Skip to main content

Advertisement

Log in

Structural characterization, free radical scavenging activity and α-glucosidase inhibitory activity of insoluble dietary fiber from Pholiota nameko

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

The insoluble dietary fibers from Pholiota nameko (PN-IDFs) was extracted using the enzyme method with crude fiber content of 87.02 ± 1.68 g/100 g. PN-IDFs had moisture content of 4.96 ± 0.33 g/100 g, ash content of 2.65 ± 0.15 g/100 g, protein content of 3.22 ± 0.51 g/100 g and had strong absorption capacity, including swelling capacity (24.09 ± 1.13 g/g), water-holding capacity (28.22 ± 1.26 g/g) and oil-holding capacity (4.65 ± 0.68 g/g). Scanning electron microscope, Fourier transform infrared spectroscopy and atomic force micrograph suggested that PN-IDFs had the typical structures of multi-ball-aggregate-like shape and polysaccharide functional groups. PN-IDFs exhibited notable cholesterol adsorption both at pH 2.0 and pH 7.0, as well as sodium cholate adsorption. In addition, PN-IDFs displayed strong radical scavenging activities for superoxide anion, hydroxyl radical and DPPH, as well as significant inhibition of α-glucosidase. The results suggested that PN-IDFs could be used as a potentially functional dietary fiber ingredient in food processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

D10:

Smallest particle diameter

D50:

Mean particle diameter

D90:

Largest particle diameter

DCs:

Dendritic cells

CL:

Chemiluminescence

DF:

Dietary fiber

FTIR:

Fourier-transform infrared

HPLC:

High performance liquid chromatography

IDF:

Insoluble dietary fiber

NMR:

Nuclear magnetic resonance

OPA:

ο-Phthaladehyde

PnPG:

P-nitrophenyl-α-D-glucopyranoside

PNPS:

Pholiota nameko Polysaccharides

SC:

Swelling capacity

SD:

Standard deviation

SDF:

Soluble dietary fiber

SEM:

Scanning electron microscopy

TLR:

Toll-like receptor

References

  1. Q. Li, R. Liu, T. Wu, M. Zhang, Aggregation and rheological behavior of soluble dietary fibers from wheat bran. Food Res. Int. 102, 291–302 (2017)

    Article  CAS  PubMed  Google Scholar 

  2. M. Ma, T. Mu, Anti-diabetic effects of soluble and insoluble dietary fiber from deoiled cumin in low-dose streptozotocin and high glucose-fat diet-induced type 2 diabetic rats. J. Func. Foods. 25, 186–196 (2016)

    Article  CAS  Google Scholar 

  3. H. Li, S. Wang, Kinetics of inhibition of ribonuclease A by Pholiota Nameko polysaccharide. Int. J. Biol. Macromol. 40(2), 134–138 (2007)

    Article  CAS  PubMed  Google Scholar 

  4. H. Li, M. Zhang, G. Ma, Hypolipidemic effect of the polysaccharide from Pholiota nameko. Nutrition 26(5), 556–562 (2009)

    Article  CAS  PubMed  Google Scholar 

  5. H. Li, X. Lu, S. Zhang, M. Lu, H. Liu, Anti-inflammatory activity of polysaccharide from Pholiota nameko. Biochemistry 73(6), 669–675 (2008)

    CAS  PubMed  Google Scholar 

  6. H. Li, X. Liu, Y. Li, Y. Hua, D. Zhi, G. Pang, Effects of the polysaccharide from Pholiota nameko on human cytokine network in serum. Int. J. Biol. Macromol. 50, 164–170 (2012)

    Article  CAS  PubMed  Google Scholar 

  7. H. Li, L. Liu, Y. Tao, P. Zhao, F. Wang, L. Huai, D. Zhi, J. Liu, G. Li, C. Dang, Y. Xu, Effects of polysaccharides from Pholiota nameko on maturation of murine bone marrow-derived dendritic cells. Int. J. Biol. Macromol. 63, 188–197 (2014)

    Article  CAS  PubMed  Google Scholar 

  8. H. Li, Y. Tao, P. Zhao, L. Huai, D. Zhi, J. Liu, G. Li, C. Dang, Y. Xu, Effects of Pholiota nameko polysaccharide on NF-κB pathway of murine bone marrow-derived dendritic cells. Int. J. Biol. Macromol. 77, 120–130 (2015)

