Skip to main content
Log in

A new electrochemical method for the detection of quercetin in onion, honey and green tea using Co3O4 modified GCE

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Quercetin (Qu) is a most active biological flavonoid and it has a very wide spectrum of potential applications. Herein, we have synthesized ionic liquid assisted Co3O4 nanostructures through an aqueous chemical growth method and fabricated a Co3O4 modified GCE as an electrochemical sensor for the sensitive detection and determination of Qu. The proposed electrochemical sensor was not only prepared with a very easy, simple and cheap method but it was also found to be very selective, sensitive and highly stable for the detection of Qu in standard solutions as well as in real food samples like onion, honey and green tea. The prepared electrochemical sensor has shown an excellent electrochemical response for Qu with a wide range of detection from 0.01 to 3 µM. The oxidation current response of Qu on Co3O4 modified GCE was found 4 times higher than the response of bare GCE which is due to the high conductivity, tremendous catalytic ability and large surface area of Co3O4 nanostructures. The limit of detection (LOD) and the limit of quantification (LOQ) for Co3O4/GCE sensor was calculated and found to be 0.0002 µM and 0.0007 µM respectively. While, the amount of Qu in real samples was found to be 5.367 µg/mL in honey, 15.58 µg/g in onion and 3.473 mg/g in green tea respectively. In comparison to the previously reported sensors, the prepared Co3O4/GCE sensor has shown a higher electrocatalytic capability, remarkable stability, super sensitivity and adequate selectivity for the determination of Qu in standard solutions as well as in real samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5
Scheme 2
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S. Takahashi, H. Muguruma, N. Osakabe, H. Inoue, T. Ohsawa, Electrochemical determination with a long-length carbon nanotube electrode of quercetin glucosides in onion, apple peel, and tartary buckwheat. Food Chem. 300, 125189 (2019)

    Article  CAS  PubMed  Google Scholar 

  2. A. Saljooqi, T. Shamspur, A. Mostafavi, Fe3O4@ SiO2-PANI-Au nanocomposite prepared for electrochemical determination of quercetin in food samples and biological fluids. Electroanalysis (2019). https://doi.org/10.1002/elan.201900386

    Article  Google Scholar 

  3. M. Kawser Hossain, A. Abdal Dayem, J. Han, Y. Yin, K. Kim, S. Kumar Saha, G.-M. Yang, H.Y. Choi, S.-G. Cho, Molecular mechanisms of the anti-obesity and anti-diabetic properties of flavonoids. Int. J. Mol. Sci. 17(4), 569 (2016)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. M. Skerget, P. Kotnik:, A.R. Hras, M. Simonic, M. Ha dolin. Z. Knez. Food Chem 89, 191 (2005)

    CAS  Google Scholar 

  5. A. Mondal, D. Rajalingam, T.K. Maity, Anti-inflammatory effect of O-methylated flavonol 2-(3, 4-dihydroxy-phenyl)-3, 5-dihydroxy-7-methoxy-chromen-4-one obtained from Cassia sophera Linn in rats. J. Ethnopharmacol. 147(2), 525–529 (2013)

    Article  CAS  PubMed  Google Scholar 

  6. M. Saito, H. Hosoyama, T. Ariga, S. Kataoka, N. Yamaji, Antiulcer activity of grape seed extract and procyanidins. J. Agric. Food Chem. 46(4), 1460–1464 (1998)

    Article  CAS  Google Scholar 

  7. D. Saritha, A. Koirala, M. Venu, G.D. Reddy, A.V.B. Reddy, B. Sitaram, G. Madhavi, K. Aruna, A simple, highly sensitive and stable electrochemical sensor for the detection of quercetin in solution, onion and honey buckwheat using zinc oxide supported on carbon nanosheet (ZnO/CNS/MCPE) modified carbon paste electrode. Electrochim. Acta 313, 523–531 (2019)

    Article  CAS  Google Scholar 

  8. F.C. Bekkering, A.U. Neumann, J.T. Brouwer, R.S. Levi-Drummer, S.W. Schalm, Changes in anti-viral effectiveness of interferon after dose reduction in chronic hepatitis C patients: a case control study. BMC Gastroenterol. 1(1), 14 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. R. Khani, R. Sheykhi, G. Bagherzade, An environmentally friendly method based on micro-cloud point extraction for determination of trace amount of quercetin in food and fruit juice samples. Food Chem. 293, 220–225 (2019)

