Skip to main content
Log in

Supramolecular adducts of native and permethylated β-cyclodextrins with (2,2′-dipyridylamine)chlorido(1,4,7-trithiacyclononane)ruthenium(II) chloride: solid-state and biological activity studies

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

The complex [([9]aneS3)RuII(dipa)Cl]Cl (1, where dipa = 2,2′-dipyridylamine) was included into native β-cyclodextrin (β-CD) and permethylated β-CD (TRIMEB) by co-dissolution followed by solvent removal. Two adducts were obtained with a 1:1 host:guest stoichiometry. Solid-state studies of the guest comprised collecting the single-crystal structure of its 3.5 hydrate form and also powder diffraction on the remaining bulk material, showing it is isotypical with the harvested crystal for X-ray analysis. Solid-state studies of the cyclodextrin adducts were carried out by powder X-ray diffraction (PXRD), thermogravimetric analysis (TGA), 13C{1H} CP/MAS NMR and FTIR spectroscopies. Biological studies on 1 and its adducts comprised the evaluation of the shift caused by 1 on the melting temperature of DNA (ΔT m), as well as the evaluation of cytotoxicity by the MTT assay on the osteosarcoma MG-63 cell line.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aird RE, Cummings J, Ritchie AA, Muir M, Morris RE, Chen H, Sadler PJ, Jodrell DI (2002) In vitro and in vivo activity and cross resistance profiles of novel ruthenium (II) organometallic arene complexes in human ovarian cancer. Br J Cancer 86:1652–1657. doi:10.1038/sj.bjc.6600290

    Article  CAS  Google Scholar 

  • Allardyce CS, Dyson PJ (2016) Metal-based drugs that break the rules. Dalton Trans 45:3201–3209. doi:10.1039/c5dt03919c

    Article  CAS  Google Scholar 

  • APEX2 (2006) Data collection software version 2.1-RC13. Bruker AXS, Delft

    Google Scholar 

  • Bergamo A, Masi A, Peacock AF, Habtemariam A, Sadler PJ, Sava G (2010) In vivo tumour and metastasis reduction and in vitro effects on invasion assays of the ruthenium RM175 and osmium AFAP51 organometallics in the mammary cancer model. J Inorg Biochem 104:79–86. doi:10.1016/j.jinorgbio.2009.10.005

    Article  CAS  Google Scholar 

  • Bergamo A, Gaiddon C, Schellens JHM, Beijnen JH, Sava G (2012) Approaching tumour therapy beyond platinum drugs: status of the art and perspectives of ruthenium drug candidates. J Inorg Biochem 106:90–99. doi:10.1016/j.jinorgbio.2011.09.030

    Article  CAS  Google Scholar 

  • Biwer A, Antranikian G, Heinzle E (2002) Enzymatic production of cyclodextrins. Appl Microbiol Biotechnol 59:609–617. doi:10.1007/s00253-002-1057-x

    Article  CAS  Google Scholar 

  • Braga SS, Gonçalves IM, Pillinger M, Ribeiro-Claro P, Teixeira-Dias JJC (2001) Experimental and theoretical study of the interaction of molybdenocene dichloride (Cp2MoCl2) with β-cyclodextrin. J Organomet Chem 632:11–16. doi:10.1016/S0022-328X(01)00836-1

    Article  CAS  Google Scholar 

  • Braga SS, Gonçalves IM, Herdtweck E, Teixeira-Dias JJC (2003) Solid state inclusion compound of S-ibuprofen in β-cyclodextrin: structure and characterisation. New J Chem 27:597–601. doi:10.1039/B207272F

    Article  CAS  Google Scholar 

  • Braga SS, Marques MPM, Sousa JB, Pillinger M, Teixeira-Dias JJC, Gonçalves IS (2005) Inclusion of molybdenocene dichloride (Cp2MoCl2) in 2-hydroxypropyl- and trimethyl-β-cyclodextrin: structural and biological properties. J Organomet Chem 690:2905–2912. doi:10.1016/j.jorganchem.2005.03.012

