Skip to main content
Log in

Impact of different thermal treatments and storage conditions on the stability of soybean byproduct (okara)

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Okara is the byproduct obtained from tofu or soymilk production process. It has a rich nutritional composition, especially in fibers, proteins and lipids. Stabilization processes are required to assure its efficient and safe use, because there are few studies on okara. The main objective of this study was to evaluate the chemical composition (protein, fiber, lipids, ash and isoflavones), microbiological stability, antioxidant capacity and antinutritional factors in fresh okara stored at 4 and − 18 °C and dried okara (80 °C/5 h and 200 °C/1 h) stored at room temperature for 15 days. Okara showed a rich nutritional composition—ca. 35% of fiber, 30% of protein and 11% of lipids. The okara’s lipid profile showed high and valuable level of PUFA (ca. 56%) followed by MUFA (ca. 21%) and SFA (ca. 23%). The Fresh okara showed the highest antioxidant activity and total phenols, however for isoflavones (genistin, genistein, daidzin, daidzein) the dried okara at 200 °C exhibited higher content compared to dried okara at 80 °C and fresh okara. Okara samples submitted to thermal treatment showed a decrease in antinutritional factors in relation with fresh okara, whereas the treatment of dried okara at 200 °C was the most efficient inducing a decrease of ca. 6 times. In conclusion, the nutritional richness of this byproduct suggests okara as a valuable nutritional ingredient for further inclusion in food and feed, but considering the limited studies carried out to date, further studies are warranted to better stabilize okara.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. K. Nishinari, Y. Fang, S. Guo, G.O. Phillips, Soy proteins: a review on composition, aggregation and emulsification. Food Hydrocoll. 39, 301–318 (2014)

    Article  CAS  Google Scholar 

  2. USDA, World Agricultural Production,Circular Series WAP 7–14 (United States Department of Agriculture, Washington, DC, 2014)

    Google Scholar 

  3. W.B. Van der Riet, A.W. Wight, J.J.L. Cilliers, J.M. Datel, Food chemical investigation of tofu and its byproduct okara. Food Chem. 34, 193–202 (1989)

    Article  Google Scholar 

  4. D.K. O’Toole, Characteristics and use of okara, the soybean residue from soy milk production- a review. J. Agric. Food Chem. 47(2), 363–371 (1999)

    Article  PubMed  Google Scholar 

  5. K.H. Vishwanathan, V. Singh, R. Subramanian, Wet grinding characteristics of soybean for soymilk extraction. J. Food Eng. 106(1), 28–34 (2011)

    Article  Google Scholar 

  6. A. Redondo-Cuenca, M.J. Villanueva-Suárez, I. Mateos-Aparicio, Soybean seeds and its by-product okara as sources of dietary fibre. Measurement by AOAC and Englyst methods. Food Chem. 108(3), 1099–1105 (2008)

    Article  CAS  PubMed  Google Scholar 

  7. I. Mateos-Aparicio, A. Redondo-Cuenca, M.J. Villanueva-Suárez, Isolation and characterization of cell wall polysaccharides from legume by-products: okara (soymilk residue), pea pod and broad bean pod. Food Chem. 122(1), 339–345 (2010)

    Article  CAS  Google Scholar 

  8. S.K. Khare, K. Jha, A.P. Gandhi, Citric acid production from okara (soy-residue) by solid-state fermentation. Bioresour. Technol. 54, 323–325 (1995)

    Article  CAS  Google Scholar 

  9. W. Chan, C. Ma, Acid modification of proteins from soymilk residue (okara). Food Res. Int. 32, 119–127 (1999)

    Article  CAS  Google Scholar 

  10. M.J. Villanueva, W.H. Yokoyama, Y.J. Hong, G.E. Barttley, P. Rupérez, Effect of high-fat diets supplemented with okara soybean by-product on lipid profiles of plasma, liver and faeces in Syrian hamsters. Food Chem. 124(1), 72–79 (2011)

    Article  CAS  Google Scholar 

  11. F. Lu, Y. Liu, B. Li, Okara dietary fiber and hypoglycemic effect of okara foods. Bioact. Carbohydr. Diet. Fibre 2(2), 126–132 (2013)

    Article  CAS  Google Scholar 

  12. F.J. He, J.Q. Chen, Consumption of soybean, soy foods, soy isoflavones and breast cancer incidence: Differences between Chinese women and women in Western countries and possible mechanisms. Food Sci. Hum. Wellness 2(3–4), 146–161 (2013)

    Article  Google Scholar 

  13. C.A. Perussello, V.C. Mariani, Á.C.C. Amarante, Thermophysical properties of okara during drying. Int. J. Food Prop. 17(4), 891–907 (2014)

    Article  Google Scholar 

  14. L. Jankowiak, O. Trifunovic, R.M. Boom, A.J. Van Der Goot, The potential of crude okara for isoflavone production. J. Food Eng. 124, 166–172 (2014)

    Article  CAS  Google Scholar 

  15. Association of Official Analytical Chemists International, Official Methods of Analysis of AOAC International, vol. 2, 16th edn. (Association of Analytical Communities, Arlington, 1995)