    Article  CAS  PubMed  Google Scholar 

  9. H. Li, P. Zhao, F. Wang, L. Huai, R. Zhu, G. Li, Y. Xu, A Polysaccharide from the culinary-medicinal mushroom Pholiota nameko (Agaricomycetes) inhibits the NF-κB pathway in dendritic cells through the TLR2 receptor. Int. J. Med. Mushrooms. 18(11), 977–989 (2016)

    Article  PubMed  Google Scholar 

  10. AOAC, Official methods of analysis (16thed.). Washington, D.C, USA: Association of Official Analytical Chemists. (1995)

  11. Y. Zhu, J. Chu, Z. Lu, F. Lv, X. Bie, C. Zhang, H. Zhao, Physicochemical and functional properties of dietary fiber from foxtail millet (Setaria italic) bran. J. Cereal Sci. 79, 456–461 (2018)

    Article  CAS  Google Scholar 

  12. C.J. Chen, Y.C. Shen, A.I. Yeh, Physico-chemical characteristics of media-milled corn starch. J. Agr. Food Chem. 58(16), 9083–9091 (2010)

    Article  CAS  Google Scholar 

  13. A.A. McConnell, M.A. Eastwood, W.D. Mitchell, Physical characteristics of vegetable foodstuffs that could influence bowel function. J. Sci. Food Agr. 25(12), 457–461 (1974)

    Google Scholar 

  14. A. Caprez, E. Arrigoni, R. Amado, H. Neukom, Influence of different types of thermal treatment on the chemical composition and physical properties of wheat bran. J. Cereal Sci. 4, 233–239 (1986)

    Article  Google Scholar 

  15. L. Wang, H. Xu, F. Yuan, Q. Pan, R. Fan, Y. Gao, Physicochemical characterization of five types of citrus dietary fibers. Biocatal. Agric. Biotechnol. 4, 250–258 (2015)

    Article  Google Scholar 

  16. W. Yu, Y. Zhao, Z. Xue, H. Jin, D. Wang, The antioxidant properties of lycopene concentrate extracted from tomato paste. J. Am. Oil Chem. Soc. 78(7), 697–701 (2001)

    Article  CAS  Google Scholar 

  17. P. Bersuder, M. Hole, G. Smith, Antioxidants from a heated histidine-glucose model system. I: investigation of the antioxidant role of histidine and isolation of antioxidants by high-performance liquid chromatography. J. Am. Oil Chem. 75(2), 181–187 (1998)

    Article  CAS  Google Scholar 

  18. G.C. Yen, H.Y. Chen, Antioxidant activity of various tea extracts in relation to their antimutagenicity. J. Agric. Food Chem. 43(1), 27–32 (1995)

    Article  CAS  Google Scholar 

  19. Y. Luo, B. Peng, Y. Liu, Y. Wu, Z. Wu, Ultrasound extraction of polysaccharides from guava leaves and their antioxidant and antiglycation activity. Process Biochem. 73, 228–234 (2018)

    Article  CAS  Google Scholar 

  20. M. Hua, J. Lu, D. Qu, C. Liu, L. Zhang, S. Li, J. Chen, Y. Sun, Structure, physicochemical properties and adsorption function of insoluble dietary fiber from ginseng residue: a potential functional ingredient. Food Chem. 286, 522–529 (2019)

    Article  CAS  PubMed  Google Scholar 

  21. J. Qi, Y. Li, K.G. Masamba, C.F. Shoemaker, F. Zhong, H. Majeed, J. Ma, The effect of chemical treatment on the In vitro hypoglycemic properties of rice bran insoluble dietary fiber. Food Hydrocoll. 52, 699–706 (2016)

    Article  CAS  Google Scholar 

  22. X. Zhuang, X. Jiang, H. Zhou, M. Han, Y. Liu, Y. Bai, X. Xu, G. Zhou, The effect of insoluble dietary fiber on myofibrillar protein emulsion gels: oil particle size and protein network microstructure. LWT Food Sci. Technol. 101(3), 534–542 (2019)

