Skip to main content
Log in

Rapid detection of pyraclostrobin fungicide residues in lemon with surface-enhanced Raman spectroscopy

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Pyraclostrobin (methyl N-(2-{[1-(4-chlorophenyl)-1 H-pyrazol-3-yl]oxymethyl}phenyl) N-methoxycarbamate) is a synthetic fungicide used against a wide range of plant pathogens. Its mode of action/mechanisms of toxicity is the inhibition of mitochondrial respiration of fungi. Given the extended application of pyraclostrobin in the agricultural sector, and its potential hazard for humans, it is necessary to monitor its residual traces in agricultural products to ensure food safety. This work reports the first application of surface-enhanced Raman spectroscopy (SERS) for qualitative and semi-quantitative detections of the fungicide both in standard solutions and in lemon peel extractions from contaminated samples at laboratory scale. For this, a simple, low-cost and easy-to-construct SERS active substrate consisting of a ring of silver nanoparticles (AgNPs) immobilized on a glass slide was used. Pyraclostrobin up to 6 × 10− 5 M concentration on the lemon peel was detected in a fast and neat procedure. The adsorption mechanism of the pesticide on the AgNPs was characterized by comparison between the normal Raman and SERS spectra of the substance and by quantum-chemical calculations of different pyraclostrobin-Ag3 complexes. Theoretical predictions and experimental data suggest that the molecule is able to adopt different orientations on the substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. E. Ammermann, G. Lorenz, K. Schelberger, B. Mueller, R. Kirstgen, H. Sauter, BAS 500 F: the new broad spectrum strobilurin fungicide, in: Brighton Crop Protection Conference, Pests and Diseases, British Crop Protection Council, UK, 541–548 (2000)

  2. D.W. Bartlett, J.M. Clough, C.R.A. Godfrey, J.R. Godwin, A.A. Hall, S.P. Heaney, S.J. Maund, Pestic. Outlook. 12, 143–148 (2001). https://doi.org/10.1039/B106300F

    Article  Google Scholar 

  3. D.W. Bartlett, J.M. Clough, J.R. Godwin, A.A. Hall, M. Hamer, B. Parr-Dobrzanski, Pest. Manag. Sci. 58, 649–662 (2002). https://doi.org/10.1002/ps.813

    Article  CAS  PubMed  Google Scholar 

  4. D. Fernández-ortuño, J.A. Torés, A. De Vicente, A. Pérez-garcía, in Fungicides (2010), ed. By O. Carisse (InTech, Croatia, 2010), p. 203. Available from: http://www.intechopen.com/books/fungicides/the-qoifungicides-the-rise-and-fall-of-a-successful-class-of-agricultural-fungicides

  5. World Health Organization, Food and Agriculture Organization of the United Nations, Pesticide residues in food: 2018: toxicological evaluations / Joint meeting of the FAO Panel of Experts on Pesticide Residues in Food and the Environment and the WHO Core Assessment Group, on Pesticide Residues, Berlin, Germany, 18–27 September 2018 (‎World Health Organization, 2019), https://apps.who.int/iris/handle/10665/325787. Accessed 11 July 2023

  6. (Environmental Protection Agency (EPA), Pyraclostrobin; Pesticide Tolerances, Environmental Protection, Agency, 2010), https://www.federalregister.gov/documents/2010/07/21/2010-17793/pyraclostrobin-pesticide-tolerances. Accessed 11 July 2023

  7. A. Çayır, M. Coskun, M. Coskun, Environ. Toxicol. 29, 723–732 (2012)

    Article  PubMed  Google Scholar 

  8. H. Cobanoglu, B. Coskun, A. Çayir, Pestic. Phytomed. 34, 61–67 (2019). https://doi.org/10.2298/PIF1901061C

    Article  CAS  Google Scholar 

  9. A. Dhawan, D. Anderson, The Comet Assay in Toxicology, vol. 5 (Royal Society of Chemistry, London, UK, 2009)

    Book  Google Scholar 

  10. F.A. Esteve-Turrillas, J.V. Mercader, C. Agulló, A. Abad-Somovilla, A. Abad-Fuentes, J. Chromatogr. A 1218(30), 4902–4909 (2011). https://doi.org/10.1016/j.chroma.2011.03.022

