Skip to main content
Log in

Effect of fruit development stages on antioxidant properties and bioactive compounds in peel, pulp and juice of grapefruit varieties

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Phytochemicals and naturally occurring antioxidants in grapefruits (Citrus paradisi Macf.) prevent oxidative damage and reduce the risk of chronic diseases such as obesity, diabetes, cancer, and cardiovascular diseases in humans. In the present study, the antioxidant activities and phenolic compounds in the juice, peel, and pulp of four grapefruit varieties (Marsh Seedless, Flame, Rio Red, and Red Blush) were analyzed in relation to fruit maturity. The fruit peel exhibited higher antioxidant activity, total phenolic content (TPC), and total flavonoid content (TFC) than the fruit juice and pulp. The antioxidant activities in juice unveiled an increasing trend with fruit development. However, the hydroxyl scavenging activity declined at 180 days after fruit set (DAFS), whereas the TPC and TFC decreased with fruit maturity. The antioxidant activities, TPC, and TFC (except superoxide anion radical scavenging activity) in the fruit peel increased with fruit maturity. With progression of fruit maturity, the antioxidant activities and TFC in fruit pulp decreased, whereas the TPC increased. The Rio Red and Red Blush varieties exhibited more TPC, superoxide activity, and hydroxyl activity at commercial maturity, whereas the Flame variety displayed more TFC. The Red Blush grapefruit variety was most desirable for table purpose use because it demonstrated the highest antioxidant activity, TPC, and TFC in the juice and pulp. However, the peels of Flame and Rio Red varieties were also rich sources of antioxidant compounds that could be used for industrial products. The findings would be helpful for both the nutraceutical industry and crop improvement programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Contessa, M.G. Mellano, G.L. Beccaro, A. Giusiano, R. Botta, Sci. Hortic. 160, 351 (2013). https://doi.org/10.1016/j.scienta.2013.06.019

    Article  CAS  Google Scholar 

  2. H. Kelebek, Ind. Crops Prod. 32, 269 (2010). https://doi.org/10.1016/j.indcrop.2010.04.023

    Article  CAS  Google Scholar 

  3. C. Agudelo, L. Barros, C. Santos-Buelga, N. Martinez-Navarrete, I.C.F.R. Ferreira, LWT- Food Sci Technol. 80, 106 (2017). https://doi.org/10.1016/j.lwt.2017.02.006

    Article  CAS  Google Scholar 

  4. Y. Zhang, Y. Sun, W. Xi, Y. Shen, L. Qiao, L. Zhong, X. Ye, Z. Zhou, Food Chem. 145, 674 (2014). https://doi.org/10.1016/j.foodchem.2013.08.012

    Article  CAS  PubMed  Google Scholar 

  5. B. Abad-García, S. Garmón-Lobato, L.A. Berrueta, B. Gallo, F. Vicente, Talanta 99, 213 (2012). https://doi.org/10.1016/j.talanta.2012.05.042

    Article  CAS  PubMed  Google Scholar 

  6. V. Goulas, G.A. Manganaris, Food Chem. 131, 39 (2012). https://doi.org/10.1016/j.foodchem.2011.08.007

    Article  CAS  Google Scholar 

  7. W. Xi, B. Fang, Q. Zhao, B. Jiao, Z. Zhou, Food Chem. 161, 230 (2014). https://doi.org/10.1016/j.foodchem.2014.04.001

    Article  CAS  PubMed  Google Scholar 

  8. E. Tripoli, M.L. Guardia, S. Giammanco, D.D. Majo, M. Giammanco, Food Chem. 104, 466 (2007). https://doi.org/10.1016/j.foodchem.2006.11.054

    Article  CAS  Google Scholar 

  9. C.N. Rangel, L.M.J. Carvalho, R.B.F. Fonseca, A.G. Soares, E.O. Jesu, Ciênc Tecnol Aliment 31, 918 (2011). https://doi.org/10.1590/S0101-20612011000400014

    Article  Google Scholar 

  10. D. Ramful, T. Bahorun, E. Bourdon, E. Tarnus, O.I. Aruoma, Toxicology 278, 75 (2010). https://doi.org/10.1016/j.tox.2010.01.012

    Article  CAS  PubMed  Google Scholar 

  11. P. Rapisarda, A. Tomaino, R. Lo Cascio, F. Bonina, A. De Pasquale, A. Saija, J. Agric. Food Chem. 47, 4718 (1999). https://doi.org/10.1021/jf990111l