    Article  CAS  Google Scholar 

  23. C. Liu, R. Liang, T. Dai, J. Ye, Z. Zeng, S. Luo, J. Chen, Effect of dynamic high pressure microfluidization modified insoluble dietary fiber on gelatinization and rheology of rice starch. Food Hydrocoll. 57, 55–61 (2016)

    Article  CAS  Google Scholar 

  24. I. Ullah, T. Yin, S. Xiong, Q. Huang, J. Zia-ud-Din, Zhang, A.B. Javaid, Effects of thermal pre-treatment on physicochemical properties of nanosized okara (soybean residue) insoluble dietary fiber prepared by wet media milling. J. Food Eng. 237, 18–26 (2018)

    Article  CAS  Google Scholar 

  25. J. Chen, D. Gao, L. Yang, Y. Gao, Effect of microfluidization process on the functional properties of insoluble dietary fiber. Food Res. Int. 54, 1821–1827 (2013)

    Article  CAS  Google Scholar 

  26. G. Yu, J. Bei, J. Zhao, Q. Li, C. Cheng, Modification of carrot (Daucus carota Linn. Var. Sativa Hoffm.) pomace insoluble dietary fiber with complex enzyme method, ultrafine comminution, and high hydrostatic pressure. Food Chem. 257, 333–340 (2018)

    Article  CAS  PubMed  Google Scholar 

  27. M.C. Rouhou, S. Abdelmoumen, S. Thomas, H. Attia, D. Ghorbel, Use of green chemistry methods in the extraction of dietary fibers from cactus rackets (Opuntia ficus indica): structural and microstructural studies. Int. J. Biol. Macromol. 116, 901–910 (2018)

    Article  CAS  Google Scholar 

  28. V.J. Morris, A. Gromer, A.R. Kirby, R.J. Bongaerts, G. Patrick, Using AFM and force spectroscopy to determine pectin structure and (bio) functionality. Food Hydrocoll. 25, 230–237 (2011)

    Article  CAS  Google Scholar 

  29. T. Yang, T. Liu, X. Li, C. Tang, Novel nanoparticles from insoluble soybean polysaccharides of Okara as unique Pickering stabilizers for oil-in-water emulsions. Food Hydrocoll. 94, 255–267 (2019)

    Article  CAS  Google Scholar 

  30. J. Nsor-Atindana, H.D. Goff, M.N. Saqib, M. Chen, W. Liu, J. Ma, F. Zhong, Inhibition of α-amylase and amyloglucosidase by nanocrystalline cellulose and spectroscopic analysis of their binding interaction mechanism. Food Hydrocoll. 90, 341–352 (2019)

    Article  CAS  Google Scholar 

  31. J.Z. He, Q.M. Ru, D.D. Dong, P.L. Sun, Chemical characteristics and antioxidant properties of crude water soluble polysaccharides from four common edible mushrooms. Molecules 17(4), 4373–4387 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. J. Wang, X. Xu, H. Zheng, J. Li, C. Deng, Z. Xu, J. Chen, Structural characterization, chain conformation, and morphology of a beta-(1→3)-D-glucan isolated from the fruiting body of Dictyophora indusiata. J. Agri. Food Chem. 57(13), 5918–5924 (2009)

    Article  CAS  Google Scholar 

  33. A. Misaki, M. Kakuta, T. Sasaki, M. Tanaka, H. Miyaji, Studies on interrelation of structure and antitumor effects of polysaccharides: antitumor action of periodate-modified, branched (1 goes to 3)-beta-D-glucan of Auricularia auricula-judae, and other polysaccharides containing (1 goes to 3)-glycosidic linkages. Carbohyd. Res. 92, 115–129 (1981)

    Article  CAS  Google Scholar 

  34. L. Zhang, M. Zhang, J. Dong, J. Guo, Y. Song, P.C.K. Cheung, Chemical structure and chain conformation of the water-insoluble glucan isolated from Pleurotus tuber-regium. Biopolymers 59(6), 457–464 (2001)

