Skip to main content

Advertisement

Log in

Investigations of conducting polymers, carbon materials, oxide and sulfide materials for supercapacitor applications: a review

  • Review
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Supercapacitors are gaining popularity as energy storage devices because of their quick charge/discharge rates, prolonged cycle stability, and high specific power. Low-cost active electrode materials have piqued the interest of researchers in energy storage applications, notably supercapacitor applications. Carbon-based electrode materials have demonstrated excellent performance for electrochemical double-layer capacitors because of outstanding chemical and physical properties, low cost, large expanse, conduction, and extended life at high temperatures. Notably, graphene compound materials performed well for supercapacitors and had a long life of 335 000 cycles. Conducting polymers have exceptional and critical characteristics, such as metal-like conduction and reversible ability between redox states. Recent research interests include the creation of novel materials, namely mixed metal oxides and metal sulfides, for supercapacitors applications. The electrodes of supercapacitors, which are mostly made of metal oxides (Co3O4, MnO2, WO3, NiO, and TiO2), have a high degree of stability and retention (up to 94%). Currently, metal sulfide-based materials, including CoNi2S4 and Ni3S2, have attained specific capacitance values of up to 3296 F/g. When compared to standard capacitors, the supercapacitors outperformed them and employed high power density storage devices. The electrodes of supercapacitors, which are mostly made of metal oxides (Co3O4, MnO2, WO3, NiO, and TiO2), have a high degree of stability and retention (up to 94 percent). Presently, the review focuses on active electrode materials for supercapacitors such as carbon-based materials, conducting polymers, metal oxides, and metal sulfide compounds. The objective of this review is fivefold: (1) to present the fabrication of symmetric and asymmetric supercapacitor cells; (2) to describe the performance of carbon-based materials for electrochemical double-layer capacitor; (3) to describe the performance of conducting polymers for supercapacitors in the aqueous and non-aqueous electrolyte; (4) to describe the high-performance metal oxide and metal sulfide for supercapacitor; (5) to outline the major challenges in the technology development and this technology is far more advanced than batteries and has been utilized in a wide range of sectors, including electronics, industries, medicine, and the military.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdah MAAM, Azman NHN, Kulandaivalu S, Sulaiman Y (2020) Review of the use of transition-metal-oxide and conducting polymer-based fibres for high-performance supercapacitors. Mater Des 186:108199

    Article  CAS  Google Scholar 

  • Algharaibeh Z, Liu X, Pickup PG (2009) An asymmetric anthraquinone-modified carbon/ruthenium oxide supercapacitor. J Power Sour 187(2):640–643

    Article  CAS  Google Scholar 

  • An KH, Kim WS, Park YS, Moon JM, Bae DJ, Lim SC, Lee YS, Lee YH (2001) Electrochemical properties of high-power supercapacitors using single-walled carbon nanotube electrodes. Adv Func Mater 11(5):387–392

    Article  CAS  Google Scholar 

  • An S, Park S, Ko H, Lee C (2014) Fabrication of WO3 nanotube sensors and their gas sensing properties. Ceram Int 40(1):1423–1429

    Article  CAS  Google Scholar 

  • Arauzo P, Maziarka P, Olszewski M, Isemin R, Muratova N, Ronsse F, Kruse A (2020) Valorization of the poultry litter through wet torrefaction and different activation treatments. Sci Total Environ 732:139288

    Article  CAS  PubMed  Google Scholar 

  • Ariyanayagamkumarappa D, Zhitomirsky I (2012) Electropolymerization of polypyrrole films on stainless steel substrates for electrodes of electrochemical supercapacitors. Synth Met 162(9–10):868–872

    Article  CAS  Google Scholar 

  • Azam MA, Ramli NSN, Nor NANM, Nawi TIT (2021) Recent advances in biomass-derived carbon, mesoporous materials, and transition metal nitrides as new electrode materials for supercapacitor: a short review. IJER 45(6):8335–8346

    CAS  Google Scholar 

  • Barakat NA, Khil MS, Sheikh FA, Kim HY (2008) Synthesis and optical properties of two cobalt oxides (CoO and Co3O4) nanofibers produced by electrospinning process. The J Phys Chem C 112(32):12225–12233

    Article  CAS  Google Scholar 

  • Behm N, Brokaw D, Overson C, Peloquin D, Poler JC (2013) High-throughput microwave synthesis and characterization of NiO nanoplates for supercapacitor devices. J Mater Sci 48(4):1711–1716

    Article  CAS  Google Scholar 

  • Binitha N, Suraja P, Yaakob Z, Resmi M, Silija P (2010) Simple synthesis of Co 3 O 4 nanoflakes using a low temperature sol–gel method suitable for photodegradation of dyes. J Sol-Gel Sci Technol 53(2):466–469

    Article  CAS  Google Scholar 

  • Biswas S, Drzal LT (2010) Multilayered nano-architecture of variable sized graphene nanosheets for enhanced supercapacitor electrode performance. ACS Appl Mater Interfaces 2(8):2293–2300

    Article  CAS  PubMed  Google Scholar 

  • Brown B, Swain B, Hiltwine J, Brooks DB, Zhou Z (2014) Carbon nanosheet buckypaper: A graphene-carbon nanotube hybrid material for enhanced supercapacitor performance. J Power Sour 272:979–986

    Article  CAS  Google Scholar 

  • Burke A (2000) Ultracapacitors: why, how, and where is the technology. J Power Sour 91(1):37–50

    Article  CAS  Google Scholar 

  • Cai D, Huang H, Wang D, Liu B, Wang L, Liu Y, Li Q, Wang T (2014) High-performance supercapacitor electrode based on the unique ZnO@ Co3O4 core/shell heterostructures on nickel foam. ACS Appl Mater Interfaces 6(18):15905–15912