    Article  CAS  Google Scholar 

  • Braga SS, Coelho AC, Gonçalves IM, Santos G, Fonseca FJ, Andrade AM, Peres M, Simões W, Monteiro T, Pereira L (2008) Luminescence properties of the TRIMEB inclusion compound of a europium tris-β-diketonate. J Non-Cryst Solids 354:2736–2739. doi:10.1016/j.jnoncrysol.2007.09.053

    Article  CAS  Google Scholar 

  • Braga SS, Mokal V, Paz FAA, Pillinger M, Branco A, Sardão VA, Diogo CA, Oliveira PJ, Marques MPM, Romão CC, Gonçalves IM (2014) Synthesis, characterisation and antiproliferative studies of allyl(dicarbonyl)(cyclopentadienyl)molybdenum complexes and cyclodextrin inclusion compounds. Eur J Inorg Chem 2014:5034–5045. doi:10.1002/ejic.201402540

    Article  CAS  Google Scholar 

  • Brown GR, Caira MR, Nassimbeni NL, Van Oudtshoorn B (1996) Inclusion of ibuprofen by heptakis(2,3,6-tri-O-methyl)-β-cyclodextrin: an X-ray diffraction and thermal analysis study. J Incl Phenom Mol Recognit Chem 26:281–294. doi:10.1007/BF01053545

    Article  CAS  Google Scholar 

  • Caira MR (2001) On the isostrucurality of cyclodextrin inclusion complexes and its practical utility. Rev Roum Chim 46:371–386

    CAS  Google Scholar 

  • Caira MR, Giordano F, Vilakazi SL (2004a) X-ray structure and thermal properties of a 1:1 inclusion complex between permethylated β-cyclodextrin and psoralen. Supramol Chem 16:389–393. doi:10.1080/10610270410001713321

    Article  CAS  Google Scholar 

  • Caira MR, Bourne SA, Mhlongo WT, Dean PM (2004b) New crystalline forms of permethylated beta-cyclodextrin. Chem Commun 10(19):2216–2217. doi:10.1039/b408660k

    Article  Google Scholar 

  • Casarsa C, Mischis MT, Sava G (2004) TGFβ1 regulation and collagen-release-independent connective tissue re-modelling by the ruthenium complex NAMI-A in solid tumours. J Inorg Biochem 98:1648–1654. doi:10.1016/j.jinorgbio.2004.04.017

    Article  CAS  Google Scholar 

  • Charoenlap N, Dharmsthiti S, Sarote S, Sittiwat L (2004) Optimization of cyclodextrin production from sago starch. Bioresour Technol 92:49–54. doi:10.1016/j.biortech.2003.07.007

    Article  CAS  Google Scholar 

  • Chavez-Gil TE, De Faria DLA, Toma HE (1998) Resonance Raman investigation of the chromophore centers in an iron(II)-polyimine supermolecule containing four ruthenium(II)-bipyridine groups. Vib Spectrosc 16:89–92. doi:10.1016/S0924-2031(97)00048-9

    Article  CAS  Google Scholar 

  • Chen H, Wang X, Qi Y, Zheng S, Chen Q, He PG, Zhang F, Yang F, Tang J, Fang Y (2013) A tris(bipyridine)ruthenium(II)–β-cyclodextrin derivative: synthesis, luminescent properties, and application in electrochemiluminescence DNA sensors. ChemPlusChem 78:780–784. doi:10.1002/cplu.201300071

    Article  CAS  Google Scholar 

  • Clarke MJ (1980) Oncological implications of the chemistry of ruthenium. In: Sigel H (ed) Metal ions in biological systems, vol 11. Marcel Dekker, New York, pp 231–283