    Article  CAS  PubMed  Google Scholar 

  35. G. Zhao, R. Zhang, L. Dong, F. Huang, M. Zhang, Particle size of insoluble dietary fiber from rice bran affects its phenolic profile, bioaccessibility and functional properties. LWT Food Sci. Technol. 87, 450–456 (2018)

    Article  CAS  Google Scholar 

  36. D. Qin, X. Yang, S. Gao, J. Yao, D.J. McClements, Influence of dietary fibers on lipid digestion: comparison of single-stage and multiple-stage gastrointestinal models. Food Hydrocoll. 69, 382–392 (2017)

    Article  CAS  Google Scholar 

  37. M.S. Blanco Canalis, A.E. León, P.D. Ribotta, Incorporation of dietary fiber on the cookie dough. Effects on thermal properties and water availability. Food Chem. 271, 309–317 (2019)

    Article  CAS  PubMed  Google Scholar 

  38. M.A. Kurek, J. Wyrwisz, S. Karp, A. Wierzbicka, Particle size of dietary fiber preparation affects the bioaccessibility of selected vitamin B in fortified wheat bread. J. Cereal Sci. 77, 166–171 (2017)

    Article  CAS  Google Scholar 

  39. K.L.D.D. Willemsen, A. Panozzo, K. Moelants, R. Cardinaels, J. Wallecan, P. Moldenaers, M. Hendrickx, Effect of pH and salts on microstructure and viscoelastic properties of lemon peel acid insoluble fiber suspensions upon high pressure homogenization. Food Hydrocoll. 82, 144–154 (2018)

    Article  CAS  Google Scholar 

  40. L. Yan, T. Li, C. Liu, L. Zheng, Effects of high hydrostatic pressure and superfine grinding treatment on physicochemical/functional properties of pear pomace and chemical composition of its soluble dietary fibre. LWT Food Sci. Technol. 107, 171–177 (2019)

    Article  CAS  Google Scholar 

  41. H. Zhang, H. Wang, X. Cao, J. Wang, Preparation and modification of high dietary fiber flour: A review. Food Res. Int. 113, 24–35 (2018)

    Article  CAS  PubMed  Google Scholar 

  42. J. Qi, W. Yokoyama, K.G. Masamba, H. Majeed, F. Zhong, Y. Li, Structural and physicochemical properties of insoluble rice bran fiber: effect of acid-base induced modifications. RSC Adv. 5, 79915–79923 (2015)

    Article  CAS  Google Scholar 

  43. I. Ullah, T. Yin, S. Xiong, J. Zhang, Z. Din, M. Zhang, Structural characteristics and physicochemical properties of okara (soybean residue) insoluble dietary fiber modified by high-energy wet media milling. LWT Food Sci. Technol. 82, 15–22 (2017)

    Article  CAS  Google Scholar 

  44. X. Luo, Q. Wang, D. Fang, W. Zhuang, C. Chen, W. Jiang, Y. Zheng, Modification of insoluble dietary fibers from bamboo shoot shell: Structural characterization and functional properties. Int. J. Biol. Macromol. 120, 1461–1467 (2018)

    Article  CAS  PubMed  Google Scholar 

  45. C.F. Chau, Y.L. Huang, C.Y. Lin, Investigation of the cholesterol-lowering action of insoluble fiber derived from the peel of Citrus sinensis L. Cv Liucheng. Food Chem. 87, 361–366 (2004)

    Article  CAS  Google Scholar 

  46. M. Elleuch, D. Bedigian, O. Roiseux, S. Besbes, C. Blecker, H. Attia, Dietary fibre and fibre-rich by-products of food processing: characterisation, technological functionality and commercial applications: a review. Food Chem. 124, 411–421 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the national natural science foundation of China. Also, this work was supported by the grant of National College Students' Science and Technology Innovation Project of China (Grant No. 201710069002, 201810069007, 201910069002), and by the grant of Tianjin Postgraduate Students' Science and Technology Innovation Project of China, and by the natural science foundation of Tianjin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiping Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Zhao, P., Zhuo, S. et al. Structural characterization, free radical scavenging activity and α-glucosidase inhibitory activity of insoluble dietary fiber from Pholiota nameko. Food Measure 16, 3062–3076 (2022). https://doi.org/10.1007/s11694-022-01409-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-022-01409-y

Keywords

Navigation