    Article  CAS  PubMed  Google Scholar 

  • Çelik B, Çelik İ, Dolaş H, Görçay H, Şahin Y, Sarac AS, Pekmez K (2014) Electrochemical synthesis, characterization and capacitive properties of novel thiophene based conjugated polymer. React Funct Polym 83:107–112

    Article  CAS  Google Scholar 

  • Chang K-H, Hu C-C, Huang C-M, Liu Y-L, Chang C-I (2011) Microwave-assisted hydrothermal synthesis of crystalline WO3–WO3· 0.5 H2O mixtures for pseudocapacitors of the asymmetric type. J Power Sour 196(4):2387–2392

    Article  CAS  Google Scholar 

  • Chavhan MP, Sethi SR, Ganguly S (2020) Mixed metal oxides in synergy at nanoscale: electrospray induced porosity of in situ grown film electrode for use in electrochemical capacitor. Electrochim Acta 347:136277

    Article  CAS  Google Scholar 

  • Chen S, Zhitomirsky I (2014) Capacitive behaviour of polypyrrole, prepared by electrochemical and chemical methods. Mater Lett 125:92–95

    Article  CAS  Google Scholar 

  • Chen SQ, Wang Y (2010) Microwave-assisted synthesis of a Co3O4–graphene sheet-on-sheet nanocomposite as a superior anode material for Li-ion batteries. J Mater Chem 20(43):9735–9739

    Article  CAS  Google Scholar 

  • Chou T-C, Huang C-H, Doong R-A (2014) Fabrication of hierarchically ordered porous carbons using sugarcane bagasse as the scaffold for supercapacitor applications. Synth Met 194:29–37

    Article  CAS  Google Scholar 

  • Conway BE (1991) Transition from “supercapacitor” to “battery” behavior in electrochemical energy storage. J Electrochem Soc 138(6):1539

    Article  CAS  Google Scholar 

  • Conway BE, Pell W, Liu T (1997) Diagnostic analyses for mechanisms of self-discharge of electrochemical capacitors and batteries. J Power Sour 65(1–2):53–59

    Article  CAS  Google Scholar 

  • D’Arcy JM, El-Kady MF, Khine PP, Zhang L, Lee SH, Davis NR, Liu DS, Yeung MT, Kim SY, Turner CL (2014) Vapor-phase polymerization of nanofibrillar poly (3, 4-ethylenedioxythiophene) for supercapacitors. ACS Nano 8(2):1500–1510

    Article  PubMed  CAS  Google Scholar 

  • Deng M-J, Huang F-L, Sun I-W, Tsai W-T, Chang J-K (2009) An entirely electrochemical preparation of a nano-structured cobalt oxide electrode with superior redox activity. Nanotechnology 20(17):175602

    Article  PubMed  CAS  Google Scholar 

  • Devaraj S, Munichandraiah N (2008) Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties. The J Phys Chem C 112(11):4406–4417

    Article  CAS  Google Scholar 

  • Dubal D, Patil S, Kim W, Lokhande C (2011) Supercapacitors based on electrochemically deposited polypyrrole nanobricks. Mater Lett 65(17–18):2628–2631

    Article  CAS  Google Scholar 

  • Fan L-Z, Maier J (2006) High-performance polypyrrole electrode materials for redox supercapacitors. Electrochem Commun 8(6):937–940

    Article  CAS  Google Scholar 

  • Frackowiak E, Jurewicz K, Szostak K, Delpeux S, Beguin F (2002) Nanotubular materials as electrodes for supercapacitors. Fuel Process Technol 77:213–219

    Article  Google Scholar 

  • Furukawa T, Matsui H, Hasegawa H, Karuppuchamy S, Yoshihara M (2007) Electronic behaviours of calcined materials from a (S-nickel-S-phenylene-O)-strontium-(O-phenylene-S-selenium-S) hybrid copolymer. Solid State Commun 142(1–2):99–103

    Article  CAS  Google Scholar 

  • Fusalba F, Gouérec P, Villers D, Bélanger D (2001) Electrochemical characterization of polyaniline in nonaqueous electrolyte and its evaluation as electrode material for electrochemical supercapacitors. J Electrochem Soc 148(1):A1

    Article  CAS  Google Scholar 

  • Ganesh V, Pitchumani S, Lakshminarayanan V (2006) New symmetric and asymmetric supercapacitors based on high surface area porous nickel and activated carbon. J Power Sour 158(2):1523–1532

    Article  CAS  Google Scholar 

  • Gao M, Wang W-K, Rong Q, Jiang J, Zhang Y-J, Yu H-Q (2018) Porous ZnO-coated Co3O4 nanorod as a high-energy-density supercapacitor material. ACS Appl Mater Interfaces 10(27):23163–23173

    Article  CAS  PubMed  Google Scholar 

  • Gao Y, Zhou YS, Qian M, He XN, Redepenning J, Goodman P, Li HM, Jiang L, Lu YF (2013) Chemical activation of carbon nano-onions for high-rate supercapacitor electrodes. Carbon 51:52–58

    Article  CAS  Google Scholar 

  • Geetha S, Trivedi D (2005) A new route to synthesize high degree polythiophene in a room temperature melt medium. Synth Met 155(1):232–239

    Article  CAS  Google Scholar 

  • Ghenaatian H, Mousavi M, Rahmanifar M (2012) High performance hybrid supercapacitor based on two nanostructured conducting polymers: self-doped polyaniline and polypyrrole nanofibers. Electrochim Acta 78:212–222

    Article  CAS  Google Scholar 

  • Ghosh S, Inganäs O (2000) Networks of electron-conducting polymer in matrices of ion-conducting polymers applications to fast electrodes. Electrochem Solid State Lett 3(5):213

    Article  CAS  Google Scholar 

  • González A, Goikolea E, Barrena JA, Mysyk R (2016) Review on supercapacitors: technologies and materials. Renew Sustain Energy Rev 58:1189–1206