    Article  CAS  PubMed  Google Scholar 

  12. Z. Aturki, V. Brandi, M. Sinibaldi, J. Agric. Food Chem. 52, 5303 (2004). https://doi.org/10.1021/jf0400967

    Article  CAS  PubMed  Google Scholar 

  13. M. Cavia-Saiz, P. Muniz, N. Ortega, M.D. Busto, Food Chem. 125, 158 (2011). https://doi.org/10.1016/j.foodchem.2010.08.054

    Article  CAS  Google Scholar 

  14. S. Gorinstein, Z. Zachwieja, E. Katrich, E. Pawelzik, R. Haruenkit, S. Trakhtenberg, O. Martin-belloso, LWT - Food Sci Technol. 37, 337 (2004). https://doi.org/10.1016/j.lwt.2003.10.005

    Article  CAS  Google Scholar 

  15. S.H. Mirdehghan, M. Rahemi, Sci. Hortic. 111, 120 (2007). https://doi.org/10.1016/j.scienta.2006.10.001

    Article  CAS  Google Scholar 

  16. X. Dong, Y. Hu, Y. Li, Z. Zhou, Sci. Hortic. 243, 281 (2019). https://doi.org/10.1016/j.scienta.2018.08.036

    Article  CAS  Google Scholar 

  17. Y.D. Kim, W.J. Ko, K.S. Koh, Y.J. Jeon, S.H. Kim, Korean J. Nutr. 42, 278 (2009). https://doi.org/10.4163/kjn.2009.42.3.278

    Article  CAS  Google Scholar 

  18. C. Rekha, G. Poornima, M. Manasa, V. Abhipsa, J.P. Devi, H.T.V. Kumar, T.R.P. Kekuda, Chem Sci Trans. 1, 303 (2012). https://doi.org/10.7598/cst2012.182

    Article  CAS  Google Scholar 

  19. I. Moulehi, S. Bourgou, I. Ourghemmi, M.S. Tounsi, Ind Crop Prod. 39, 74 (2012). https://doi.org/10.1016/j.indcrop.2012.02.013

    Article  CAS  Google Scholar 

  20. A.P. Kulkarni, S.M. Aradhya, Food Chem. 93, 319 (2005). https://doi.org/10.1016/j.foodchem.2004.09.029

    Article  CAS  Google Scholar 

  21. M.A. Awad, A.D. Al-Qurashi, S.A. Mohamed, Sci. Hortic. 129, 688 (2011). https://doi.org/10.1016/j.scienta.2011.05.019

    Article  CAS  Google Scholar 

  22. C.S. Wu, Q.H. Gao, X.D. Guo, J.G. Yu, M. Wang, Sci. Hortic. 148, 177 (2012). https://doi.org/10.1016/j.scienta.2012.09.026

    Article  CAS  Google Scholar 

  23. M.A.M. Zainudin, A.A. Hamid, F. Anwar, A. Osman, N. Saari, Sci. Hortic. 172, 325 (2014). https://doi.org/10.1016/j.scienta.2014.04.007

    Article  CAS  Google Scholar 

  24. M. Saffariha, H. Azarnivand, M.Z. Chahouki, A. Tavili, S.N. Ebrahimi, D. Potter, J. Range Watershed Mngmt. 72, 139 (2019). https://doi.org/10.22059/jrwm.2019.272446.1334

    Article  Google Scholar 

  25. M. Saffariha, A. Jahani, D. Potter, BMC Ecol. 20, 48 (2020). https://doi.org/10.1186/s12898-020-00316-4

    Article  PubMed  PubMed Central  Google Scholar 

  26. A. Jahani, M. Saffariha, Integr. Environ. Assess. Manag. (2020). https://doi.org/10.1002/ieam.4349

    Article  PubMed  Google Scholar 

  27. A. Jahani, M. Saffariha, J Nat Environ. 73, 257 (2020). https://doi.org/10.22059/JNE.2020.292789.1854

    Article  Google Scholar 

  28. A. Jahani, H. Goshtasb, M. Saffariha, Land Degrad Dev. 31, 1502 (2020). https://doi.org/10.1002/ldr.3549

    Article  Google Scholar 

  29. G. Xu, D. Liu, J. Chen, X. Ye, Y. Ma, J. Shi, Food Chem. 106, 545 (2008). https://doi.org/10.1016/j.foodchem.2007.06.046

