Skip to main content
Log in

Effective study of antibacterial and anticancer profiling: Nyctanthes arbor-tristis functionalized silver–zinc oxide nanocomposite

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

In materials science, the method of green synthesis is rapid, reproducible, sustainable and ecologically sound in the environment. It has broad range of nanomaterials which includes metal, metal oxide, hybrid and biomaterials. In the present study, the silver–zinc oxide nanocomposite (NCs) using fresh leaf extract Nyctanthes arbor-tristis is synthesized by co-precipitation method. From XRD analysis, the crystalline size of Ag–ZnO NCs is increased from 13.02 to 15.15 nm. The functional groups and chemical bonds of ZnO and Ag–ZnO NCs via the leaf extract Nyctanthes arbor-tristis are investigated using FTIR spectral analysis. Absorbance spectra demonstrate significant shift to larger wavelength (red shift) on increasing Ag due to strong interaction between oxides of zinc and silver. The surface morphology of ZnO and Ag–ZnO NCs is determined by scanning electron microscopy. The elemental composition of ZnO and Ag–ZnO NCs is confirmed by EDX analysis. The zone of inhibition against gram positive and gram negative bacteria is determined by antibacterial activity using agar well diffusion method and outcome of the result is error limit in the inhibition zone for increasing the concentration of silver. The Ag–ZnO NCs shows moderate cell viability against HT-29 cell line using Nyctanthes arbor-tristis leaf extract.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Abbasi BH, Shah M, Hashmi SS et al (2019) Green bio-assisted synthesis, characterization and biological evaluation of biocompatible ZnO NPs synthesized from different tissues of milk thistle (Silybum marianum). Nanomaterials 9:1171

    Article  CAS  Google Scholar 

  • Abd El-Kader MFH, Elabbasy MT, Adeboye AA et al (2021) Morphological, structural and antibacterial behavior of eco-friendly of ZnO/TiO2 nanocomposite synthesized via Hibiscus rosa-sinensis extract. J Mater Res Technol 15:2213–2220. https://doi.org/10.1016/j.jmrt.2021.09.048

    Article  CAS  Google Scholar 

  • Agrawal J, Pal A (2013) Nyctanthes arbor-tristis Linn—a critical ethnopharmacological review. J Ethnopharmacol 146:645–658

    Article  CAS  Google Scholar 

  • Ahmad I, Ahmed E, Ullah M et al (2018) Synthesis and characterization of silver doped ZnO nanoparticles for hydrogen production. J Ovonic Res 14:6

    Google Scholar 

  • Akintelu SA, Folorunso A (2018) Characterization and antimicrobial investigation of synthesized silver nanoparticles from Annona Muricata leaf extracts. Nanotechnol Nanomed Nanobiotechnol 6:1–4. https://doi.org/10.24966/NTMB-2044/100022

  • Alharthi F, Alghamdi A, Al-Zaqri N et al (2020) Facile one-pot green synthesis of Ag–ZnO Nanocomposites using potato peeland their Ag concentration dependent photocatalytic properties. Sci Rep 10:1–14. https://doi.org/10.1038/s41598-020-77426-y

    Article  CAS  Google Scholar 

  • Ali SG, Ansari MA, Khan HM et al (2018) Antibacterial and antibiofilm potential of green synthesized silver nanoparticles against imipenem resistant clinical isolates of P. aeruginosa. BioNanoScience 8:544–553

    Article  Google Scholar 

  • Ashe B (2011) A detail investigation to observe the effect of zinc oxide and Silver nanoparticles in biological system. MTech Research

  • ACAR Ça (2021) Green synthesis of zinc oxide nanoparticles using aqueous extract of Achiella millefolium L. in vitro anti-cancer potential on lung and colon cancer cells. Turk J Health Sci Life 4:40–45

    Google Scholar 

  • Chan YY, Pang YL, Lim S et al (2020) Biosynthesized Fe-and Ag-doped ZnO nanoparticles using aqueous extract of Clitoria ternatea Linn for enhancement of sonocatalytic degradation of Congo red. Environ Sci Pollut Res 27:34675–34691