    Article  CAS  Google Scholar 

  • Haas O, Cairns EJ (1999) Electrochemical energy storage. Annual Reports Section" C"(Physical Chemistry), 95, 163–198

  • He Y-B, Li G-R, Wang Z-L, Su C-Y, Tong Y-X (2011) Single-crystal ZnO nanorod/amorphous and nanoporous metal oxide shell composites: controllable electrochemical synthesis and enhanced supercapacitor performances. Energy Environ Sci 4(4):1288–1292

    Article  CAS  Google Scholar 

  • Hong J-I, Yeo I-H, Paik W-K (2001) Conducting polymer with metal oxide for electrochemical capacitor: poly (3, 4-ethylenedioxythiophene) RuO x electrode. J Electrochem Soc 148(2):A156

    Article  CAS  Google Scholar 

  • Hu W, Chen R, Xie W, Zou L, Qin N, Bao D (2014) CoNi2S4 nanosheet arrays supported on nickel foams with ultrahigh capacitance for aqueous asymmetric supercapacitor applications. ACS Appl Mater Interfaces 6(21):19318–19326

    Article  CAS  PubMed  Google Scholar 

  • Hu W, Wei H, She Y, Tang X, Zhou M, Zang Z, Du J, Gao C, Guo Y, Bao D (2017) Flower-like nickel-zinc-cobalt mixed metal oxide nanowire arrays for electrochemical capacitor applications. J Alloy Compd 708:146–153

    Article  CAS  Google Scholar 

  • Huang M, Li F, Zhao XL, Luo D, You XQ, Zhang YX, Li G (2015) Hierarchical ZnO@ MnO2 core-shell pillar arrays on Ni foam for binder-free supercapacitor electrodes. Electrochim Acta 152:172–177

    Article  CAS  Google Scholar 

  • Huang S, Zhu X, Sarkar S, Zhao Y (2019) Challenges and opportunities for supercapacitors. APL Mater 7(10):100901

    Article  CAS  Google Scholar 

  • Huggins RA (2000) Supercapacitors and electrochemical pulse sources. Solid State Ion 134(1–2):179–195

    Article  CAS  Google Scholar 

  • Hughes M, Chen GZ, Shaffer MS, Fray DJ, Windle AH (2002) Electrochemical capacitance of a nanoporous composite of carbon nanotubes and polypyrrole. Chem Mater 14(4):1610–1613

    Article  CAS  Google Scholar 

  • Inagaki M, Konno H, Tanaike O (2010) Carbon materials for electrochemical capacitors. J Power Sour 195(24):7880–7903

    Article  CAS  Google Scholar 

  • Izadi-Najafabadi A, Yamada T, Futaba DN, Yudasaka M, Takagi H, Hatori H, Iijima S, Hata K (2011) High-power supercapacitor electrodes from single-walled carbon nanohorn/nanotube composite. ACS Nano 5(2):811–819

    Article  CAS  PubMed  Google Scholar 

  • Jagadale A, Kumbhar V, Dhawale D, Lokhande C (2013) Performance evaluation of symmetric supercapacitor based on cobalt hydroxide [Co(OH)2] thin film electrodes. Electrochim Acta 98:32–38

    Article  CAS  Google Scholar 

  • Jimenez I, Arbiol J, Dezanneau G, Cornet A, Morante J (2003) Crystalline structure, defects and gas sensor response to NO2 and H2S of tungsten trioxide nanopowders. Sens Actuators B Chem 93(1–3):475–485

    Article  CAS  Google Scholar 

  • Jo C, Hwang I, Lee J, Lee CW, Yoon S (2011) Investigation of pseudocapacitive charge-storage behavior in highly conductive ordered mesoporous tungsten oxide electrodes. The J Phys Chem C 115(23):11880–11886

    Article  CAS  Google Scholar 

  • Joseph N, Shafi PM, Bose AC (2020) Recent advances in 2D-MoS2 and its composite nanostructures for supercapacitor electrode application. Energy Fuels 34(6):6558–6597

    Article  CAS  Google Scholar 

  • Justin P, Meher SK, Rao GR (2010) Tuning of capacitance behavior of NiO using anionic, cationic, and nonionic surfactants by hydrothermal synthesis. The J Phys Chem C 114(11):5203–5210

    Article  CAS  Google Scholar 

  • Kadam S, Mane S, Tirmali P, Kulkarni S (2018) Electrochemical synthesis of flower like Mn-Co mixed metal oxides as electrode material for supercapacitor application. Curr Appl Phys 18(4):397–404

    Article  Google Scholar 

  • Karthikeyan K, Kalpana D, Renganathan N (2009) Synthesis and characterization of ZnCo 2 O 4 nanomaterial for symmetric supercapacitor applications. Ionics 15(1):107–110

    Article  CAS  Google Scholar 

  • Karuppuchamy S, Brundha C (2015) Fabrication of core-shell structured TiO2/MgO electrodes for dye-sensitized solar cells. Appl Mech Mater 787:3–7

    Article  Google Scholar 

  • Karuppuchamy S, Ito S (2008) Cathodic electrodeposition of nanoporous ZnO thin films from new electrochemical bath and their photoinduced hydrophilic properties. Vacuum 82(5):547–550

    Article  CAS  Google Scholar 

  • Karuppuchamy S, Iwasaki M, Minoura H (2007) Physico-chemical, photoelectrochemical and photocatalytic properties of electrodeposited nanocrystalline titanium dioxide thin films. Vacuum 81(5):708–712

    Article  CAS  Google Scholar 

  • Karuppuchamy S, Suzuki N, Ito S, Endo T (2009) A novel one-step electrochemical method to obtain crystalline titanium dioxide films at low temperature. Curr Appl Phys 9(1):243–248