    Article  CAS  PubMed  Google Scholar 

  10. Z. Zhou, C. Gu, C. Chen, P. Zhao, Y. Xie, J. Fei, An ultrasensitive electrochemical sensor for quercetin based on 1-pyrenebutyrate functionalized reduced oxide graphene/mercapto-β-cyclodextrin/Au nanoparticles composite film. Sens. Actuators B 288, 88–95 (2019)

    Article  CAS  Google Scholar 

  11. P. Zhao, M. Ni, Y. Xu, C. Wang, C. Chen, X. Zhang, C. Li, Y. Xie, J. Fei, A novel ultrasensitive electrochemical quercetin sensor based on MoS2-carbon nanotube@ graphene oxide nanoribbons/HS-cyclodextrin/graphene quantum dots composite film. Sens. Actuators B 299, 126997 (2019)

    Article  CAS  Google Scholar 

  12. S. Kumar, V. Lather, D. Pandita, Stability indicating simplified HPLC method for simultaneous analysis of resveratrol and quercetin in nanoparticles and human plasma. Food Chem. 197, 959–964 (2016)

    Article  CAS  PubMed  Google Scholar 

  13. R. Ravichandran, M. Rajendran, D. Devapiriam, Antioxidant study of quercetin and their metal complex and determination of stability constant by spectrophotometry method. Food Chem. 146, 472–478 (2014)

    Article  CAS  PubMed  Google Scholar 

  14. Y. Sun, T. Guo, Y. Sui, F. Li, Quantitative determination of rutin, quercetin, and adenosine in Flos Carthami by capillary electrophoresis. J. Sep. Sci. 26(12-13), 1203–1206 (2003)

    Article  CAS  Google Scholar 

  15. C. Wang, Y. Zuo, Ultrasound-assisted hydrolysis and gas chromatography–mass spectrometric determination of phenolic compounds in cranberry products. Food Chem. 128(2), 562–568 (2011)

    Article  CAS  PubMed  Google Scholar 

  16. J.B. Raoof, R. Ojani, M. Amiri-Aref, M. Baghayeri, Electrodeposition of quercetin at a multi-walled carbon nanotubes modified glassy carbon electrode as a novel and efficient voltammetric sensor for simultaneous determination of levodopa, uric acid and tyramine. Sens. Actuators B 166, 508–518 (2012)

    Article  CAS  Google Scholar 

  17. M. Ghanei-Motlagh, M. Baghayeri, Determination of trace Tl (I) by differential pulse anodic stripping voltammetry using a novel modified carbon paste electrode. J. Electrochem. Soc. 167(6), 066508 (2020)

    Article  CAS  Google Scholar 

  18. M. Nodehi, M. Baghayeri, R. Ansari, H. Veisi, Electrochemical quantification of 17α-ethinylestradiol in biological samples using a Au/Fe3O4@ TA/MWNT/GCE sensor. Mater. Chem. Phys. 244, 122687 (2020)

    Article  CAS  Google Scholar 

  19. M. Nodehi, M. Baghayeri, R. Behazin, H. Veisi, Electrochemical aptasensor of bisphenol A constructed based on 3D mesoporous structural SBA-15-Met with a thin layer of gold nanoparticles. Microchem. J. 162, 105825 (2021)

    Article  CAS  Google Scholar 

  20. M. Ghanei-Motlagh, M.A. Taher, M. Fayazi, M. Baghayeri, A. Hosseinifar, Non-enzymatic amperometric sensing of hydrogen peroxide based on vanadium pentoxide nanostructures. Journal of The Electrochemical Society 166(6), B367 (2019)

    Article  CAS  Google Scholar 

  21. M. Baghayeri, R. Ansari, M. Nodehi, I. Razavipanah, H. Veisi, Label-free electrochemical bisphenol A aptasensor based on designing and fabrication of a magnetic gold nanocomposite. Electroanalysis 30(9), 2160–2166 (2018)

