Skip to main content

Advertisement

Log in

Antioxidant and antihypertensive protein hydrolysates from rice bran: optimization of microwave assisted extraction

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

In this study, the production of antihypertensive and antioxidant hydrolysates by microwave assisted enzymatic hydrolysis was optimized for the proteins extracted from the rice bran. The central composite design was used for optimization and the independent parameters were solid/liquid ratio, power, and time. Optimum protein extraction parameters were obtained as; 0.42 solid/liquid ratio, 100.68 W power, 100.68 s. During alcalase and pepsin hydrolysis, solid/liquid ratio and time were selected independent factors, the results of angiotensin-converting enzyme (ACE) inhibitory activity, degree of hydrolysis (DH), and DPPH radical scavenging activity were used as responses. Optimum hydrolysis parameters were determined. The DH, DPPH radical scavenging activity, ACE inhibitory activity, values were 40.60%, 36.26%, and 59.16% respectively. The rice bran protein hydrolysates was fractionated as < 1 kDa, 1–5 kDa, and 5–10 kDa by ultrafiltration. The highest ACE inhibition activity, DPPH, and OH radical scavenging activity and Trolox equivalent antioxidant activity values were respectively obtained for 5–10 kDa fraction as 76.66%, 13.25%, 5.03%, and 8.82 µg trolox/mg sample. The study may provide a new approach for obtaining biofunctional protein hydrolysates from rice bran emerging relatively high volumes as a by-product during paddy processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. T.S. Kahlon, Rice Bran: Production, Composition, Functionality and Food Applications, Physiological Benefits (CRC Press, Taylor & Francis Group, Boca Raton, 2009).

    Book  Google Scholar 

  2. H.-Y. Park et al., Immunostimulatory effects and characterization of a glycoprotein fraction from rice bran. Int. Immunopharmacol. 17(2), 191–197 (2013)

    Article  CAS  PubMed  Google Scholar 

  3. S. Aoe et al., Extraction of soluble dietary fibers from defatted rice bran. Cereal Chem. 70, 423–423 (1993)

    CAS  Google Scholar 

  4. A. Moongngarm, N. Daomukda, S. Khumpika, Chemical compositions, phytochemicals, and antioxidant capacity of rice bran, rice bran layer, and rice germ. Apcbee Procedia. 2, 73–79 (2012)

    Article  CAS  Google Scholar 

  5. J. Parrado et al., Preparation of a rice bran enzymatic extract with potential use as functional food. Food Chem. 98(4), 742–748 (2006)

    Article  CAS  Google Scholar 

  6. M. Wang et al., Preparation and functional properties of rice bran protein isolate. J. Agric. Food Chem. 47(2), 411–416 (1999)

    Article  CAS  PubMed  Google Scholar 

  7. T. Varghese, A. Pare, Effect of microwave assisted extraction on yield and protein characteristics of soymilk. J. Food Eng. 262, 92–99 (2019)

    Article  CAS  Google Scholar 

  8. K.W. Chew et al., Enhanced microalgal protein extraction and purification using sustainable microwave-assisted multiphase partitioning technique. Chem. Eng. J. 367, 1–8 (2019)

    Article  CAS  Google Scholar 

  9. S. Phongthai, S.-T. Lim, S. Rawdkuen, Optimization of microwave-assisted extraction of rice bran protein and its hydrolysates properties. J. Cereal Sci. 70, 146–154 (2016)

    Article  CAS  Google Scholar 

  10. N. Flórez, E. Conde, H. Domínguez, Microwave assisted water extraction of plant compounds. J. Chem. Technol. Biotechnol. 90(4), 590–607 (2015)

    Article  CAS  Google Scholar 

  11. A. Kute et al., Optimization of microwave assisted extraction of pectin from orange peel using response surface methodology. J. Food Res. Technol. 3(2), 62–70 (2015)

    Google Scholar 

  12. C. Fabian, Y.-H. Ju, A review on rice bran protein: its properties and extraction methods. Crit. Rev. Food Sci. Nutr. 51(9), 816–827 (2011)