    Article  Google Scholar 

  • Kawahara T, Kuroda T, Matsui H, Mishima M, Karuppuchamy S, Seguchi Y, Yoshihara M (2007a) Electronic properties of calcined materials from a scandium-O-phenylene-O-yttrium-O-phenylene hybrid copolymer. J Mater Sci 42(11):3708–3713

    Article  CAS  Google Scholar 

  • Kawahara T, Miyazaki H, Karuppuchamy S, Matsui H, Ito M, Yoshihara M (2007b) Electronic nature of vanadium nitride–carbon cluster composite materials obtained by the calcination of oxovanadylphthalocyanine. Vacuum 81(5):680–685

    Article  CAS  Google Scholar 

  • Khan IA, Thekkekara L, Waqar S, Choudhry N, John S (2021) Supercapacitors fabrication and performance evaluation techniques

  • Kim KJ, Park YR (2003) Optical investigation of charge-transfer transitions in spinel Co3O4. Solid State Commun 127(1):25–28

    Article  CAS  Google Scholar 

  • Kim S-I, Lee J-S, Ahn H-J, Song H-K, Jang J-H (2013) Facile route to an efficient NiO supercapacitor with a three-dimensional nanonetwork morphology. ACS Appl Mater Interfaces 5(5):1596–1603

    Article  CAS  PubMed  Google Scholar 

  • Kong L-B, Liu M, Lang J-W, Luo Y-C, Kang L (2009) Asymmetric supercapacitor based on loose-packed cobalt hydroxide nanoflake materials and activated carbon. J Electrochem Soc 156(12):A1000

    Article  CAS  Google Scholar 

  • Koza JA, He Z, Miller AS, Switzer JA (2012) Electrodeposition of crystalline Co3O4 a catalyst for the oxygen evolution reaction. Chem Mater 24(18):3567–3573

    Article  CAS  Google Scholar 

  • Kumar A, Bhattacharya T, Hasnain SM, Nayak AK, Hasnain S (2020) Applications of biomass-derived materials for energy production, conversion, and storage. Mater Sci Energy Technol

  • Kumar RD, Andou Y, Sathish M, Karuppuchamy S (2016) Synthesis of nanostructured Cu-WO 3 and CuWO 4 for supercapacitor applications. J Mater Sci: Mater Electron 27(3):2926–2932

    Google Scholar 

  • Kumar RD, Karuppuchamy S (2015) Synthesis and characterization of nanostructured Zn-WO 3 and ZnWO 4 by simple solution growth technique. J Mater Sci: Mater Electron 26(5):3256–3261

    Google Scholar 

  • Kung C-W, Chen H-W, Lin C-Y, Vittal R, Ho K-C (2012) Synthesis of Co3O4 nanosheets via electrodeposition followed by ozone treatment and their application to high-performance supercapacitors. J Power Sour 214:91–99

    Article  CAS  Google Scholar 

  • Laforgue A, Simon P, Sarrazin C, Fauvarque J-F (1999) Polythiophene-based supercapacitors. J Power Sour 80(1–2):142–148

    Article  CAS  Google Scholar 

  • Lee JH, Park N, Kim BG, Jung DS, Im K, Hur J, Choi JW (2013) Restacking-inhibited 3D reduced graphene oxide for high performance supercapacitor electrodes. ACS Nano 7(10):9366–9374

    Article  CAS  PubMed  Google Scholar 

  • Li X, Rong J, Wei B (2010) Electrochemical behavior of single-walled carbon nanotube supercapacitors under compressive stress. ACS Nano 4(10):6039–6049

    Article  CAS  PubMed  Google Scholar 

  • Liang Y-Y, Li H-L, Zhang X-G (2008) A novel asymmetric capacitor based on Co (OH) 2/USY composite and activated carbon electrodes. Mater Sci Eng A 473(1–2):317–322

    Article  CAS  Google Scholar 

  • Lin T-W, Dai C-S, Hung K-C (2014) High energy density asymmetric supercapacitor based on NiOOH/Ni 3 S 2/3D graphene and Fe 3 O 4/graphene composite electrodes. Sci Rep 4(1):1–10

    Article  Google Scholar 

  • Livage J, Ganguli D (2001) Sol–gel electrochromic coatings and devices: a review. Sol Energy Mater Sol Cells 68(3–4):365–381

    Article  CAS  Google Scholar 

  • Lota K, Khomenko V, Frackowiak E (2004) Capacitance properties of poly (3, 4-ethylenedioxythiophene)/carbon nanotubes composites. J Phys Chem Solids 65(2–3):295–301

    Article  CAS  Google Scholar 

  • Lu X, Wang G, Zhai T, Yu M, Gan J, Tong Y, Li Y (2012) Hydrogenated TiO2 nanotube arrays for supercapacitors. Nano Lett 12(3):1690–1696

    Article  CAS  PubMed  Google Scholar 

  • Luo X, Chen S, Hu T, Chen Y, Li F (2021) Renewable biomass-derived carbons for electrochemical capacitor applications. SusMat 1:211–240

    Article  Google Scholar 

  • Ma C, Li Y, Shi J, Song Y, Liu L (2014) High-performance supercapacitor electrodes based on porous flexible carbon nanofiber paper treated by surface chemical etching. Chem Eng J 249:216–225

    Article  CAS  Google Scholar 

  • Maksoud MA, Bedir AG, Bekhit M, Abouelela MM, Fahim RA, Awed A, Attia SY, Kassem SM, Abd Elkodous M, El-Sayyad GS (2021) MoS2-based nanocomposites: synthesis, structure, and applications in water remediation and energy storage: a review. Environ Chem Lett 19:3645–3681

