullary nailing of femoral shaft fractures: current concepts. J Am Acad Orthop Surg 17:296–305

    Article  PubMed  Google Scholar 

  2. Christie J, Court-Brown C, Kinninmonth AW, Howie CR (1988) Intramedullary locking nails in the management of femoral shaft fractures. J Bone Jt Surg 70:206–210

    Article  CAS  Google Scholar 

  3. Anastopoulos G, Chissas DD, Dourountakis J, Ntagiopoulos PG, Zacharakis N, Asimakopoulos A et al (2010) Computer-assisted three-dimensional correlation between the femoral neck-shaft angle and the optimal entry point for antegrade nailing. Injury 41:300–305. doi:10.1016/j.injury.2009.09.007

    Article  PubMed  Google Scholar 

  4. Linke B, Ansari Moein C, Bösl O, Verhofstad MHJ, van der Werken C, Schwieger K et al (2008) Lateral insertion points in antegrade femoral nailing and their influence on femoral bone strains. J Orthop Trauma 22:716–722. doi:10.1097/BOT.0b013e318189369e

    Article  PubMed  Google Scholar 

  5. Karnezis IA, Mcbride ART (2003) Access to the medullary canal in closed antegrade femoral nailing : a technical report. Arch Orthop Trauma Surg 123:132–133. doi:10.1007/s00402-002-0464-x

    Article  PubMed  Google Scholar 

  6. Kale SP, Patil N, Pilankar S, Karkhanis AR, Bagaria V (2006) Correct anatomical location of entry point for antegrade femoral nailing. Injury 37:990–993. doi:10.1016/j.injury.2006.06.003

    Article  PubMed  CAS  Google Scholar 

  7. Wilharm A, Marintschev I, Hofmann GO, Gras F (2013) 2D-fluoroscopic based navigation for Gamma 3 nail insertion versus conventional procedure- a feasibility study. BMC Musculoskelet Disord 14:74. doi:10.1186/1471-2474-14-74

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Crookshank MC, Edwards MR, Sellan M, Whyne CM, Schemitsch EH (2014) Can fluoroscopy-based computer navigation improve entry point selection for intramedullary nailing of femur fractures? Clin Orthop Relat Res 472:2720–2727. doi:10.1007/s11999-013-2878-x

    Article  PubMed  Google Scholar 

  9. Gosling T, Westphal R, Hufner T, Faulstich J, Kfuri M, Wahl F et al (2005) Robot-assisted fracture reduction: a preliminary study in the femur shaft. Med Biol Eng Comput 43:115–120. doi:10.1007/BF02345131

    Article  PubMed  CAS  Google Scholar 

  10. Westphal R, Gösling T, Oszwald M, Bredow J, Klepzig D, Winkelbach S et al (2008) Robot assisted fracture reduction. Springer Tracts Adv Robot 39:153–163. doi:10.1007/978-3-540-77457-0_15

    Article  Google Scholar 

  11. Westphal R, Winkelbach S, Wahl F, Gosling T, Oszwald M, Hufner T et al (2009) Robot-assisted long bone fracture reduction. Int J Robot Res 28:1259–1278. doi:10.1177/0278364909101189

    Article  Google Scholar 

  12. Oszwald M, Westphal R, Bredow J, Calafi A, Hufner T, Wahl F et al (2010) Robot-assisted fracture reduction using three-dimensional intraoperative fracture visualization: an experimental study on human cadaver femora. J Orthop Res 28:1240–1244. doi:10.1002/jor.21118

    Article  PubMed  Google Scholar 

  13. Westphal R, Winkelbach S, Goesling T, Oszwald M, Huefner T, Krettek C et al (2008) Telemanipulated Long Bone Fracture Reduction. Med Robot. doi:10.5772/5271

    Article  Google Scholar 

  14. Krettek C, Rudolf J, Schandelmaier P, Guy P, Könemann B, Tscherne H (1996) Unreamed intramedullary nailing of femoral shaft fractures: operative technique and early clinical experience with the standard locking option. Injury 27:233–254. doi:10.1016/0020-1383(96)00008-3

