Skip to main content
Log in

Ultrasound-assisted osmotic dehydration of litchi: effect of pretreatment on mass transfer and quality attributes during frozen storage

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Litchi (Litchi chinensis Sonn.), fruits being the perishable and high amount of moisture content, are very susceptible to fruit deterioration and reduced shelf life. A novel method of ultrasound-assisted osmotic dehydration can improve fruit quality by increasing mass transfer rate and maintaining texture characteristics. Therefore, this study aimed to investigate the effect of ultrasound-assisted osmotic dehydration on the mass transfer parameters, physicochemical and microbiological qualities of litchi fruits during frozen periods. For this purpose, litchi fruits were subjected to ultrasound-assisted osmotic dehydration as a pretreatment prior to the freezing step. The pretreatment consisted of three processing conditions: the use of osmotic dehydration at 50% (w/w) of sucrose (OD); ultrasound in an osmotic solution for 10 min before osmotic dehydration (US10 + OD); and ultrasound in an osmotic solution for 15 min before osmotic dehydration (US15 + OD). All samples were frozen and stored at − 18 °C. The obtained results indicated that ultrasound pretreatment effectively increases water loss (28.73 ± 3.25%) and solid gain (45.44 ± 6.85%) levels of litchi fruit. During the frozen storage for 90 days, the use of ultrasound, remarkably, US10 + OD treatment reduced the moisture content (76.46 ± 1.38%), drip loss (15.93 ± 1.01%), and microbial load (2.58 ± 0.06 log CFU/g) of the frozen litchi while increasing the firmness (1.46 ± 0.24 N), and a total soluble solid (17.50 ± 0.87 ºBrix) amount of the samples in comparison to their controls (p < 0.05). Therefore, these results demonstrated that ultrasound-assisted osmotic dehydration could significantly improve the quality of litchi fruit in freezing and thawing processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. M.T. Rashid, A. Belščak-Cvitanović, S. Karača, H. Ma, D. Komes, Longan (Dimocarpus longan) and lychee (Litchi chinensis): Functional ingredients in chocolate pralines. J. Food Biochem. 43(4), 1–10 (2019)

    Article  Google Scholar 

  2. S. Man, J. Ma, C. Wang, Y. Li, W. Gao, F. Lu, Chemical composition and hypoglycaemic effect of polyphenol extracts from Litchi chinensis seeds. J. Funct. Foods. 22, 313–324 (2016)

    Article  CAS  Google Scholar 

  3. S. Tan, J. Tang, W. Shi, Z. Wang, Y. Xiang, T. Deng, X. Gao, W. Li, S. Shi, Effects of three drying methods on polyphenol composition and antioxidant activities of Litchi chinensis Sonn. Food Sci Biotechnol. 29(3), 351–358 (2020)

    Article  CAS  PubMed  Google Scholar 

  4. X. Jiang, H. Lin, J. Shi, S. Neethirajan, Y. Lin, Y. Chen, H. Wang, Y. Lin, Effects of a novel chitosan formulation treatment on quality attributes and storage behavior of harvested litchi fruit. Food Chem. 252, 134–141 (2018)

    Article  PubMed  Google Scholar 

  5. Z. Zhang, D.J. Huber, H. Qu, Z. Yun, H. Wang, Z. Huang, H. Huang, Y. Jiang, Enzymatic browning and antioxidant activities in harvested litchi fruit as influenced by apple polyphenols. Food Chem. 171, 191–199 (2015)

    Article  CAS  PubMed  Google Scholar 

  6. J.-H. Zhao, F. Liu, X.-L. Pang, H.-W. Xiao, X. Wen, Y.-Y. Ni, Effects of different osmo-dehydrofreezing treatments on the volatile compounds, phenolic compounds and physicochemical properties in mango (Mangifera indica L.). Int. J. Food Sci. Tech. 51(6), 1441–1448 (2016)

    Article  CAS  Google Scholar 

  7. K.A. Taiwo, M.N. Eshtiaghi, B.I. Ade-Omowaye, D. Knorr, Osmotic dehydration of strawberry halves: influence of osmotic agents and pretreatment methods on mass transfer and product characteristics. Int. J. Food Sci. Tech. 38(6), 693–707 (2003)

    Article  CAS  Google Scholar 

  8. A. Ciurzyńska, H. Kowalska, K. Czajkowska, A. Lenart, Osmotic dehydration in production of sustainable and healthy food. Trends Food Sci. Technol. 50, 186–192 (2016)

    Article  Google Scholar 

  9. H. Kowalska, A. Lenart, D. Leszczyk, The effect of blanching and freezing on osmotic dehydration of pumpkin. J. Food Eng. 86(1), 30–38 (2008)

    Article  CAS  Google Scholar 

  10. H. Bozkir, A. Rayman Ergün, E. Serdar, G. Metin, T. Baysal, Influence of ultrasound and osmotic dehydration pretreatments on drying and quality properties of persimmon fruit. Ultrason. Sonochem. 54, 135–141 (2019)