    Article  CAS  Google Scholar 

  • Manibalan G, Govindaraj Y, Yesuraj J, Kuppusami P, Murugadoss G, Murugavel R, Kumar MR (2021) Facile synthesis of NiO@ Ni (OH)2-α-MoO3 nanocomposite for enhanced solid-state symmetric supercapacitor application. J Coll Interface Sci 585:505–518

    Article  CAS  Google Scholar 

  • Matsui H, Karuppuchamy S, Yamaguchi J, Yoshihara M (2007a) Electronic behavior of calcined materials obtained from SnO2 hydrosol/starch composite materials. J Photochem Photobiol A 189(2–3):280–285

    Article  CAS  Google Scholar 

  • Matsui H, Kira K, Karuppuchamy S, Yoshihara M (2009a) The electronic behaviors of visible light sensitive Nb2O5/Cr2O3/carbon clusters composite materials. Curr Appl Phys 9(3):592–597

    Article  Google Scholar 

  • Matsui H, Okajima T, Karuppuchamy S, Yoshihara M (2009b) The electronic behavior of V2O3/TiO2/carbon clusters composite materials obtained by the calcination of a V (acac) 3/TiO (acac) 2/polyacrylic acid complex. J Alloy Compd 468(1–2):L27–L32

    Article  CAS  Google Scholar 

  • Matsui H, Saitou Y, Karuppuchamy S, Hassan M, Yoshihara M (2012) Photo-electronic behavior of Cu2O-and/or CeO2-loaded TiO2/carbon cluster nanocomposite materials. J Alloy Compd 538:177–182

    Article  CAS  Google Scholar 

  • Matsui H, Santhi K, Sugiyama S, Yoshihara M, Karuppuchamy S (2014) Visible light-induced photocatalytic activity of SiO2/carbon cluster composite materials. Ceram Int 40(1):2169–2172

    Article  CAS  Google Scholar 

  • Matsui H, Yamamoto S, Izawa Y, Karuppuchamy S, Yoshihara M (2007b) Electron transfer behavior of calcined material obtained from a samarium-O–phenylene-S–nickel-S–phenylene-O hybrid copolymer. Mater Chem Phys 103(1):127–131

    Article  CAS  Google Scholar 

  • Matsui H, Yamamoto S, Sasai T, Karuppuchamy S, Yoshihara M (2007c) Electronic behavior of WO2/carbon clusters composite materials. Electrochemistry 75(4):345–348

    Article  CAS  Google Scholar 

  • Meher SK, Justin P, Ranga Rao G (2011) Microwave-mediated synthesis for improved morphology and pseudocapacitance performance of nickel oxide. ACS Appl Mater Interfaces 3(6):2063–2073

    Article  CAS  PubMed  Google Scholar 

  • Meher SK, Justin P, Rao GR (2010) Pine-cone morphology and pseudocapacitive behavior of nanoporous nickel oxide. Electrochim Acta 55(28):8388–8396

    Article  CAS  Google Scholar 

  • Meher SK, Rao GR (2011) Ultralayered Co3O4 for high-performance supercapacitor applications. The J Phys Chem C 115(31):15646–15654

    Article  CAS  Google Scholar 

  • Miao W, Han Q, Zhang H, Chen K, Zhang L, Li Y, Han S (2021) Uniform phosphorus doped CoWO4@ NiWO4 nanocomposites for asymmetric supercapacitors. J Alloys Comp 877:160301

    Article  CAS  Google Scholar 

  • Miyazaki H, Matsui H, Kita Y, Karuppuchamy S, Ito S, Yoshihara M (2009a) Electronic behavior of visible light sensitive ZrO2/Cr2O3/carbon clusters composite materials. Curr Appl Phys 9(1):155–160

    Article  Google Scholar 

  • Miyazaki H, Matsui H, Kuwamoto T, Ito S, Karuppuchamy S, Yoshihara M (2009b) Synthesis and photocatalytic activities of MnO2-loaded Nb2O5/carbon clusters composite material. Microporous Mesoporous Mater 118(1–3):518–522

    Article  CAS  Google Scholar 

  • Nam K-W, Kim K-B (2002) A study of the preparation of NiO x electrode via electrochemical route for supercapacitor applications and their charge storage mechanism. J Electrochem Soc 149(3):A346

    Article  CAS  Google Scholar 

  • Nandhini RS, Mubeen G, Kumar UK, Nithya RN (2019) Synthesis and characterization of CuO/NiO and CuO/Fe3O4 nanocomposite for super capacitor application. Int J Eng Tech 8(9):211-217

    Google Scholar 

  • Ni J, Lu W, Zhang L, Yue B, Shang X, Lv Y (2009) Low-temperature synthesis of monodisperse 3D manganese oxide nanoflowers and their pseudocapacitance properties. The J Phys Chem C 113(1):54–60

    Article  CAS  Google Scholar 

  • Nithya V, Selvan RK, Kalpana D, Vasylechko L, Sanjeeviraja C (2013) Synthesis of Bi2WO6 nanoparticles and its electrochemical properties in different electrolytes for pseudocapacitor electrodes. Electrochim Acta 109:720–731

    Article  CAS  Google Scholar 

  • Nyström G, Strømme M, Sjödin M, Nyholm L (2012) Rapid potential step charging of paper-based polypyrrole energy storage devices. Electrochim Acta 70:91–97

    Article  CAS  Google Scholar 

  • Osman A, O’Connor E, McSpadden G, Abu-Dahrieh JK, Farrell C, Al-Muhtaseb A, Harrison J, Rooney DW (2019) Upcycling brewer’s spent grain waste into activated carbon and carbon nanotubes via two-stage activation for energy and other applications. J Chem Technol Biotechnol 95:183–195

    Article  CAS  Google Scholar 

  • Osman AI, Farrell C, Ala’a, H., Harrison, J., & Rooney, D. W. (2020) The production and application of carbon nanomaterials from high alkali silicate herbaceous biomass. Sci Rep 10(1):1–13