    Article  PubMed  CAS  Google Scholar 

  15. Oszwald M, Westphal R, Klepzig D, Khalafi A, Gaulke R, Müller CW et al (2010) Robotized access to the medullary cavity for intramedullary nailing of the femur. Technol Health Care 18:173–180. doi:10.3233/THC-2010-0580

    Article  PubMed  Google Scholar 

  16. Dora C, Leunig M, Beck M, Rothenfluh D, Ganz R (2001) Entry point soft tissue damage in antegrade femoral nailing: a cadaver study. J Orthop Trauma 15:488–493. doi:10.1097/00005131-200109000-00005

    Article  PubMed  CAS  Google Scholar 

  17. Ansari Moein CM, Verhofstad MHJ, Bleys RLAW, van der Werken C (2005) Soft tissue injury related to choice of entry point in antegrade femoral nailing: piriform fossa or greater trochanter tip. Injury 36:1337–1342. doi:10.1016/j.injury.2004.07.052

    Article  PubMed  CAS  Google Scholar 

  18. Ansari Moein CM, Verhofstad MHJ, Bleys RLAW, van der Werken C (2008) Soft tissue anatomy around the hip and its implications for choice of entry point in antegrade femoral nailing. Clin Anat 21:568–574. doi:10.1002/ca.20665

    Article  PubMed  CAS  Google Scholar 

  19. Ricci WM, Schwappach J, Tucker M, Coupe K, Brandt A, Sanders R et al (2006) Trochanteric versus piriformis entry portal for the treatment of femoral shaft fractures. J Orthop Trauma 20:663–667. doi:10.1097/01.bot.0000248472.53154.14

    Article  PubMed  Google Scholar 

  20. Ostrum RF, Marcantonio A, Marburger R (2005) A critical analysis of the eccentric starting point for trochanteric intramedullary femoral nailing. J Orthop Trauma 19:681–686

    Article  PubMed  Google Scholar 

  21. Byun YS, Jung GH (2016) Three-dimensional correlation between trochanteric fossa and the ideal entry point for antegrade femoral nailing. Injury 47:2539–2543. doi:10.1016/j.injury.2016.09.026

    Article  PubMed  Google Scholar 

  22. Grechenig W, Pichler W, Clement H, Tesch NP, Grechenig S (2006) Anatomy of the greater femoral trochanter: clinical importance for intramedullary femoral nailing: anatomic study of 100 cadaver specimens. Acta Orthop 77:899–901. doi:10.1080/17453670610013196

    Article  PubMed  Google Scholar 

  23. Tupis TM, Altman GT, Altman DT, Cook HA, Miller MC (2012) Femoral bone strains during antegrade nailing: a comparison of two entry points with identical nails using finite element analysis. Clin Biomech (Bristol, Avon) 27:354–359. doi:10.1016/j.clinbiomech.2011.11.002

    Article  Google Scholar 

  24. Panzica M, Suero EM, Westphal R, Citak M, Liodakis E, Hawi N, et al (2017) Robotic distal locking of intramedullary nailing: technical description and cadaveric testing. Int J Med Robot Comput Assist Surg e1831. doi:10.1002/rcs.1831

Download references

Acknowledgements

We thank Prof. Andreas Schmiedl from the Anatomy Department at the Hannover Medical School for his help with procuring the necessary anatomic specimens.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo M. Suero.

Ethics declarations

Funding

This study was performed with funding from the Deutsche Forschungsgemeinschaft (DFG) (Grant number KR 2161/4-1 | WA 848/19-1).

Conflict of interest

Author Eduardo M. Suero, Author Ralf Westphal, Author Musa Citak, Author Nael Hawi, Author Emmanouil Liodakis, Author Christian Krettek, and Author Timo Stuebig declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human subjects or with animals performed by any of the authors.

Informed consent

This article does not contain patient data.

Human or animal research

This article does not contain any studies with human participants or animals performed by any of the authors. No informed consent was required.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suero, E.M., Westphal, R., Citak, M. et al. Robotic technique improves entry point alignment for intramedullary nailing of femur fractures compared to the conventional technique: a cadaveric study. J Robotic Surg 12, 311–315 (2018). https://doi.org/10.1007/s11701-017-0735-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11701-017-0735-8

Keywords

Navigation