    Article  CAS  Google Scholar 

  22. M. Baghayeri, R. Ansari, M. Nodehi, I. Razavipanah, H. Veisi, Voltammetric aptasensor for bisphenol A based on the use of a MWCNT/Fe3O4@ gold nanocomposite. Microchim. Acta 185(7), 1–9 (2018)

    Article  CAS  Google Scholar 

  23. M. Baghayeri, H. Beitollahi, A. Akbari, S. Farhadi, Highly sensitive nanostructured electrochemical sensor based on carbon nanotubes-Pt nanoparticles paste electrode for simultaneous determination of levodopa and tyramine. Russ. J. Electrochem. 54(3), 292–301 (2018)

    Article  CAS  Google Scholar 

  24. M. Baghayeri, A. Sedrpoushan, A. Mohammadi, M. Heidari, A non-enzymatic glucose sensor based on NiO nanoparticles/functionalized SBA 15/MWCNT-modified carbon paste electrode. Ionics 23(6), 1553–1562 (2017)

    Article  CAS  Google Scholar 

  25. N.H. Khand, I.M. Palabiyik, J.A. Buledi, S. Ameen, A.F. Memon, T. Ghumro, A.R. Solangi, Functional Co3O4 nanostructure-based electrochemical sensor for direct determination of ascorbic acid in pharmaceutical samples. J. Nanostruct. Chem. (2021). https://doi.org/10.1007/s40097-020-00380-8

    Article  Google Scholar 

  26. S. Kiranmai, Y.V.M. Reddy, M. Venu, C. Madhuri, K. Anitha, G. Madhavi, A.V. Reddy, Determination of Terazosin by using poly (Congo red) modified carbon paste electrode. Anal. Bioanal. Electrochem. 9(2), 154–163 (2017)

    CAS  Google Scholar 

  27. H. Karimi-Maleh, M. Alizadeh, Y. Orooji, F. Karimi, M. Baghayeri, J. Rouhi, S. Tajik, H. Beitollahi, S. Agarwal, V.K. Gupta, Guanine-based DNA biosensor amplified with Pt/SWCNTs nanocomposite as analytical tool for nanomolar determination of daunorubicin as an anticancer drug: a docking/experimental investigation. Ind. Eng. Chem. Res. 60(2), 816–823 (2021)

    Article  CAS  Google Scholar 

  28. M. Khadem, F. Faridbod, P. Norouzi, A. Rahimi Foroushani, M.R. Ganjali, S.J. Shahtaheri, R. Yarahmadi, Modification of carbon paste electrode based on molecularly imprinted polymer for electrochemical determination of diazinon in biological and environmental samples. Electroanalysis 29(3), 708–715 (2017)

    Article  CAS  Google Scholar 

  29. H. Karimi-Maleh, F. Karimi, Y. Orooji, G. Mansouri, A. Razmjou, A. Aygun, F. Sen, A new nickel-based co-crystal complex electrocatalyst amplified by NiO dope Pt nanostructure hybrid; a highly sensitive approach for determination of cysteamine in the presence of serotonin. Sci. Rep. 10(1), 11699 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. H. Karimi-Maleh, K. Cellat, K. Arıkan, A. Savk, F. Karimi, F. Şen, Palladium–nickel nanoparticles decorated on functionalized-MWCNT for high precision non-enzymatic glucose sensing. Mater. Chem. Phys. 250, 123042 (2020)

    Article  CAS  Google Scholar 

  31. J.A. Buledi, A.M. Zia-ul-Hassan Shah, A.R. Solangi, Current perspective and developments in electrochemical sensors modified with nanomaterials for environmental and pharmaceutical analysis. Curr. Anal. Chem. 17, 1–4 (2021)

    Google Scholar 

  32. F.A. Harraz, M. Faisal, A. Al-Salami, A.M. El-Toni, A. Almadiy, S. Al-Sayari, M. Al-Assiri, Silver nanoparticles decorated stain-etched mesoporous silicon for sensitive, selective detection of ascorbic acid. Mater. Lett. 234, 96–100 (2019)

    Article  CAS  Google Scholar 

  33. K. Saksena, A. Shrivastava, R. Kant, Chiral analysis of ascorbic acid in bovine serum using ultrathin molecular imprinted polyaniline/graphite electrode. J. Electroanal. Chem. 795, 103–109 (2017)