    Google Scholar 

  • Clarke MJ (2003) Ruthenium metallopharmaceuticals. Coord Chem Rev 236:209–233. doi:10.1016/S0010-8545(02)00025-5

    Article  CAS  Google Scholar 

  • Cryopad (2006) Remote monitoring and control, Version 1.451. Oxford Cryosystems, Oxford

    Google Scholar 

  • SAINT+, Data integration engine v. 7.23a ©(1997–2005). Bruker AXS, Madison

  • Dwyer FP, Gyarfas EC, Rogers WP, Koch JH (1952) Biological activity of complex ions. Nature 170:190–191. doi:10.1038/170190a0

    Article  CAS  Google Scholar 

  • Dwyer FP, Mayhew E, Roe EMF, Shulman A (1965) Inhibition of Landschütz ascites tumour growth by metal chelates derived from 3,4,7,8-tetramethyl-1,10-phenanthroline. Br J Cancer 19:195–199

    Article  CAS  Google Scholar 

  • Dwyer FP, Reid IK, Shulman A, Laycock GM, Dixson S (1969) The biological actions of 1,10-phenanthroline and 2,2′-bipyridine hydrochlorides, quaternary salts and metal chelates and related compounds. 1. Bacteriostatic action on selected gram-positive, gram-negative and acid-fast bacteria. Aust J Exp Biol Med Sci 47:203–218. doi:10.1038/icb.1969.21

    Article  CAS  Google Scholar 

  • Farras P, Waller H, Benniston AC (2016) Enhanced photostability of a ruthenium(II) polypyridyl complex under highly oxidizing aqueous conditions by its partial inclusion into a cyclodextrin. Chem Eur J 22:1133–1140. doi:10.1002/chem.201503485

    Article  CAS  Google Scholar 

  • Fasman GD (1975) Handbook of biochemistry and molecular biology. Nucleic acids, vol 2. CRC Press, Cleveland

    Google Scholar 

  • Gava B, Zorzet S, Spessotto P, Cocchietto M, Sava G (2006) Inhibition of B16 melanoma metastases with the ruthenium complex imidazolium trans-imidazoledimethylsulfoxide-tetrachlororuthenate and down-regulation of tumor cell invasion. J Pharmacol Exp Ther 317:284–291. doi:10.1124/jpet.105.095141

    Article  CAS  Google Scholar 

  • Gidley MJ, Bociek SM (1988) Carbon-13 CP/MAS NMR studies of amylose inclusion complexes, cyclodextrins, and the amorphous phase of starch granules: relationships between glycosidic linkage conformation and solid-state carbon-13 chemical shifts. J Am Chem Soc 110:3820–3829. doi:10.1021/ja00220a016

    Article  CAS  Google Scholar 

  • Goodfellow BJ, Felix V, Pacheco SMD, De Jesus JP, Drew MGB (1997) Structural characterisation of RuII [9]aneS3 polypyridyl complexes by NMR spectroscopy and single crystal X-ray diffraction. Polyhedron 16:393–401. doi:10.1016/0277-5387(96)00310-5

    Article  CAS  Google Scholar 

  • Guo Y, Zi X, Koontz Z, Kim A, Xie J, Gorlick R, Holcombe RF, Hoang BH (2007) Blocking Wnt/LRP5 signaling by a soluble receptor modulates the epithelial to mesenchymal transition and suppresses met and metalloproteinases in osteosarcoma Saos-2 cells. J Orthop Res 25:964–971. doi:10.1002/jor.20356

    Article  CAS  Google Scholar 

  • Hapiot F, Tilloy S, Monflier E (2006) Cyclodextrins as supramolecular hosts for organometallic complexes. Chem Rev 106:767–780. doi:10.1021/cr050576c

    Article  CAS  Google Scholar 

  • Harata K, Uekama K, Imai T, Hirayama F, Otagiri M (1998) Crystal structures of heptakis(2,3,6-tri-O-methyl)-beta-cyclodextrin complexes with R-flurbiprofen and S-flurbiprofen. J Incl Phenom Mol Recogit Chem 6:443–460. doi:10.1007/BF00660743