    Article  CAS  PubMed  Google Scholar 

  11. M. Germec, K. Tarhan, E. Yatmaz, N. Tetik, M. Karhan, A. Demirci, I. Turhan, Ultrasound-assisted dilute acid hydrolysis of tea processing waste for production of fermentable sugar. Biotechnol. Prog. 32(2), 393–403 (2016)

    Article  CAS  PubMed  Google Scholar 

  12. M.L. Magalhães, S.J.M. Cartaxo, M.I. Gallão, J.V. García-Pérez, J.A. Cárcel, S. Rodrigues, F.A.N. Fernandes, Drying intensification combining ultrasound pre-treatment and ultrasound-assisted air drying. J. Food Eng. 215, 72–77 (2017)

    Article  Google Scholar 

  13. A. Antunes-Rohling, S. Ciudad-Hidalgo, J. Mir-Bel, J. Raso, G. Cebrián, I. Álvarez, Ultrasound as a pretreatment to reduce acrylamide formation in fried potatoes. Innov. Food Sci. Emerg. Technol. 49, 158–169 (2018)

    Article  CAS  Google Scholar 

  14. A.D. Alarcon-Rojo, L.M. Carrillo-Lopez, R. Reyes-Villagrana, M. Huerta-Jiménez, I.A. Garcia-Galicia, Ultrasound and meat quality: a review. Ultrason. Sonochem. 55, 369–382 (2019)

    Article  CAS  PubMed  Google Scholar 

  15. X.-F. Cheng, M. Zhang, B. Adhikari, M.N. Islam, Effect of power ultrasound and pulsed vacuum treatments on the dehydration kinetics, distribution, and status of water in osmotically dehydrated strawberry: a combined NMR and DSC study. Food Bioprocess Tech. 7(10), 2782–2792 (2014)

    Article  CAS  Google Scholar 

  16. A. Rahaman, X.-A. Zeng, A. Kumari, M. Rafiq, A. Siddeeg, M.F. Manzoor, Z. Bloch, Z. Ahmad, Influence of ultrasound-assisted osmotic dehydration on texture, bioactive compounds and metabolites analysis of plum. Ultrason. Sonochem. 104643 (2019)

  17. M. Sharma, K.K. Dash, Effect of ultrasonic vacuum pretreatment on mass transfer kinetics during osmotic dehydration of black jamun fruit. Ultrason. Sonochem. 58, 1–11 (2019)

    Article  Google Scholar 

  18. J.A. Cárcel, J. Benedito, C. Rosselló, A. Mulet, Influence of ultrasound intensity on mass transfer in apple immersed in a sucrose solution. J. Food Eng. 78(2), 472–479 (2007)

    Article  Google Scholar 

  19. Z. Allahdad, M. Nasiri, M. Varidi, M.J. Varidi, Effect of sonication on osmotic dehydration and subsequent air-drying of pomegranate arils. J. Food Eng. 244, 202–211 (2019)

    Article  CAS  Google Scholar 

  20. S.P. Kek, N.L. Chin, Y.A. Yusof, Direct and indirect power ultrasound assisted pre-osmotic treatments in convective drying of guava slices. Food Bioprod. Process. 91(4), 495–506 (2013)

    Article  Google Scholar 

  21. S. Shamaei, Z. Emam-Djomeh, S. Moini, Ultrasound-assisted osmotic dehydration of cranberries: effect of finish drying methods and ultrasonic frequency on textural properties. J. Texture Stud. 43(2), 133–141 (2012)

    Article  Google Scholar 

  22. C. Lagnika, J. Huang, N. Jiang, D. Li, C. Liu, J. Song, Q. Wei, M. Zhang, Ultrasound-assisted osmotic process on quality of microwave vacuum drying sweet potato. Dry. Technol. 36(11), 1367–1379 (2018)

    Article  CAS  Google Scholar 

  23. J.-H. Zhao, R. Hu, H.-W. Xiao, Y. Yang, F. Liu, Z.-L. Gan, Y.-Y. Ni, Osmotic dehydration pretreatment for improving the quality attributes of frozen mango: effects of different osmotic solutes and concentrations on the samples. Int. J. Food Sci. Tech. 49(4), 960–968 (2014)

    Article  CAS  Google Scholar 

  24. B. Xu, M. Zhang, B. Bhandari, X. Cheng, Influence of ultrasound-assisted osmotic dehydration and freezing on the water state, cell structure, and quality of radish (Raphanus sativus L.) cylinders. Dry. Technol. 32(15), 1803–1811 (2014)

    Article  CAS  Google Scholar 

  25. E. Forni, A. Sormani, S. Scalise, D. Torreggiani, The influence of sugar composition on the colour stability of osmodehydrofrozen intermediate moisture apricots. Food Res. Int. 30(2), 87–94 (1997)