    Article  CAS  PubMed  Google Scholar 

  11. F. Zhang, L. Wang, L. Zhou, D. Wu, H. Pan, C. Pan, Ecotox Environ. Safe. 78, 116–122 (2012). https://doi.org/10.1016/j.ecoenv.2011.11.003

    Article  CAS  Google Scholar 

  12. X. Guo, W. Wu, N. Song, J. Li, D. Kong, X. Kong, J. He, K. Chen, Z. Shan, Hum. Ecol. Risk Assess: An. International Journal. 23(1), 67–81 (2017). https://doi.org/10.1080/10807039.2016.1222579

    Article  CAS  Google Scholar 

  13. X. Fan, S. Zhao, X. Chen, J. Hu, Food Anal. Methods. 11(5), 1312–1320 (2018). https://doi.org/10.1007/s12161-017-1065-1

    Article  Google Scholar 

  14. X. Liu, Y. Yang, Y. Chen, Q. Zhang, P. Lu, D. Hu, Food Additives & Contaminants: Part A (2019) https://doi.org/10.1080/19440049.2019.1640894

  15. Y. Liu, S. Jiao, Y. Chang, X. Lu, P. Liu, Y. Zhao, C. Zha, L. Shen, Y. Guo, G. Zhu, Food Agric. Immunol. 31(1), 985–1003 (2020). https://doi.org/10.1080/09540105.2020.1797640

    Article  CAS  Google Scholar 

  16. L. Lv, Y. Su, B. Dong, W. Lu, J. Hu, X. Liu, Molecules. 27(14), 4410 (2022). https://doi.org/10.3390/molecules27144410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. L. Guerrini, D. Graham, Chem. Soc. Rev. 41, 7085–7107 (2012)

    Article  CAS  PubMed  Google Scholar 

  18. V. Giannini, A.I. Fernandez-Dominguez, Y. Sonnefraud, T. Roschuk, R. Fernandez-Garcia, S.A. Maier, Small. 6, 2498–2507 (2010)

    Article  CAS  PubMed  Google Scholar 

  19. J. Chen, M. Huang, L. Kong, M. Lin, Carbohydr. Polym. 205, 596–600 (2019). https://doi.org/10.1016/j.carbpol.2018.10.059

    Article  CAS  PubMed  Google Scholar 

  20. L. Jiang, K. Gu, R. Liu, S. Jin, H. Wang, C. Pan, SN Appl. Sci. 1, 627 (2019). https://doi.org/10.1007/s42452-019-0619-9

    Article  CAS  Google Scholar 

  21. H. Zhou, X. Li, L. Wang, Y. Liang, A. Jialading, Z. Wang, J. Zhang, Rev Anal Chem. 40(1), 173–186 (2021) https://doi.org/10.1515/revac-2021-0132

    Article  CAS  Google Scholar 

  22. L. Yande, Z. Yuxiang, W. Haiyang, Y. Bing, Int. J. Agric. & Biol. Eng. 9, 179 (2016)

    Google Scholar 

  23. M. Fan, G.F.S. Andrade, A.G. Brolo, Anal. Chim. Acta. 693, 7 (2011)

    Article  CAS  PubMed  Google Scholar 

  24. L.B. Zhao, R. Huang, M.X. Bai, D.Y. Wu, Z.Q. Tian, J. Phys. Chem. C 115, 4174–4183 (2011). https://doi.org/10.1021/jp1117135