    Article  Google Scholar 

  • Hayward RL, Schornagel QC, Tente R, Macpherson JS, Aird RE, Guichard S, Habtemariam A, Sadler P, Jodrell DI (2005) Investigation of the role of Bax, p21/Waf1 and p53 as determinants of cellular responses in HCT116 colorectal cancer cells exposed to the novel cytotoxic ruthenium(II) organometallic agent, RM175. Cancer Chemother Pharmacol 55:577–583. doi:10.1007/s00280-004-0932-9

    Article  CAS  Google Scholar 

  • Henke MM, Richly H, Drescher A, Grubert M, Alex D, Thyssen D, Jaehde U, Scheulen ME, Hilger RA (2009) Pharmacokinetic study of sodium trans-[tetrachlorobis(1H-indazole)-ruthenate (III)]/-indazole hydrochloride (1:1:1) (FFC14A) in patients with solid tumors. Int J Clin Pharmacol Ther 47:58–60

    Article  CAS  Google Scholar 

  • Heyes SJ, Clayden NJ, Dobson CM (1992) 13C-CP/MAS NMR Studies of the cyclomalto-oligosaccharide (cyclodextrin) hydrates. Carbohydr Res 233:1–14. doi:10.1016/S0008-6215(00)90916-9

    Article  CAS  Google Scholar 

  • Iza N, Guerrero-Martinez A, Tardajos G, Ortiz MJ, Palao E, Montoro T, Radulescu A, Dreiss C, Gonzalez-Gaitano G (2015) Using inclusion complexes with cyclodextrins to explore the aggregation behavior of a ruthenium metallosurfactant. Langmuir 31:2677–2688. doi:10.1021/la504929x

    Article  CAS  Google Scholar 

  • Jiang Z, Jiang J, Yang H, Ge Z, Wang Q, Zhang L, Wu C, Wang J (2014) Silencing of Aurora kinase A by RNA interference inhibits tumor growth in human osteosarcoma cells by inducing apoptosis and G2/M cell cycle arrest. Oncol Rep 31:1249–1254. doi:10.3892/or.2014.2986

    CAS  Google Scholar 

  • Kapitza S, Jakupec MA, Uhl M, Keppler BK, Marian B (2005) The heterocyclic ruthenium(III) complex KP1019 (FFC14A) causes DNA damage and oxidative stress in colorectal tumor cells. Cancer Lett 226:115–121. doi:10.1016/j.canlet.2005.01.002

    Article  CAS  Google Scholar 

  • Kottke T, Stalke D (1993) Crystal handling at low temperatures. J Appl Crystallogr 26:615–619. doi:10.1107/S0021889893002018

    Article  Google Scholar 

  • Landgrafe C, Sheldrick WS (1994) Structure and reactions of the thioether half-sandwich Ruthenium(II) complexes [Ru(MeCN)3([9]aneS3)][CF3SO3]2 and [Ru(MeCN)([9]aneS3)] [CF3SO3]2 ([9]aneS = 1,4,7-trithiacyclononane). J Chem Soc Dalton Trans 1994:1885–1893. doi: 10.1039/DT9940001885

    Article  Google Scholar 

  • Lebron JA, Ostos FJ, Moya ML, Lopez-Lopez MC, Carrasco J, Lopez-Cornejo P (2015) Cooperative interaction between metallosurfactants, derived from the [Ru(2,2′-bpy)3]2+ complex, and DNA. Colloid Surf B 135:817–824. doi:10.1016/j.colsurfb.2015.08.052

    Article  CAS  Google Scholar 

  • Leijen S, Burgers SA, Baas P, Pluim D, Tibben M, Van Werkhoven E, Alessio E, Sava G, Beijnen JH, Schellens JHM (2015) Phase I/II study with ruthenium compound NAMI-A and gemcitabine in patients with non-small cell lung cancer after first line therapy. Invest New Drugs 33:201–214. doi:10.1007/s10637-014-0179-1