    Article  CAS  Google Scholar 

  • Pang H, Ma Y, Li G, Chen J, Zhang J, Zheng H, Du W (2012) Facile synthesis of porous ZnO–NiO composite micropolyhedrons and their application for high power supercapacitor electrode materials. Dalton Trans 41(43):13284–13291

    Article  CAS  PubMed  Google Scholar 

  • Pushparaj VL, Shaijumon MM, Kumar A, Murugesan S, Ci L, Vajtai R, Linhardt RJ, Nalamasu O, Ajayan PM (2007) Flexible energy storage devices based on nanocomposite paper. Proc Natl Acad Sci 104(34):13574–13577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qu Q, Shi Y, Tian S, Chen Y, Wu Y, Holze R (2009) A new cheap asymmetric aqueous supercapacitor: activated carbon//NaMnO2. J Power Sour 194(2):1222–1225

    Article  CAS  Google Scholar 

  • Rakhi R, Chen W, Hedhili MN, Cha D, Alshareef HN (2014) Enhanced rate performance of mesoporous Co3O4 nanosheet supercapacitor electrodes by hydrous RuO2 nanoparticle decoration. ACS Appl Mater Interfaces 6(6):4196–4206

    Article  CAS  PubMed  Google Scholar 

  • Ramadoss A, Kim SJ (2013) Vertically aligned TiO2 nanorod arrays for electrochemical supercapacitor. J Alloy Compd 561:262–267

    Article  CAS  Google Scholar 

  • Rao CR, Muthukannan R, Vijayan M (2012) Studies on biphenyl disulphonic acid doped polyanilines: synthesis, characterization and electrochemistry. Bull Mater Sci 35(3):405–414

    Article  CAS  Google Scholar 

  • Reddy ALM, Shaijumon MM, Gowda SR, Ajayan PM (2010) Multisegmented Au-MnO2/carbon nanotube hybrid coaxial arrays for high-power supercapacitor applications. The J Phys Chem C 114(1):658–663

    Article  CAS  Google Scholar 

  • Roberts AJ, Slade RC (2010) Controlled synthesis of ε-MnO2 and its application in hybrid supercapacitor devices. J Mater Chem 20(16):3221–3226

    Article  CAS  Google Scholar 

  • Roberts ME, Wheeler DR, McKenzie BB, Bunker BC (2009) High specific capacitance conducting polymer supercapacitor electrodes based on poly (tris (thiophenylphenyl) amine). J Mater Chem 19(38):6977–6979

    Article  CAS  Google Scholar 

  • Roth W (1964) The magnetic structure of Co3O4. J Phys Chem Solids 25(1):1–10

    Article  CAS  Google Scholar 

  • Ryu KS, Lee Y-G, Hong Y-S, Park YJ, Wu X, Kim KM, Kang MG, Park N-G, Chang SH (2004) Poly (ethylenedioxythiophene)(PEDOT) as polymer electrode in redox supercapacitor. Electrochim Acta 50(2–3):843–847

    Article  CAS  Google Scholar 

  • Sahoo S, Nguyen TT, Shim J-J (2018) Mesoporous Fe–Ni–Co ternary oxide nanoflake arrays on Ni foam for high-performance supercapacitor applications. J Ind Eng Chem 63:181–190

    Article  CAS  Google Scholar 

  • Salari M, Aboutalebi SH, Konstantinov K, Liu HK (2011a) A highly ordered titania nanotube array as a supercapacitor electrode. Phys Chem Chem Phys 13(11):5038–5041

    Article  CAS  PubMed  Google Scholar 

  • Salari M, Konstantinov K, Liu HK (2011b) Enhancement of the capacitance in TiO 2 nanotubes through controlled introduction of oxygen vacancies. J Mater Chem 21(13):5128–5133

    Article  CAS  Google Scholar 

  • Santhi K, Manikandan P, Rani C, Karuppuchamy S (2015) Synthesis of nanocrystalline titanium dioxide for photodegradation treatment of remazol brown dye. Appl Nanosci 5(3):373–378

    Article  CAS  Google Scholar 

  • Sarma B, Ray RS, Mohanty SK, Misra M (2014) Synergistic enhancement in the capacitance of nickel and cobalt based mixed oxide supercapacitor prepared by electrodeposition. Appl Surf Sci 300:29–36

    Article  CAS  Google Scholar 

  • Schneuwly A, Gallay R (2000) Properties and applications of supercapacitors from the state-of-the-art to future trends. Proceeding PCIM (Vol. 2000): Citeseer

  • Selvakumar M, Bhat DK (2012) Microwave synthesized nanostructured TiO2-activated carbon composite electrodes for supercapacitor. Appl Surf Sci 263:236–241

    Article  CAS  Google Scholar 

  • Shaheen I, Ahmad KS, Zequine C, Gupta RK, Thomas AG, Malik MA (2021) Facile ZnO-based nanomaterial and its fabrication as a supercapacitor electrode: synthesis, characterization and electrochemical studies. RSC Adv 11(38):23374–23384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • She Y, Tang B, Li D, Tang X, Qiu J, Shang Z, Hu W (2018) Mixed nickel-cobalt-molybdenum metal oxide nanosheet arrays for hybrid supercapacitor applications. Coatings 8(10):340

    Article  CAS  Google Scholar 

  • Shinde PA, Jun SC (2020) Review on recent progress in the development of tungsten oxide based electrodes for electrochemical energy storage. Chem Sus Chem 13(1):11–38

    Article  CAS  Google Scholar 

  • Shinde V, Mahadik S, Gujar T, Lokhande C (2006) Supercapacitive cobalt oxide (Co3O4) thin films by spray pyrolysis. Appl Surf Sci 252(20):7487–7492

    Article  CAS  Google Scholar 

  • Simon P, Gogotsi Y (2010) Materials for electrochemical capacitors. Nanosci Technol A Collect Rev Nat J 320–329