    Article  CAS  Google Scholar 

  25. A. Mühlig, D. Cialla-May, J. Popp, J. Phys. Chem. C 121, 2323–2332 (2017). https://doi.org/10.1021/acs.jpcc.6b09368

    Article  CAS  Google Scholar 

  26. N. Maiti, S. Thomas, J.A. Jacob, R. Chadha, T. Mukherjee, S. Kapoor, J. Colloid Interface Sci. 380, 141–149 (2012). https://doi.org/10.1016/j.jcis.2012.04.071

    Article  CAS  PubMed  Google Scholar 

  27. G. Díaz-Mirón, M.A. Sánchez, D.M. Chemes, R.M.S. Álvarez, J. Raman Spectrosc. 49(4), 638–650 (2017). https://doi.org/10.1002/jrs.5321

    Article  CAS  Google Scholar 

  28. N. Leopold, B. Lendl, J. Phys. Chem. B 107(24), 5723–5727 (2003). https://doi.org/10.1021/jp027460u

    Article  CAS  Google Scholar 

  29. L. Zhang, Appl. Surf. Sci. 270, 292–294 (2013). https://doi.org/10.1016/j.apsusc.2013.01.014

    Article  CAS  Google Scholar 

  30. M. Lee, K. Oh, H.K. Choi, S.G. Lee, H.J. Youn, H.L. Lee, D.H. Jeong, ACS Sens. 3(1), 151–159 (2018). https://doi.org/10.1021/acssensors.7b00782

    Article  CAS  PubMed  Google Scholar 

  31. C. Novara, S.D. Marta, A. Virga, A. Lamberti, A. Angelini, A. Chiadò, P. Rivolo, F. Geobaldo, V. Sergo, A. Bonifacio, F. Giorgis, J. Phys. Chem. C 120(30), 16946–16953 (2016). https://doi.org/10.1021/acs.jpcc.6b03852

    Article  CAS  Google Scholar 

  32. C. Zong, M. Xu, L.J. Xu, T. Wei, X. Ma, X.S. Zheng, R. Hu, B. Ren, Chem. Rev. 118, 4946–4980 (2018). https://doi.org/10.1021/acs.chemrev.7b00668

    Article  CAS  PubMed  Google Scholar 

  33. B. Hu, D.W. Sun, H. Pu, Q. Wei, Talanta 217, 120998 (2020). https://doi.org/10.1016/j.talanta.2020.120998

  34. A. Savitzky, M.J.E. Golay, Anal. Chem. 36(8), 1627–1639 (1964). https://doi.org/10.1021/ac60214a047

    Article  CAS  Google Scholar 

  35. M.L. Rizzato, A.L. Picone, R.M. Romano, Talanta Open. Volume. 7, 100223 (2023). https://doi.org/10.1016/j.talo.2023.100223

    Article  Google Scholar 

  36. N. Hussain, H. Pu, D.W. Sun, Food Chem. 350, 129025, 1–11 (2021). https://doi.org/10.1016/j.foodchem.2021.129025

    Article  CAS  Google Scholar 

  37. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Jr. Montgomery, T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, Revision E.01, Gaussian, Inc., Wallingford CT (2003)

  38. A.N. Dominguez, G.E. Emmert, D.M. Gil, R.M.S. Álvarez, Spectrochim. Acta, Part A 259, 119888 (2021). https://doi.org/10.1016/j.saa.2021.119888

    Article  CAS  Google Scholar 

  39. L. Zhao, L. Jensen, G.C. Schatz, J. Am. Chem. Soc. 128(9), 2911–2919 (2006). https://doi.org/10.1021/ja0556326

    Article  CAS  PubMed  Google Scholar 

  40. Y. Qi, Y. Hu, M. Xie, D. Xing, H. Gu, J. Raman Spectrosc. 42(6), 1287–1293 (2011). https://doi.org/10.1002/jrs.2864

    Article  CAS  Google Scholar 

  41. A. Parameswari, R.M. Asath, R. Premkumar, A.M.F. Benial, J. Mol. Struct. 1138, 102–109 (2017). https://doi.org/10.1016/j.molstruc.2017.03.014