    Article  CAS  Google Scholar 

  • Lentz F, Drescher A, Lindauer A, Henke M, Hilger RA, Hartinger CG, Scheulen ME, Dittrich C, Keppler BK, Jaehde U (2009) Pharmacokinetics of a novel anticancer ruthenium complex (KP1019, FFC14A) in a phase I dose-escalation study. Anticancer Drugs 20:97–103. doi:10.1097/CAD.0b013e328322fbc5

    Article  CAS  Google Scholar 

  • Liu X, Choi E, Hornicek FJ, Yang S, Yang C, Harmon D, Mankin H, Duan Z (2011) ROCK1 as a potential therapeutic target in osteosarcoma. J Orthop Res 29:1259–1266. doi:10.1002/jor.21403

    Article  CAS  Google Scholar 

  • Lou N, Wang Y, Sun D, Zhao J, Wang Y, Gao Y (2010) Isolation of stem-like cells from human MG-63 osteosarcoma cells using limiting dilution in combination with vincristine selection. Ind J Biochem Biophys 47:340–347

    CAS  Google Scholar 

  • Madureira J, Santos TM, Goodfellow BJ, Lucena M, De Jesus JP, Santana-Marques MG, Drew MGB, Felix V (2000) Structural characterisation of new RuII[9]aneS3 polypyridylic complexes. J Chem Soc Dalton Trans 2000:4422–4431. doi:10.1039/b004752j

    Article  Google Scholar 

  • Marmur J (1961) A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 3:208–218. doi:10.1016/S0022-2836(61)80047-8

    Article  CAS  Google Scholar 

  • Marques J, Anjo L, Marques MPM, Santos TM, Paz FAA, Braga SS (2008) Structural studies on supramolecular adducts of cyclodextrins with the complex [Ru([9]aneS3)(bpy)Cl]Cl. J Organomet Chem 693:3021–3028. doi:10.1016/j.jorganchem.2008.06.023

    Article  CAS  Google Scholar 

  • Marques J, Santos TM, Marques MPM, Braga SS (2009a) A glycine ruthenium trithiacyclononane complex and its molecular encapsulation using cyclodextrins. Dalton Trans 2009:9812–9819. doi:10.1039/B915839A

    Article  Google Scholar 

  • Marques J, Braga TM, Paz FAA, Santos TM, Lopes MFS, Braga SS (2009b) Cyclodextrins improve the antimicrobial activity of the chloride salt of Ruthenium(II) chloro-phenanthroline-trithiacyclononane. Biometals 22:541–556. doi:10.1007/s10534-009-9211-x

    Article  CAS  Google Scholar 

  • Marques J, Fernandes JA, Paz FAA, Marques MPM, Braga SS (2012) Isolation, crystal structure, and cytotoxicity on osteosarcoma of a ruthenium(III) complex with coordinated acetonitrile. J Coord Chem 65:2489–2499. doi:10.1080/00958972.2012.696624

    Article  CAS  Google Scholar 

  • Marques J, Silva VLM, Silva AMS, Marques MPM, Braga SS (2014) Ru(II) trithiacyclononane 5-(2-hydroxyphenyl)-3-[(4-methoxystyryl)pyrazole], a complex with facile synthesis and high cytotoxicity against PC-3 and MDA-MB-231 cells. Complex Metals 1:7–12. doi:10.1080/2164232X.2013.873992

    Article  CAS  Google Scholar 

  • Martin R, Fragoso A, Cao R (2003) Complexation of bis(morpholyldithiocarbamato)copper(II), a superoxide scavenger, in β-cyclodextrins. Supramol Chem 15:171–175. doi:10.1080/1061027031000078266