  • Snook GA, Peng C, Fray DJ, Chen GZ (2007) Achieving high electrode specific capacitance with materials of low mass specific capacitance: potentiostatically grown thick micro-nanoporous PEDOT films. Electrochem Commun 9(1):83–88

    Article  CAS  Google Scholar 

  • Stenger-Smith JD, Webber CK, Anderson N, Chafin AP, Zong K, Reynolds JR (2002) Poly (3, 4-alkylenedioxythiophene)-based supercapacitors using ionic liquids as supporting electrolytes. J Electrochem Soc 149(8):A973

    Article  CAS  Google Scholar 

  • Subramanian V, Zhu H, Vajtai R, Ajayan P, Wei B (2005) Hydrothermal synthesis and pseudocapacitance properties of MnO2 nanostructures. J Phys Chem B 109(43):20207–20214

    Article  CAS  PubMed  Google Scholar 

  • Suematsu S, Oura Y, Tsujimoto H, Kanno H, Naoi K (2000) Conducting polymer films of cross-linked structure and their QCM analysis. Electrochim Acta 45(22–23):3813–3821

    Article  CAS  Google Scholar 

  • Talbi H, Just P-E, Dao L (2003) Electropolymerization of aniline on carbonized polyacrylonitrile aerogel electrodes: applications for supercapacitors. J Appl Electrochem 33(6):465–473

    Article  CAS  Google Scholar 

  • Thamima M, Karuppuchamy S (2015) Biosynthesis of titanium dioxide and zinc oxide nanoparticles from natural sources: a review. Adv Sci Eng Med 7(1):18–25

    Article  CAS  Google Scholar 

  • Toufiq AM, Wang F, Javed Q-U-A, Li Y (2013) Magnetic properties of MnO2 shrimps-like nanostructures synthesized by hydrothermal route. Mod Phys Lett B 27(29):1350215

    Article  CAS  Google Scholar 

  • Verma S, Mishra S, Gaur A, Chowdhury S, Mohapatra S, Dwivedi G, Verma P (2021) A comprehensive review on energy storage in hybrid electric vehicle. J Traffic Transp Eng (english Edition) 8(5):621–637

    Article  Google Scholar 

  • Vijayakumar S, Nagamuthu S, Muralidharan G (2013) Supercapacitor studies on NiO nanoflakes synthesized through a microwave route. ACS Appl Mater Interfaces 5(6):2188–2196

    Article  CAS  PubMed  Google Scholar 

  • Villers D, Jobin D, Soucy C, Cossement D, Chahine R, Breau L, Bélanger D (2003) The influence of the range of electroactivity and capacitance of conducting polymers on the performance of carbon conducting polymer hybrid supercapacitor. J Electrochem Soc 150(6):A747

    Article  CAS  Google Scholar 

  • Wang D, Wang Q, Wang T (2011a) Morphology-controllable synthesis of cobalt oxalates and their conversion to mesoporous Co3O4 nanostructures for application in supercapacitors. Inorg Chem 50(14):6482–6492

    Article  CAS  PubMed  Google Scholar 

  • Wang F, Li Y, Cheng Z, Xu K, Zhan X, Wang Z, He J (2014) Construction of 3D V 2 O 5/hydrogenated-WO 3 nanotrees on tungsten foil for high-performance pseudocapacitors. Phys Chem Chem Phys 16(24):12214–12220

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Zhang L, Tan X, Holt CM, Zahiri B, Olsen BC, Mitlin D (2011b) Supercapacitive properties of hydrothermally synthesized Co3O4 nanostructures. The J Phys Chem C 115(35):17599–17605

    Article  CAS  Google Scholar 

  • Wang J, Kaskel S (2012) KOH activation of carbon-based materials for energy storage. J Mater Chem 22(45):23710–23725

    Article  CAS  Google Scholar 

  • Wang J, Xu Y, Wang J, Du X (2011c) Toward a high specific power and high stability polypyrrole supercapacitors. Synth Met 161(11–12):1141–1144

    Article  CAS  Google Scholar 

  • Wang M, Duong LD, Mai NT, Kim S, Kim Y, Seo H, Kim YC, Jang W, Lee Y, Suhr J (2015) All-solid-state reduced graphene oxide supercapacitor with large volumetric capacitance and ultralong stability prepared by electrophoretic deposition method. ACS Appl Mater Interfaces 7(2):1348–1354

    Article  CAS  PubMed  Google Scholar 

  • Wang R, Yan X (2014) Superior asymmetric supercapacitor based on Ni-Co oxide nanosheets and carbon nanorods. Sci Rep 4(1):1–9

    Google Scholar 

  • Wang T, Chen S, Pang H, Xue H, Yu Y (2017) MoS2-based nanocomposites for electrochemical energy storage. Adv Sci 4(2):1600289

    Article  CAS  Google Scholar 

  • Wei J, Wei S, Wang G, He X, Gao B, Zhao C (2013) PPy modified titanium foam electrode with high performance for supercapacitor. Eur Polymer J 49(11):3651–3656

    Article  CAS  Google Scholar 

  • Wu M, Snook GA, Gupta V, Shaffer M, Fray DJ, Chen GZ (2005) Electrochemical fabrication and capacitance of composite films of carbon nanotubes and polyaniline. J Mater Chem 15(23):2297–2303

    Article  CAS  Google Scholar 

  • Wu Z-S, Ren W, Wang D-W, Li F, Liu B, Cheng H-M (2010) High-energy MnO2 nanowire/graphene and graphene asymmetric electrochemical capacitors. ACS Nano 4(10):5835–5842

    Article  CAS  PubMed  Google Scholar 

  • Xiao N, Tan H, Zhu J, Tan L, Rui X, Dong X, Yan Q (2013) High-performance supercapacitor electrodes based on graphene achieved by thermal treatment with the aid of nitric acid. ACS Appl Mater Interfaces 5(19):9656–9662