    Article  CAS  Google Scholar 

  26. AOAC, Official Method of Analysis, 19th edn. (Association of Official Analytical Chemists, Washington, DC, 2012)

    Google Scholar 

  27. Y. Xin, M. Zhang, B. Adhikari, Freezing characteristics and storage stability of broccoli (Brassica oleracea L. var. botrytis L.) under osmodehydrofreezing and ultrasound-assisted osmodehydrofreezing treatments. Food Bioprocess Tech. 7(6), 1736–1744 (2014)

  28. U. Tylewicz, V. Panarese, L. Laghi, P. Rocculi, M. Nowacka, G. Placucci, M. Dalla Rosa, NMR and DSC water study during osmotic dehydration of Actinidia deliciosa and Actinidia chinensis kiwifruit. Food Biophys. 6(2), 327–333 (2011)

  29. N. Lowithun, S. Charoenrein, Influence of osmodehydrofreezing with different sugars on the quality of frozen rambutan. Int. J. Food Sci. Tech. 44(11), 2183–2188 (2009)

    Article  CAS  Google Scholar 

  30. US Food and Drug Administration, Bacteriological Analytical Manual (BAM) (Department of Health and Human Services, Washington, DC, 2001)

    Google Scholar 

  31. R. Osae, C. Zhou, B. Xu, W. Tchabo, E. Bonah, E.A. Alenyorege, H. Ma, Nonthermal pretreatments enhances drying kinetics and quality properties of dried ginger (Zingiber officinale Roscoe) slices. J. Food Process Eng. 42(5), 1–11 (2019)

    Article  Google Scholar 

  32. M. Nowacka, U. Tylewicz, L. Laghi, M. Dalla Rosa, D. Witrowa-Rajchert. Effect of ultrasound treatment on the water state in kiwifruit during osmotic dehydration. Food Chem. 144, 18–25 (2014)

  33. J. Garcia-Noguera, F.I.P. Oliveira, M.I. Gallão, C.L. Weller, S. Rodrigues, F.A.N. Fernandes, Ultrasound-assisted osmotic dehydration of strawberries: effect of pretreatment time and ultrasonic frequency. Drying Technol. 28(2), 294–303 (2010)

    Article  Google Scholar 

  34. J. Fava, S.M. Alzamora, M.A. Castro, Structure and nanostructure of the outer tangential epidermal cell wall in Vaccinium corymbosum L. (Blueberry) fruits by blanching, freezing-thawing and ultrasound. Food Sci. Technol. Int. 12(3), 241–251 (2006)

  35. K. Fan, M. Zhang, W. Wang, B. Bhandari, A novel method of osmotic-dehydrofreezing with ultrasound enhancement to improve water status and physicochemical properties of kiwifruit. Int. J. Refrig. 113, 49–57 (2020)

    Article  CAS  Google Scholar 

  36. C. James, G. Purnell, S.J. James, A critical review of dehydrofreezing of fruits and vegetables. Food Bioprocess Tech. 7(5), 1219–1234 (2014)

    Article  Google Scholar 

  37. L.E. Ordóñez-Santos, J. Martínez-Girón, M.E. Arias-Jaramillo, Effect of ultrasound treatment on visual color, vitamin C, total phenols, and carotenoids content in Cape gooseberry juice. Food Chem. 233, 96–100 (2017)

    Article  PubMed  Google Scholar 

  38. J. Wang, J. Wang, J. Ye, S.K. Vanga, V. Raghavan, Influence of high-intensity ultrasound on bioactive compounds of strawberry juice: Profiles of ascorbic acid, phenolics, antioxidant activity and microstructure. Food Control 96, 128–136 (2019)

    Article  CAS  Google Scholar 

  39. B. Tomadoni, L. Cassani, G. Viacava, M.D.R. Moreira, A. Ponce, Effect of ultrasound and storage time on quality attributes of strawberry juice. J. Food Process Eng. 40(5), 1–8 (2017)

    Article  Google Scholar 

  40. M. Abid, S. Jabbar, T. Wu, M.M. Hashim, B. Hu, S. Lei, X. Zhang, X. Zeng, Effect of ultrasound on different quality parameters of apple juice. Ultrason. Sonochem. 20(5), 1182–1187 (2013)

    Article  CAS  PubMed  Google Scholar 

  41. J. Wang, L. Fan, Effect of ultrasound treatment on microbial inhibition and quality maintenance of green asparagus during cold storage. Ultrason. Sonochem. 58, 1–8 (2019)

    CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the University of Phayao for financial support (Grant No. RD62026). We also acknowledge the School of Agriculture and Natural Resources, at the University of Phayao, for providing facilities to perform this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suwalee Fong-in.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fong-in, S., Nimitkeatkai, H., Prommajak, T. et al. Ultrasound-assisted osmotic dehydration of litchi: effect of pretreatment on mass transfer and quality attributes during frozen storage. Food Measure 15, 3590–3597 (2021). https://doi.org/10.1007/s11694-021-00931-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-021-00931-9

Keywords

Navigation