    Article  CAS  Google Scholar 

  • Chitradevi T, Lenus AJ, Jaya NV (2019) Structure, morphology and luminescence properties of sol-gel method synthesized pure and Ag-doped ZnO nanoparticles. Mater Res Express 7:015011

    Article  Google Scholar 

  • Das RK, Gogoi N, Bora U (2011) Green synthesis of gold nanoparticles using Nyctanthes arbortristis flower extract. Bioprocess Biosyst Eng 34:615–619

    Article  CAS  Google Scholar 

  • Dowlatababdi F, Amiri G, Mohammadi Sichani M (2017) Investigation of the antimicrobial effect of silver doped Zinc Oxide nanoparticles. Nanomedicine J 4:50–54. https://doi.org/10.22038/NMJ.2017.8053

  • Dulta K, Koşarsoy Ağçeli G, Chauhan P et al (2021) A novel approach of synthesis zinc oxide nanoparticles by Bergenia ciliata Rhizome extract: antibacterial and anticancer potential. J Inorg Organomet Polym Mater 31:180–190. https://doi.org/10.1007/s10904-020-01684-6

    Article  CAS  Google Scholar 

  • Erjaee H, Rajaian H, Nazifi S (2017) Synthesis and characterization of novel silver nanoparticles using Chamaemelum nobile extract for antibacterial application. Adv Nat Sci Nanosci Nanotechnol 8:025004. https://doi.org/10.1088/2043-6254/aa690b

    Article  CAS  Google Scholar 

  • Fanoro OT, Parani S, Maluleke R et al (2021) Biosynthesis of smaller-sized platinum nanoparticles using the leaf extract of Combretum erythrophyllum and its antibacterial activities. Antibiotics 10:1275

    Article  CAS  Google Scholar 

  • Goh EG, Xu X, McCormick PG (2014) Effect of particle size on the UV absorbance of zinc oxide nanoparticles. Scr Mater 78:49–52

    Article  Google Scholar 

  • Gurgur E, Oluyamo SS, Adetuyi AO et al (2020) Green synthesis of zinc oxide nanoparticles and zinc oxide–silver, zinc oxide–copper nanocomposites using Bridelia ferruginea as biotemplate. SN Appl Sci 2:1–12

    Article  Google Scholar 

  • Hameed ASH, Karthikeyan C, Ahamed AP et al (2016) In vitro antibacterial activity of ZnO and Nd doped ZnO nanoparticles against ESBL producing Escherichia coli and Klebsiella pneumoniae. Sci Rep 6:1–11

    Article  Google Scholar 

  • Hirota K, Sugimoto M, Kato M et al (2010) Preparation of zinc oxide ceramics with a sustainable antibacterial activity under dark conditions. Ceram Int 36:497–506. https://doi.org/10.1016/j.ceramint.2009.09.026

    Article  CAS  Google Scholar 

  • Hojjati-Najafabadi A, Davar F, Enteshari Z, Hosseini-Koupaei M (2021) Antibacterial and photocatalytic behaviour of green synthesis of Zn0. 95Ag0. 05O nanoparticles using herbal medicine extract. Ceram Int 47:31617–31624

    Article  CAS  Google Scholar 

  • Jamdagni P, Khatri P, Rana JS (2018) Green synthesis of zinc oxide nanoparticles using flower extract of Nyctanthes arbor-tristis and their antifungal activity. J King Saud Univ-Sci 30:168–175

    Article  Google Scholar 

  • Jomehzadeh N, Koolivand Z, Dahdouh E et al (2021) Investigating in-vitro antimicrobial activity, biosynthesis, and characterization of silver nanoparticles, zinc oxide nanoparticles, and silver-zinc oxide nanocomposites using Pistacia Atlantica Resin. Mater Today Commun 27:102457

    Article  CAS  Google Scholar 

  • Kayani ZN, Manzoor F, Zafar A et al (2020) Impact of Ag doping on structural, optical, morphological, optical and photoluminescent properties of ZnO nanoparticles. Opt Quantum Electron 52:344. https://doi.org/10.1007/s11082-020-02460-z