    Article  CAS  Google Scholar 

  30. T. Swain, W.E. Hillis, J Sci Food Agric. 10, 63 (1959). https://doi.org/10.1002/jsfa.2740100110

    Article  CAS  Google Scholar 

  31. S.I. Balabaa, A.Y. Zake, A.M. Elshamy, J Assoc Off Anal Chem. 57, 752 (1974)

    Google Scholar 

  32. M.S. Blois, Nature 181, 1199 (1958). https://doi.org/10.1038/1811199a0

    Article  CAS  Google Scholar 

  33. S. Marklund, G.Marklund, Eur J Biochem. 47, 469 (1974). https://doi.org/10.1111/j.1432-1033.1974.tb03714

    Article  CAS  PubMed  Google Scholar 

  34. Y. Li, B. Jiang, T. Zhang, W. Mu, J. Liu Food Chem. 106, 444 (2008). https://doi.org/10.1016/j.foodchem.2007.04.067

    Article  CAS  Google Scholar 

  35. W. Xi, G. Zhang, D. Jiang, Z. Zhou, Int J Food Sci Nutr. 66, 858 (2015). https://doi.org/10.3109/09637486.2015.1095864

    Article  CAS  PubMed  Google Scholar 

  36. V.L. Singleton, R. Orthofer, R.M. Lamuela-Raventós, Method Enzymol. 299, 152 (1999). https://doi.org/10.1016/s0076-6879(99)99017-1

    Article  CAS  Google Scholar 

  37. C. Pereira, M. López-Corrales, M.J. Serradilla, C. Villalobos, S. Ruiz-Moyano, A. Martín, Spain J. Food Compost. Anal. 64, 203 (2017). https://doi.org/10.1016/j.jfca.2017.09.006

    Article  CAS  Google Scholar 

  38. H. Peleg, M. Naim, R.L. Rouseff, U. Zehavi, J Sci Food Agric. 57, 417 (1991). https://doi.org/10.1002/jsfa.2740570312

    Article  CAS  Google Scholar 

  39. H.R.M. Barros, T.A.P.C. Ferreira, M.I. Genovese, Food Chem. 134, 1892 (2012). https://doi.org/10.1016/j.foodchem.2012.03.090

    Article  CAS  PubMed  Google Scholar 

  40. V. Sicari, T.M. Pellicano, A.M. Giuffrè, C. Zappia, M. Capocasale, M. Poiana, Int Food Res J. 25, 1978 (2018)

    CAS  Google Scholar 

  41. N.J. Miller, M.B. Ruiz-Larrea, J. Nutr. Environ. Med. 12, 39 (2002). https://doi.org/10.1080/13590840220123352

    Article  CAS  Google Scholar 

  42. J. Vanamala, L. Reddivari, K.S. Yoo, L.M. Pike, B.S. Patil, J. Food Compos. Anal. 19, 157 (2006). https://doi.org/10.1016/j.jfca.2005.06.002

    Article  CAS  Google Scholar 

  43. V. Sicari, T.M. Pellicano, A.M. Giuffrè, C. Zappia, M. Capocasale, J Food Meas Charact. 10, 773 (2016). https://doi.org/10.1007/s11694-016-9362-8

    Article  Google Scholar 

  44. K.A. Elkhatim, R.A.A. Elagib, A.B. Hassan, Food Sci Nutr. 6, 1214 (2018). https://doi.org/10.1002/fsn3.660

    Article  CAS  Google Scholar 

  45. S. Lagha-Benamrouche, K. Madani, Ind Crops Prod. 50, 723 (2013). https://doi.org/10.1016/j.indcrop.2013.07.048

    Article  CAS  Google Scholar 

  46. P.J. Divya, P. Jamuna, L.A. Jyothi, Cogent Food Agric. (2016). https://doi.org/10.1080/23311932.2016.1184119

    Article  Google Scholar 

  47. J. Zhishen, T. Mengcheng, W. Jianming, Food Chem. 64, 555 (1999). https://doi.org/10.1016/s0308-8146(98)00102-2

    Article  CAS  Google Scholar 

  48. S.C. Ho, M.S. Su, C.C. Lin, Int. J. Food Prop. 17, 111 (2013). https://doi.org/10.1080/10942912.2011.614987

    Article  CAS  Google Scholar 

  49. M.A. Anagnostopoulou, P. Kefalas, V.P. Papageorgiou, A.N. Assimopoulou, D. Boskou, Food Chem. 94, 19 (2006). https://doi.org/10.1016/j.foodchem.2004.09.047

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by Punjab Agricultural University, Ludhiana (India).

Author information

Authors and Affiliations

Authors

Contributions

VS performed the experiments and collected the data. TSC and SKG designed the experiments and drafted the manuscript. PSG analyzed the data.

Corresponding author

Correspondence to Tanjeet Singh Chahal.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, V., Chahal, T.S., Grewal, S.K. et al. Effect of fruit development stages on antioxidant properties and bioactive compounds in peel, pulp and juice of grapefruit varieties. Food Measure 15, 2531–2539 (2021). https://doi.org/10.1007/s11694-021-00841-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-021-00841-w

Keywords

Navigation