    Article  CAS  PubMed  Google Scholar 

  13. K. Madej, Microwave-assisted and cloud-point extraction in determination of drugs and other bioactive compounds. TrAC, Trends Anal. Chem. 28(4), 436–446 (2009)

    Article  CAS  Google Scholar 

  14. M. Llompart, M. Celeiro, T. Dagnac, Microwave-assisted extraction of pharmaceuticals, personal care products and industrial contaminants in the environment. TrAC Trends Anal. Chem. 116, 136–150 (2019)

    Article  CAS  Google Scholar 

  15. J. Pagán et al., Enzymatic hydrolysis kinetics and nitrogen recovery in the protein hydrolysate production from pig bones. J. Food Eng. 119(3), 655–659 (2013)

    Article  CAS  Google Scholar 

  16. M. Taniguchi et al., Wound healing activity and mechanism of action of antimicrobial and lipopolysaccharide-neutralizing peptides from enzymatic hydrolysates of rice bran proteins. J. Biosci. Bioeng. 128(2), 142–148 (2019)

    Article  CAS  PubMed  Google Scholar 

  17. N. Cheetangdee, S. Benjakul, Antioxidant activities of rice bran protein hydrolysates in bulk oil and oil-in-water emulsion. J. Sci. Food Agric. 95(7), 1461–1468 (2015)

    Article  CAS  PubMed  Google Scholar 

  18. A. Kannan et al., Human cancer cell proliferation inhibition by a pentapeptide isolated and characterized from rice bran. Peptides 31(9), 1629–1634 (2010)

    Article  CAS  PubMed  Google Scholar 

  19. J. Hamada, Characterization and functional properties of rice bran proteins modified by commercial exoproteases and endoproteases. J. Food Sci. 65(2), 305–310 (2000)

    Article  CAS  Google Scholar 

  20. M.M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72(1–2), 248–254 (1976)

    Article  CAS  PubMed  Google Scholar 

  21. T. Chittapalo, A. Noomhorm, Ultrasonic assisted alkali extraction of protein from defatted rice bran and properties of the protein concentrates. Int. J. Food Sci. Technol. 44(9), 1843–1849 (2009)

    Article  CAS  Google Scholar 

  22. A.P. Adebiyi et al., Purification and characterisation of antioxidative peptides from unfractionated rice bran protein hydrolysates. Int. J. food Sci Technol. 43(1), 35–43 (2008)

    Article  CAS  Google Scholar 

  23. X. Yuan, X. Gu, J. Tang, Optimization of the production of Momordicacharantia L. Var. abbreviataSer. protein hydrolysates with hypoglycemic effect using Alcalase. Food Chem. 111(2), 340–344 (2008)

    Article  CAS  PubMed  Google Scholar 

  24. W. Chanput, C. Theerakulkait, S. Nakai, Antioxidative properties of partially purified barley hordein, rice bran protein fractions and their hydrolysates. J. Cereal Sci. 49(3), 422–428 (2009)

    Article  CAS  Google Scholar 

  25. D. Cushman, H. Cheung, Spectrophotometric assay and properties of the angiotensin-converting enzyme of rabbit lung. Biochem. Pharmacol. 20(7), 1637–1648 (1971)

    Article  CAS  PubMed  Google Scholar 

  26. I. Orhan et al., Antioxidant and anticholinesterase evaluation of selected Turkish Salvia species. Food Chem. 103(4), 1247–1254 (2007)

    Article  CAS  Google Scholar 

  27. C.D. Cinq-Mars, E.C. Li-Chan, Optimizing angiotensin I-converting enzyme inhibitory activity of Pacific hake (Merluccius productus) fillet hydrolysate using response surface methodology and ultrafiltration. J. Agric. Food Chem. 55(23), 9380–9388 (2007)

    Article  CAS  PubMed  Google Scholar 

  28. K. Carbone, F. Mencarelli, Influence of short-term postharvest ozone treatments in nitrogen or air atmosphere on the metabolic response of white wine grapes. Food Biop. Technol. 8(8), 1739–1749 (2015)