    Article  CAS  Google Scholar 

  42. F.E. Gallegos, L.M. Meneses, S.A. Cuesta, J.C. Santos, J. Arias, P. Carrillo, F. Pilaquinga, ACS Omega. 7(6), 4750–4756 (2022). https://doi.org/10.1021/acsomega.1c04149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. M.C. Daza, J.A. Dobado, J.M. Molina, P. Salvador, M. Duran, J.L. Villaveces, J. Chem. Phys. 110(24), 11806–11813 (1999). https://doi.org/10.1063/1.479166

    Article  CAS  Google Scholar 

  44. S.S. Xantheas, J. Chem. Phys. 104(21), 8821–8824 (1996). https://doi.org/10.1063/1.471605

    Article  CAS  Google Scholar 

  45. S. Singh, S.K. Srivastava, D.K. Singh, RSC Adv. 3(13), 4381–4390 (2013). https://doi.org/10.1039/C3RA22730H

    Article  CAS  Google Scholar 

  46. R.M.S. Álvarez, C.O. Della Védova, H.G. Mack, R.N. Farías, P. Hildebrandt, Eur. Biophys. J. 31(6), 448–453 (2002). https://doi.org/10.1007/s00249-002-0238-y

    Article  CAS  PubMed  Google Scholar 

  47. R. Dennington, I.I.T. Keith, J. Millam, K. Eppinnett, W.L. Hovell, R. Gilliland, GaussView version 4.1, Semichem, Shawnee Mission, KS, USA. (2003)

  48. J. Krajczewski, K. Kołataj, A. Kudelski, RSC Adv. 7(28), 17559–17576 (2017). https://doi.org/10.1039/C7RA01034F

    Article  CAS  Google Scholar 

  49. S. Agnihotri, S. Mukherji, S. Mukherji, RSC Adv. 4(8), 3974–3983 (2014). https://doi.org/10.1039/C3RA44507K

    Article  CAS  Google Scholar 

  50. D. Ramirez, F. Jaramillo, DYNA 83(198), 165–170 (2016) https://doi.org/10.15446/dyna.v83n198.48707

  51. F. Zapata, F. Ortega-Ojeda, C. García-Ruiz, M. González-Herráez, Sensors. 18(7), 2196 (2018)

    Article  Google Scholar 

  52. Z. Liang, Y. Chu, M. Gen, C.K. Chan, Atmos. Chem. Phys. 22, 3017–3044 (2022). https://doi.org/10.5194/acp-22-3017-2022

    Article  CAS  Google Scholar 

  53. Servicio Nacional de Sanidad y Calidad Agroalimentaria, Tratamientos químicos obligatorios para el control de mancha negra de los cítricos (Phyllosticta citricarpa), https://www.argentina.gob.ar/sites/default/files/tratamientos_quimicos_obligatorios_para_el_control_de_mancha_negra_de_los_citricos.pdf. Accessed 7 April 2023

  54. V. Kumar, K. Kaur, G.K. Gupta, A.K. Sharma, Eur. J. Med. Chem. 69, 735–753 (2013). https://doi.org/10.1016/j.ejmech.2013.08.053

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Universidad Nacional de Tucumán, Argentina [Grant PIUNT2018 D604 to R.M.S.A.]. A.N.D. and L.E.J. are grateful to Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) for their Doctoral fellowships. R.M.S.A. is a career researcher of CONICET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosa María Susana Álvarez.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dominguez, A.N., Jimenez, L.E. & Álvarez, R.M.S. Rapid detection of pyraclostrobin fungicide residues in lemon with surface-enhanced Raman spectroscopy. Food Measure 17, 6350–6362 (2023). https://doi.org/10.1007/s11694-023-02131-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-023-02131-z

Keywords

Navigation