    Article  CAS  Google Scholar 

  34. X. Wu, Y. Xing, D. Pierce, J.X. Zhao, One-pot synthesis of reduced graphene oxide/metal (oxide) composites. ACS Appl. Mater. Interfaces 9(43), 37962–37971 (2017)

    Article  CAS  PubMed  Google Scholar 

  35. Y. Hei, X. Li, X. Zhou, J. Liu, M. Hassan, S. Zhang, Y. Yang, X. Bo, H.-L. Wang, M. Zhou, Cost-effective synthesis of three-dimensional nitrogen-doped nanostructured carbons with hierarchical architectures from the biomass of sea-tangle for the amperometric determination of ascorbic acid. Anal. Chim. Acta 1029, 15–23 (2018)

    Article  CAS  PubMed  Google Scholar 

  36. M.R. Ganjali, H. Salimi, S. Tajik, H. Beitollahi, M. Rezapour, B. Larijani, Application of Fe3O4@ SiO2/MWCNT film on glassy carbon electrode for the sensitive electroanalysis of levodopa. Int. J. Electrochem. Sci. 12, 5243–5253 (2017)

    Article  CAS  Google Scholar 

  37. M.R. Ganjali, H. Beitollahi, R. Zaimbashi, S. Tajik, M. Rezapour, B. Larijani, Voltammetric determination of dopamine using glassy carbon electrode modified with ZnO/Al2O3 nanocomposite. Int. J. Electrochem. Sci. 13(3), 2519–2529 (2018)

    Article  CAS  Google Scholar 

  38. H. Baksh, J.A. Buledi, N.H. Khand, A.R. Solangi, A. Mallah, S.T. Sherazi, M.I. Abro, Ultra-selective determination of carbofuran by electrochemical sensor based on nickel oxide nanoparticles stabilized by ionic liquid. Monatsh. Chem. 151(11), 1689–1696 (2020)

    Article  CAS  Google Scholar 

  39. J.A. Buledi, S. Ameen, N.H. Khand, A.R. Solangi, I.H. Taqvi, M.H. Agheem, Z. Wajdan, CuO nanostructures based electrochemical sensor for simultaneous determination of hydroquinone and ascorbic acid. Electroanalysis 32(7), 1600–1607 (2020)

    Article  CAS  Google Scholar 

  40. S. Tajyani, A. Babaei, A new sensing platform based on magnetic Fe3O4@ NiO core/shell nanoparticles modified carbon paste electrode for simultaneous voltammetric determination of Quercetin and Tryptophan. J. Electroanal. Chem. 808, 50–58 (2018)

    Article  CAS  Google Scholar 

  41. A.E. Vilian, P. Puthiaraj, C.H. Kwak, S.R. Choe, Y.S. Huh, W.-S. Ahn, Y.-K. Han, Electrochemical determination of quercetin based on porous aromatic frameworks supported Au nanoparticles. Electrochim. Acta 216, 181–187 (2016)

    Article  CAS  Google Scholar 

  42. M.L. Yola, V.K. Gupta, T. Eren, A.E. Şen, N. Atar, A novel electro analytical nanosensor based on graphene oxide/silver nanoparticles for simultaneous determination of quercetin and morin. Electrochim. Acta 120, 204–211 (2014)

    Article  CAS  Google Scholar 

  43. S. Vladimirova, V. Krivetskiy, M. Rumyantseva, A. Gaskov, N. Mordvinova, O. Lebedev, M. Martyshov, P. Forsh, Co3O4 as p-type material for CO sensing in humid air. Sensors 17(10), 2216 (2017)

    Article  PubMed Central  CAS  Google Scholar 

  44. A. Numan, M.M. Shahid, F.S. Omar, K. Ramesh, S. Ramesh, Facile fabrication of cobalt oxide nanograin-decorated reduced graphene oxide composite as ultrasensitive platform for dopamine detection. Sens. Actuators B 238, 1043–1051 (2017)

    Article  CAS  Google Scholar 

  45. S.A. Memon, D. Hassan, J.A. Buledi, A.R. Solangi, S.Q. Memon, I.M. Palabiyik, Plant material protected cobalt oxide nanoparticles: sensitive electro-catalyst for tramadol detection. Microchem. J. 159, 105480 (2020)