    Article  CAS  Google Scholar 

  • Mestroni G, Alessio E, Sava G (1996) Nuovi Sali di complessi anionici di rutenio(III), utili in terapia come agenti antimetastatici ed antineoplastici. Ital Pat MI96A001359

  • Morris RE, Aird RE, Murdoch PS, Chen HM, Cummings J, Hughes ND, Parsons S, Parkin A, Boyd G, Jodrell DI, Sadler PJ (2001) Inhibition of cancer cell growth by ruthenium(II) arene complexes. J Med Chem 44:3616–3621. doi:10.1021/jm010051m

    Article  CAS  Google Scholar 

  • Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63. doi:10.1016/0022-1759(83)90303-4

    Article  CAS  Google Scholar 

  • Murray BS, Menin L, Scopelliti R, Dyson PJ (2014) Conformational control of anticancer activity: the application of arene-linked dinuclear ruthenium(II) organometallics. Chem Sci 5:2536–2545. doi:10.1039/c4sc00116h

    Article  CAS  Google Scholar 

  • Murray BS, Babak MV, Hartinger CG, Dyson PJ (2016) The development of RAPTA compounds for the treatment of tumors. Coord Chem Rev 306:86–114. doi:10.1016/j.ccr.2015.06.014

    Article  CAS  Google Scholar 

  • Nardon C, Brustolin L, Fregona D (2016) Is matching ruthenium with dithiocarbamato ligands a potent chemotherapeutic weapon in oncology? Future Med Chem 8:211–226. doi:10.4155/fmc.15.175

    Article  CAS  Google Scholar 

  • Paz FAA, Braga SS (2010) Shaping cytotoxicity of organometallics and complex antitumorals via molecular encapsulation. In: Chin HF (ed) Organometallic compounds: preparation, structure and properties. Nova Science Publishers, Hauppauge, New York pp 465–481

    Google Scholar 

  • Pereira CCL, Nolasco M, Braga SS, Paz FAA, Ribeiro-Claro P, Pillinger M, Gonçalves IM (2007) A combined theoretical-experimental study of the inclusion of niobocene dichloride in native and permethylated β-cyclodextrins. Organometallics 26:4220–4228. doi:10.1021/om7003749

    Article  CAS  Google Scholar 

  • Peti W, Pieper T, Sommer M, Keppler BK, Giester G (1999) Synthesis of tumor-inhibiting complex salts containing the anion trans-tetrachlorobis(indazole)ruthenate(III) and crystal structure of the tetraphenylphosphonium salt. Eur J Inorg Chem 1999:1551–1555. doi:10.1002/(SICI)1099-0682(199909)1999:9<1551::AID-EJIC1551>3.0.CO;2-7

    Article  Google Scholar 

  • Petrovski Ž, Braga SS, Rodrigues SS, Pereira CCL, Gonçalves IM, Pillinger M, Freire C, Romão CC (2005a) Synthesis of ferrocenyldiimine metal carbonyl complexes and an investigation of the Mo adduct encapsulated in cyclodextrin. New J Chem 29:347–354. doi:10.1039/B409961C

    Article  CAS  Google Scholar 

  • Petrovski Ž, Braga SS, Santos AM, Rodrigues SS, Gonçalves IM, Pillinger M, Kuhn FE, Romão CC (2005b) Synthesis and characterization of the inclusion compound of a ferrocenyldiimine dioxomolybdenum complex with heptakis-2,3,6-tri-O-methyl-β-cyclodextrin. Inorg Chim Acta 358:981–988. doi:10.1016/j.ica.2004.11.032

    Article  CAS  Google Scholar 

  • Pirvu CD, Aramă CC, Radu C, Uivarosi V (2013) Preliminary preformulation studies for a new norfloxacin ruthenium (III) complex with biological activity. Farmacia 61:251–261. Available online at: http://www.revistafarmacia.ro/201302/art-03-pirvu251-261.pdf