    Article  CAS  PubMed  Google Scholar 

  • Xiao Q, Zhou X (2003) The study of multiwalled carbon nanotube deposited with conducting polymer for supercapacitor. Electrochim Acta 48(5):575–580

    Article  CAS  Google Scholar 

  • Xie Y, Du H, Xia C (2015) Porous poly (3, 4-ethylenedioxythiophene) nanoarray used for flexible supercapacitor. Microporous Mesoporous Mater 204:163–172

    Article  CAS  Google Scholar 

  • Xiong G, Hembram K, Reifenberger R, Fisher TS (2013) MnO2-coated graphitic petals for supercapacitor electrodes. J Power Sour 227:254–259

    Article  CAS  Google Scholar 

  • Yamamoto S, Matsui H, Ishiyama S, Karuppuchamy S, Yoshihara M (2006) Electronic behavior of calcined material obtained from a tantalum-O-phenylene-S-tin-S-phenylene-O hybrid copolymer. Mater Sci Eng B 135(2):120–124

    Article  CAS  Google Scholar 

  • Yan J, Fan Z, Sun W, Ning G, Wei T, Zhang Q, Zhang R, Zhi L, Wei F (2012) Advanced asymmetric supercapacitors based on Ni (OH) 2/graphene and porous graphene electrodes with high energy density. Adv Func Mater 22(12):2632–2641

    Article  CAS  Google Scholar 

  • Yan J, Khoo E, Sumboja A, Lee PS (2010) Facile coating of manganese oxide on tin oxide nanowires with high-performance capacitive behavior. ACS Nano 4(7):4247–4255

    Article  CAS  PubMed  Google Scholar 

  • Yang F, Yao J, Liu F, He H, Zhou M, Xiao P, Zhang Y (2013) Ni–Co oxides nanowire arrays grown on ordered TiO 2 nanotubes with high performance in supercapacitors. J Mater Chem A 1(3):594–601

    Article  CAS  Google Scholar 

  • Yang W, Gao Z, Song N, Zhang Y, Yang Y, Wang J (2014) Synthesis of hollow polyaniline nano-capsules and their supercapacitor application. J Power Sour 272:915–921

    Article  CAS  Google Scholar 

  • Yao Y, Yang Z, Sun H, Wang S (2012) Hydrothermal synthesis of Co3O4–graphene for heterogeneous activation of peroxymonosulfate for decomposition of phenol. Ind Eng Chem Res 51(46):14958–14965

    Article  CAS  Google Scholar 

  • Yaseen M, Khattak MAK, Humayun M, Usman M, Shah SS, Bibi S, Hasnain BSU, Ahmad SM, Khan A, Shah N (2021) A review of supercapacitors: materials design, modification, and applications. Energies 14(22):7779

    Article  CAS  Google Scholar 

  • Yeager M, Du W, Si R, Su D, Marinkovic N, Teng X (2012) Highly efficient K0. 15MnO2 birnessite nanosheets for stable pseudocapacitive cathodes. The J Phys Chem C 116(38):20173–20181

    Article  CAS  Google Scholar 

  • Yoon J-H, Bang H, Prakash J, Sun Y-K (2008) Comparative study of Li [Ni1/3Co1/3Mn1/3] O2 cathode material synthesized via different synthetic routes for asymmetric electrochemical capacitor applications. Mater Chem Phys 110(2–3):222–227

    Article  CAS  Google Scholar 

  • Yoon S, Kang E, Kim JK, Lee CW, Lee J (2011) Development of high-performance supercapacitor electrodes using novel ordered mesoporous tungsten oxide materials with high electrical conductivity. Chem Commun 47(3):1021–1023

    Article  CAS  Google Scholar 

  • You B, Jiang J, Fan S (2014) Three-dimensional hierarchically porous all-carbon foams for supercapacitor. ACS Appl Mater Interfaces 6(17):15302–15308

    Article  CAS  PubMed  Google Scholar 

  • Zhang D, Miao M, Niu H, Wei Z (2014) Core-spun carbon nanotube yarn supercapacitors for wearable electronic textiles. ACS Nano 8(5):4571–4579

    Article  CAS  PubMed  Google Scholar 

  • Zhang P, Li W (2020) Microwave-assisted synthesis of CuO/MnO2 nanocomposites for supercapacitor application. Micro Nano Lett 15(13):938–942

    Article  CAS  Google Scholar 

  • Zhang X, Zhao D, Zhao Y, Tang P, Shen Y, Xu C, Li H, Xiao Y (2013) High performance asymmetric supercapacitor based on MnO 2 electrode in ionic liquid electrolyte. J Mater Chem A 1(11):3706–3712

    Article  CAS  Google Scholar 

  • Zhou W, Liu X, Sang Y, Zhao Z, Zhou K, Liu H, Chen S (2014) Enhanced performance of layered titanate nanowire-based supercapacitor electrodes by nickel ion exchange. ACS Appl Mater Interfaces 6(6):4578–4586

    Article  CAS  PubMed  Google Scholar 

  • Zhou Z, Wu X-F (2013) Graphene-beaded carbon nanofibers for use in supercapacitor electrodes: synthesis and electrochemical characterization. J Power Sour 222:410–416

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

This manuscript is written with the contribution of all the authors.

Corresponding authors

Correspondence to R. Dhilip Kumar or Swetha Andra.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhilip Kumar, R., Nagarani, S., Sethuraman, V. et al. Investigations of conducting polymers, carbon materials, oxide and sulfide materials for supercapacitor applications: a review. Chem. Pap. 76, 3371–3385 (2022). https://doi.org/10.1007/s11696-022-02124-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-022-02124-0

Keywords

Navigation