    Article  CAS  Google Scholar 

  46. G. Wang, F. Zhu, J. Xia, L. Wang, Y. Meng, Y. Zhang, Preparation of Co3O4/carbon derived from ionic liquid and its application in lithium-ion batteries. Electrochim. Acta 257, 138–145 (2017)

    Article  CAS  Google Scholar 

  47. Z. Song, Y. Zhang, W. Liu, S. Zhang, G. Liu, H. Chen, J. Qiu, Hydrothermal synthesis and electrochemical performance of Co3O4/reduced graphene oxide nanosheet composites for supercapacitors. Electrochim. Acta 112, 120–126 (2013)

    Article  CAS  Google Scholar 

  48. R.K. Das, A.K. Golder, Co3O4 spinel nanoparticles decorated graphite electrode: Bio-mediated synthesis and electrochemical H2O2 sensing. Electrochim. Acta 251, 415–426 (2017)

    Article  CAS  Google Scholar 

  49. M. Antonietti, D. Kuang, B. Smarsly, Y. Zhou, Ionic liquids for the convenient synthesis of functional nanoparticles and other inorganic nanostructures. Angew. Chem. Int. Ed. 43(38), 4988–4992 (2004)

    Article  CAS  Google Scholar 

  50. R. Sheldon, Catalytic reactions in ionic liquids. Chem. Commun. 23, 2399–2407 (2001)

    Article  CAS  Google Scholar 

  51. J. Fuller, R.T. Carlin, R.A. Osteryoung, The room temperature ionic liquid 1-ethyl‐3‐methylimidazolium tetrafluoroborate: electrochemical couples and physical properties. J. Electrochem. Soc. 144(11), 3881 (1997)

    Article  CAS  Google Scholar 

  52. W. Zheng, X. Liu, Z. Yan, L. Zhu, Ionic liquid-assisted synthesis of large-scale TiO2 nanoparticles with controllable phase by hydrolysis of TiCl4. ACS Nano 3(1), 115–122 (2009)

    Article  CAS  PubMed  Google Scholar 

  53. P. Wasserscheid, T. Welton, Ionic Liquids in Synthesis (Wiley, New York, 2008).

    Google Scholar 

  54. J. Shen, B. Yan, M. Shi, H. Ma, N. Li, M. Ye, One step hydrothermal synthesis of TiO2-reduced graphene oxide sheets. J. Mater. Chem. 21(10), 3415–3421 (2011)

    Article  CAS  Google Scholar 

  55. V. Vinothkumar, A. Sangili, S.M. Chen, P. Veerakumar, K.-C. Lin, Sr-doped NiO3 nanorods synthesized by simple sonochemical method as excellent materials for voltammetric determination of quercetin. New J. Chem. 44, 2821–2832 (2020)

    Article  CAS  Google Scholar 

  56. W. Zhang, L. Zong, G. Geng, Y. Li, Y. Zhang, Enhancing determination of quercetin in honey samples through electrochemical sensors based on highly porous polypyrrole coupled with nanohybrid modified GCE. Sens. Actuators B 257, 1099–1109 (2018)

    Article  CAS  Google Scholar 

  57. B. Xu, L. Yang, F. Zhao, B. Zeng, A novel electrochemical quercetin sensor based on Pd/MoS2-ionic liquid functionalized ordered mesoporous carbon. Electrochim. Acta 247, 657–665 (2017)

    Article  CAS  Google Scholar 

Download references

Funding

The authors are highly thankful to the Higher Education Commission of Pakistan for providing funds under the project “6714/Sindh/NRPU/R&D/HEC/HEC/2015”.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Amber R. Solangi, Fatih Sen, Fatemeh Karimi or Yasin Orooji.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human or animal subjects.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khand, N.H., Solangi, A.R., Ameen, S. et al. A new electrochemical method for the detection of quercetin in onion, honey and green tea using Co3O4 modified GCE. Food Measure 15, 3720–3730 (2021). https://doi.org/10.1007/s11694-021-00956-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-021-00956-0

Keywords

Navigation