  • Prochowicz D, Kornowicz A, Justyniak I, Lewinski J (2016) Metal complexes based on native cyclodextrins: synthesis and structural diversity. Coord Chem Rev 306:331–345. doi:10.1016/j.ccr.2015.07.016

    Article  CAS  Google Scholar 

  • Ramos AI, Braga TM, Silva P, Fernandes JA, Ribeiro-Claro P, Lopes MFS, Paz FAA, Braga SS (2013) Chloramphenicol·cyclodextrin inclusion compounds: co-dissolution and mechanochemical preparations and antibacterial action. CrystEngComm 15:2822–2834. doi:10.1039/C3CE26414A

    Article  CAS  Google Scholar 

  • Riesen H, Wallace L, Krausz E (1995) Vibrational sidelines in the localized 3MLCT luminescence of [Ru(bpy)3−x (L) x ]2+ (x = 0 to 3, L = 3,3′-bipyridazine, bpy-d 8) in the C2/c [Zn(bpy)3](ClO4)2 lattice. Chem Phys 198:269–280. doi:10.1016/0301-0104(95)00190-Y

    Article  CAS  Google Scholar 

  • Rilak A, Bratsos I, Zangrando E, Kljun J, Turel I, Bugarčić ŽD, Alessio E (2014) New water-soluble ruthenium(II) terpyridine complexes for anticancer activity: synthesis, characterization, activation kinetics, and interaction with guanine derivatives. Inorg Chem 53:6113–6126. doi:10.1021/ic5005215

    Article  CAS  Google Scholar 

  • Romain C, Gaillard S, Elmkaddem MK, Toupet L, Fischmeister C, Thomas CM, Renaud JL (2010) New dipyridylamine ruthenium complexes for transfer hydrogenation of aryl ketones in water. Organometallics 29:1992–1995. doi:10.1021/om100127f

    Article  CAS  Google Scholar 

  • Santos TM, Madureira J, Goodfellow BJ, Drew MGB, De Jesus JP, Felix V (2001) Interaction of ruthenium(II)-dipyridophenazine complexes with CT-DNA: effects of the polythioether ancillary ligands. Met Based Drugs 8(2001):125–136. doi:10.1155/MBD.2001.125

    Article  CAS  Google Scholar 

  • Sava G, Capozzi I, Clerici K, Gagliardi G, Alessio E, Mestroni G (1998) Pharmacological control of lung metastases of solid tumours by a novel ruthenium complex. Clin Exp Metastasis 16:371–379. doi:10.1023/A:1006521715400

    Article  CAS  Google Scholar 

  • Sava G, Zorzet S, Turrin C, Vita F, Soranzo M, Zabucchi G, Cocchietto M, Bergamo A, DiGiovine S, Pezzoni G, Sartor L, Garbisa S (2003) Dual action of NAMI-A in inhibition of solid tumor metastasis: selective targeting of metastatic cells and binding to collagen. Clin Cancer Res 9:1898–1905

    CAS  Google Scholar 

  • Sava G, Frausin F, Cocchietto M, Vita F, Podda E, Spessotto P, Furlani A, Scarcia V, Zabucchi G (2004) Actin-dependent tumour cell adhesion after short-term exposure to the antimetastasis ruthenium complex NAMI-A. Eur J Cancer 40:1383–1396. doi:10.1016/j.ejca.2004.01.034

    Article  CAS  Google Scholar 

  • Scharwitz MA, Ott I, Geldmacher Y, Gust R, Sheldrick WS (2008) Cytotoxic half-sandwich rhodium(III) complexes: polypyridyl ligand influence on their DNA binding properties and cellular uptake. J Organomet Chem 693:2299–2309. doi:10.1016/j.jorganchem.2008.04.002