    Article  CAS  Google Scholar 

  • Khalil AT, Ovais M, Ullah I et al (2017) Sageretia thea (Osbeck.) mediated synthesis of zinc oxide nanoparticles and its biological applications. Nanomed 12:1767–1789

    Article  CAS  Google Scholar 

  • Kumar V, Prakash J, Singh JP et al (2017) Role of silver doping on the defects related photoluminescence and antibacterial behaviour of zinc oxide nanoparticles. Colloids Surf B Biointerfaces 159:191–199. https://doi.org/10.1016/j.colsurfb.2017.07.071

    Article  CAS  Google Scholar 

  • Kumbhar DA, Nalawade AM, Nalawade RA, Raut SB (2016) Study of morphological change in ZnO nanoparticles by capping agents using Sol-gel method. In: Proceeding of international conference on advances in mterials science pp 309–312

  • Mallikarjunaswamy M, Ranganatha L, Ramu R et al (2020) Facile microwave-assisted green synthesis of ZnO nanoparticles: application to photodegradation, antibacterial and antioxidant. J Mater Sci Mater Electron 31:1004–1021. https://doi.org/10.1007/s10854-019-02612-2

    Article  CAS  Google Scholar 

  • Mayekar J, Radha S (2021) Synthesis and characterization of zinc oxide nanoparticles and silver doped zinc oxide nanoparticles and their comparative antibacterial activity. J Interdiscip Cycle Res XIII:2127–2133

  • Mousavi-Kouhi SM, Beyk-Khormizi A, Amiri MS et al (2021) Silver-zinc oxide nanocomposite: from synthesis to antimicrobial and anticancer properties. Ceram Int 47:21490–21497

    Article  CAS  Google Scholar 

  • Munir T, Kashif M, Mahmood K et al (2019) Impact of silver dopant on structural, optical and electrical properties of ZnO nanoparticles. J Ovonic Res 15:173–179

    CAS  Google Scholar 

  • Narayanan P, Wilson S, Abraham A, Sevanan M (2012) Synthesis, characterization, and antimicrobial activity of zinc oxide nanoparticles against human pathogens. BioNanoScience 2:329–335. https://doi.org/10.1007/s12668-012-0061-6

    Article  Google Scholar 

  • Nethravathi PC, Shruthi GS, Suresh D et al (2015) Garcinia xanthochymus mediated green synthesis of ZnO nanoparticles: photoluminescence, photocatalytic and antioxidant activity studies. Ceram Int 41:8680–8687. https://doi.org/10.1016/j.ceramint.2015.03.084

    Article  CAS  Google Scholar 

  • Parekh S, Soni A (2020) Nyctanthes arbor-tristis: comprehensive review on its pharmacological, antioxidant, and anticancer activities. J Appl Biol Biotechnol 8:9

    Google Scholar 

  • Rani M, Yadav J, Shanker U (2022) Green synthesized zinc-based nanocomposites for environmental remediation. In: Biorenewable nanocomposite materials, vol. 2: desalination and wastewater remediation. American Chemical Society, pp 141–163

  • Rao B, Tang R-C (2017) Green synthesis of silver nanoparticles with antibacterial activities using aqueous Eriobotrya japonica leaf extract. Adv Nat Sci Nanosci Nanotechnol 8:015014. https://doi.org/10.1088/2043-6254/aa5983

    Article  CAS  Google Scholar 

  • Saravanadevi K, Kavitha M, Karpagavinayagam P et al (2020) Biosynthesis of ZnO and Ag doped ZnO nanoparticles from Vitis vinifera leaf for antibacterial, photocatalytic application. Mater Today Proc. https://doi.org/10.1016/j.matpr.2020.07.707

    Article  Google Scholar 

  • Shahid S, Khan S, Ahmad W et al (2018) Size-dependent bacterial growth inhibition and antibacterial activity of Ag-doped ZnO nanoparticles under different atmospheric conditions. Indian J Pharm Sci 80:173–180. https://doi.org/10.4172/pharmaceutical-sciences.1000342

    Article  CAS  Google Scholar 

  • Sharma N, Kumar J, Thakur S et al (2013) Antibacterial study of silver doped zinc oxide nanoparticles against Staphylococcus aureus and Bacillus subtilis. Drug Invent Today 5:50–54. https://doi.org/10.1016/j.dit.2013.03.007