    Article  CAS  Google Scholar 

  29. Y. Li et al., Antioxidant and free radical-scavenging activities of chickpea protein hydrolysate (CPH). Food Chem. 106(2), 444–450 (2008)

    Article  CAS  Google Scholar 

  30. K. Bandyopadhyay, C. Chakraborty, A.K. Barman, Effect of microwave and enzymatic treatment on the recovery of protein from Indian defatted rice bran meal. J. Oleo Sci. 61(10), 525–529 (2012)

    Article  CAS  PubMed  Google Scholar 

  31. P. Wataniyakul et al., Microwave pretreatment of defatted rice bran for enhanced recovery of total phenolic compounds extracted by subcritical water. Bioresour. Technol. 124, 18–22 (2012)

    Article  CAS  PubMed  Google Scholar 

  32. P. Thamnarathip et al., Identification of peptide molecular weight from rice bran protein hydrolysate with high antioxidant activity. J. Cereal Sci. 69, 329–335 (2016)

    Article  CAS  Google Scholar 

  33. G.-H. Li et al., Antihypertensive effect of rice protein hydrolysate with in vitro angiotensin I-converting enzyme inhibitory activity in spontaneously hypertensive rats. Asia Pac. J. Cli. Nutr. 16(S1), 275–280 (2007)

    CAS  Google Scholar 

  34. A. Kannan, N. Hettiarachchy, M. Mahedevan, Peptides derived from rice bran protect cells from obesity and Alzheimer’s disease. Int. J. Biomed. Res. 3, 131–135 (2012)

    Article  CAS  Google Scholar 

  35. S. Phongthai et al., Fractionation and antioxidant properties of rice bran protein hydrolysates stimulated by in vitro gastrointestinal digestion. Food Chem. 240, 156–164 (2018)

    Article  CAS  PubMed  Google Scholar 

  36. A. Tsopmo, A. Cooper, S. Jodayree, Enzymatic hydrolysis of oat flour protein isolates to enhance antioxidative properties. Adv. J. Food Sci. Technol. 2(4), 206–212 (2010)

    CAS  Google Scholar 

  37. Y. Xia et al., Fractionation and characterization of antioxidant peptides derived from barley glutelin by enzymatic hydrolysis. Food Chem. 134(3), 1509–1518 (2012)

    Article  CAS  PubMed  Google Scholar 

  38. K. Silpradit et al., Optimization of rice bran protein hydrolysate production using alcalase. Asian J. Food Agro-Industry. 3(2), 221–231 (2010)

    Google Scholar 

  39. L. Wattanasiritham et al., Isolation and identification of antioxidant peptides from enzymatically hydrolyzed rice bran protein. Food Chem. 192, 156–162 (2016)

    Article  CAS  PubMed  Google Scholar 

  40. A.M. Alashi et al., Antioxidant properties of Australian canola meal protein hydrolysates. Food Chem. 146, 500–506 (2014)

    Article  CAS  PubMed  Google Scholar 

  41. A.P. Adebiyi et al., Isolation and characterization of protein fractions from deoiled rice bran. Europ. Food Res. Technol. 228(3), 391–401 (2009)

    Article  CAS  Google Scholar 

  42. J. Wang et al., Optimisation of ultrasound-assisted enzymatic extraction of arabinoxylan from wheat bran. Food Chem. 150, 482–488 (2014)

    Article  CAS  PubMed  Google Scholar 

  43. K. Zhou, S. Sun, C. Canning, Production and functional characterisation of antioxidative hydrolysates from corn protein via enzymatic hydrolysis and ultrafiltration. Food Chem. 135(3), 1192–1197 (2012)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study is a part of research project (1130447) funded by the Scientific and Technological Research Council of Turkey (TUBITAK) and Erciyes University Scientific Research Unit (ERÜ-BAP- FDK-2015-5330). The financial support provided by TUBITAK and ERÜ-BAP is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Hayta.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hayta, M., Benli, B., İşçimen, E.M. et al. Antioxidant and antihypertensive protein hydrolysates from rice bran: optimization of microwave assisted extraction. Food Measure 15, 2904–2914 (2021). https://doi.org/10.1007/s11694-021-00856-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-021-00856-3

Keywords