    Article  CAS  Google Scholar 

  • Scolaro C, Hartinger CG, Allardyce CS, Keppler BK, Dyson PJ (2008) Hydrolysis study of the bifunctional antitumour compound RAPTA-C, [Ru(η6-p-cymene)Cl2(pta)]. J Inorg Biochem 102:1743–1748. doi:10.1016/j.jinorgbio.2008.05.004

    Article  CAS  Google Scholar 

  • Sheldrick GM (1997a) SHELXS-97, program for crystal structure solution. University of Gottingen, Gottingen

    Google Scholar 

  • Sheldrick GM (1997b) SHELXL-97, program for crystal structure refinement. University of Gottingen, Gottingen

    Google Scholar 

  • Sheldrick GM (1998) SADABS v.2.01, Bruker/Siemens Area Detector Absorption Correction Program. Bruker AXS, Madison

  • Sheldrick GM (2008) A short history of SHELX. Acta Cryst A 64:112–122. doi:10.1107/S0108767307043930

    Article  CAS  Google Scholar 

  • Szerman N, Schroh I, Rossi AL, Rosso AM, Krymkiewicz N, Ferrarotti SA (2007) Cyclodextrin production by cyclodextrin glycosyltransferase from Bacillus circulans DF 9R. Biores Technol 98:2886–2891. doi:10.1016/j.biortech.2006.09.056

    Article  CAS  Google Scholar 

  • Veregin RP, Fyfe CA, Marchessault RH, Taylor MG (1987) Correlation of 13C chemical-shifts with torsional angles from high-resolution, 13C-CP-MAS NMR studies of crystalline cyclomalto-oligosaccharide complexes, and their relation to the structures of the starch polymorphs. Carbohydr Res 160:41–56. doi:10.1016/0008-6215(87)80302-6

    Article  CAS  Google Scholar 

  • Zhang F, Zhao YY, Chen H, Wang XH, Chen Q, He PG (2015) Sensitive fluorescence detection of lysozyme using a tris(bipyridine)ruthenium(II) complex containing multiple cyclodextrins. Chem Commun 51:6613–6616. doi:10.1039/C5CC00428D

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The supply of β-CD (Kleptose) by Roquette Laboratoires (Lestrem, France) is gracefully acknowledged. Thanks are due to Lúcia Anjo for her collaboration in the early steps of the work. We are also grateful to the University of Aveiro and to FCT/MEC (Fundação para a Ciência e a Tecnologia, Ministério da Educação e da Ciência), through national founds and, where applicable, co-financed by the FEDER (European Fund for Regional Development) within the PT2020 Partnership Agreement, for the financial support to the QOPNA research project (FCT UID/QUI/00062/2013), to the Portuguese NMR Network, to CICECO-Aveiro Institute of Materials (FCT UID/CTM/50011/2013), and for specific funding towards the purchase of the single-crystal diffractometer. J.A.F. participated in this work while receiving a post-doctoral grant (SFRH/BPD/63736/2009) supported by the programme POPH (FCT/European Social Fund).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susana S. Braga.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic Supplementary Information associated with this article comprises complementary characterization data on the ruthenium complex including the detailed geometrical parameters and possible supramolecular interactions for its structure; there is also the description of experimental methods on the cytotoxicity studies performed with the Ru(ii) complexes of the same family. The ESI file can be found in the online version of this paper (DOI: 10.1007/s11696-016-0117-0).

Crystallographic data (including structure factors) have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication No. 1408927. Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB2 2EZ, U.K. FAX: (+44) 1223 336033. E-mail: deposit@ccdc.cam.ac.uk.

Supplementary material 1 (DOC 87 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Braga, S.S., Marques, J., Fernandes, J.A. et al. Supramolecular adducts of native and permethylated β-cyclodextrins with (2,2′-dipyridylamine)chlorido(1,4,7-trithiacyclononane)ruthenium(II) chloride: solid-state and biological activity studies. Chem. Pap. 71, 1235–1248 (2017). https://doi.org/10.1007/s11696-016-0117-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-016-0117-0

Keywords

Navigation