    Article  CAS  Google Scholar 

  • Sharmila G, Muthukumaran C, Sandiya K et al (2018) Biosynthesis, characterization, and antibacterial activity of zinc oxide nanoparticles derived from Bauhinia tomentosa leaf extract. J Nanostructure Chem 8:293–299

    Article  CAS  Google Scholar 

  • Sharwani AA, Narayanan KB, Khan ME, Han SS (2022) Photocatalytic degradation activity of goji berry extract synthesized silver-loaded mesoporous zinc oxide (Ag@ZnO) nanocomposites under simulated solar light irradiation. Sci Rep 12:10017. https://doi.org/10.1038/s41598-022-14117-w

    Article  CAS  Google Scholar 

  • Sirelkhatim A, Mahmud S, Seeni A et al (2015) Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-Micro Lett 7:219–242. https://doi.org/10.1007/s40820-015-0040-x

    Article  CAS  Google Scholar 

  • Srinivasahan V, Durairaj B (2014) Antimicrobial activities of hydroethanolic extract of Morinda citrifolia fruit. Int J Curr Microbiol Appl Sci 3:26–33

    Google Scholar 

  • Suresh J, Pradheesh G, Alexramani V et al (2018) Green synthesis and characterization of zinc oxide nanoparticle using insulin plant (Costus pictus D. Don) and investigation of its antimicrobial as well as anticancer activities. Adv Nat Sci Nanosci Nanotechnol 9:015008

  • Thakur D, Sharma A, Rana DS et al (2020) Facile synthesis of silver-doped zinc oxide nanostructures as efficient scaffolds for detection of p-nitrophenol. Chemosensors 8:108

    Article  CAS  Google Scholar 

  • Velmurugan P, Park J-H, Lee S-M et al (2016) Eco-friendly approach towards green synthesis of zinc oxide nanocrystals and its potential applications. Artif Cells Nanomed Biotechnol 44:1537–1543

    Article  CAS  Google Scholar 

  • Verma R, Basheer Khan A (2021) Microwave-irradiated green synthesis of a silver/zinc oxide nanocomposite from Atalantia monophylla (L.) Leaf Extract. Chem Eng Technol 44:819–825

    Article  CAS  Google Scholar 

  • Vijayakumar S, Vinoj G, Malaikozhundan B et al (2015) Plectranthus amboinicus leaf extract mediated synthesis of zinc oxide nanoparticles and its control of methicillin resistant Staphylococcus aureus biofilm and blood sucking mosquito larvae. Spectrochim Acta A Mol Biomol Spectrosc 137:886–891

    Article  CAS  Google Scholar 

  • Vijayakumar S, Mahadevan S, Arulmozhi P et al (2018) Green synthesis of zinc oxide nanoparticles using Atalantia monophylla leaf extracts: characterization and antimicrobial analysis. Mater Sci Semicond Process 82:39–45

    Article  CAS  Google Scholar 

  • Vimala DS, Murugesan R, Francesco M et al (2019) Comparative study on anti-proliferative potentials of zinc oxide and aluminium oxide nanoparticleffs in colon cancer cells. Acta Bio Medica Atenei Parm 90:241–247. https://doi.org/10.23750/abm.v90i2.6939

Download references

Funding

The authors declare that no funds, grants, or other support are received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

KS: Conceptualization, Methodology, Formal analysis, Investigation and Writing—Original Draft, RM: Validation, Investigation, Resources, and Supervision, VK: Validation, Formal analysis, SG: Review & Editing, Data Curation.

Corresponding author

Correspondence to R. Mathammal.

Ethics declarations

Conflict of interest

The authors have no relevant financial or nonfinancial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shreema, K., Mathammal, R., Kalaiselvi, V. et al. Effective study of antibacterial and anticancer profiling: Nyctanthes arbor-tristis functionalized silver–zinc oxide nanocomposite. Chem. Pap. 77, 185–196 (2023). https://doi.org/10.1007/s11696-022-02469-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-022-02469-6

Keywords

Navigation