    Google Scholar 

  16. H.K. Goering, P.J. Van Soest, Forage Fiber Analysis (Apparatus, Procedures and Some Applications). Agricultural Handbook (Agricultural Research Service, Washington, DC, 1970), pp. 5–11

    Google Scholar 

  17. M.R. Rosmini, F. Perlo, J. Pérez-Alvarez, M.J. Pagán-Moreno, A. Gago-Gago, F. López-Santoveña, V. Aranda-Catalá, TBA test by an extractive method applied to “Paté”. Meat Sci. 42(1), 103–110 (1996)

    Article  CAS  PubMed  Google Scholar 

  18. Instituto Adolfo Lutz (IAL), Métodos físico-químicos para análise de alimentos, 4th edn. (IAL, São Paulo, 2008), p. 1020

    Google Scholar 

  19. A.A. Miles, S.S. Misra, The estimation of the bactericidal power of the blood. J. Hyg. 38, 732–749 (1938)

    Article  CAS  PubMed  Google Scholar 

  20. M.S. Gião, M.L. González-Sanjosé, M.D. Rivero-Pérez, C.I. Pereira, M.E. Pintado, F.X. Malcata, Infusions of Portuguese medicinal plants: dependence of final antioxidant capacity and phenol content on extraction features. J. Sci. Food Agric. 87, 2638–2647 (2007)

    Article  CAS  PubMed  Google Scholar 

  21. V. Bondet, C. Berset, L. Chimie, Kinetics and mechanisms of antioxidant activity using the DPPH· free radical method. LWT-Food Sci. Technol. 615, 609–615 (1997)

    Article  Google Scholar 

  22. V.L. Singleton, J.A. Rossi, Colorimetry of total phenolics with phosphor-molybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 16, 144–158 (1965)

    CAS  Google Scholar 

  23. P. Castro-Gomez, J. Fontecha, L.M. Rodriguez-Alcala, A high-performance direct transmethylation method for total fatty acids assessment in biological and foodstuff samples. Talanta 128, 518–523 (2014)

    Article  CAS  PubMed  Google Scholar 

  24. N. Vingering, M. Ledoux, Use of BPX-70 60-m GC columns for screening the fatty acid composition of industrial cookies. Eur. J. Lipid Sci. Technol. 111(7), 669–677 (2009)

    Article  CAS  Google Scholar 

  25. M. Kakade, J. Rackis, J. Mcghee, G. Puski, Determination of trypsin inhibitors activity of soy products: a collaborative analysis of an improved procedure. Cereal Chem. 51, 376–382 (1974)

    CAS  Google Scholar 

  26. H.J. Wang, P.A. Murphy, Mass balance study of isoflavones during soybean processing. J. Agric. Food Chem. 44(8), 2377–2383 (1996)

    Article  CAS  Google Scholar 

  27. C. Ma, W. Liu, K.C. Kwokb, F. Kwokb, Isolation and characterization of proteins from soymilk residue (okara). Food Res. Int. 29(8), 799–805 (1997)

    Article  Google Scholar 

  28. R. Bedani, E.A. Rossi, D.C.U. Cavallini, R.A. Pinto, R.C. .Vendramini, E.M. Augusto, S.M.I. Saad, Influence of daily consumption of synbiotic soy-based product supplemented with okara soybean by-product on risk factors for cardiovascular diseases. Food Res. Int. 73, 142–148 (2014)

    Article  CAS  Google Scholar 

  29. M.C. Jansen, H.B. Bueno-de-Mesquita, R. Buzina, F. Fidanza, A. Menotti, H. Blackburn, M. Nissinen, F.J. Kok, D. Kromhout, Dietary fiber and plant foods in relation to colorectal cancer mortality: the Seven Countries Study. Int. J. Cancer 81, 174 (1999)

    Article  CAS  PubMed  Google Scholar 

  30. R. Repo-Carrasco-Valencia, J. Peña, H. Kallio, S. Salminen, Dietary fiber and other functional components in two varieties of crude and extruded kiwicha (Amaranthus caudatus). J. Cereal Sci. 49(2), 219–224 (2009)

    Article  CAS  Google Scholar 

  31. Y.H. Kuan, M.T. Liong, Chemical and physicochemical characterization of agrowaste fibrous materials and residues. J. Agric. Food Chem. 56(19), 9252–9257 (2008)

    Article  CAS  PubMed  Google Scholar 

  32. E. Boydak, M. Alpaslan, M. Hayta, S. Gerçek, M. Simsek, Seed composition of soybeans grown in the Harran Region of Turkey as affected by row spacing and irrigation. J. Agric. Food Chem. 50, 4718–4720 (2002)

    Article  CAS  PubMed  Google Scholar 

  33. T.S. Tyug, K.N. Prasad, A. Ismail, Antioxidant capacity, phenolics and isoflavones in soybean byproducts. Food Chem. 123, 583–589 (2010)

    Article  CAS  Google Scholar 

  34. E. Margareta, G.L. Nyman, Importance of processing for physico-chemical and physiological properties of dietary fibre. Proc. Nutr. Soc. 62, 187–192 (2003)

    Article  CAS  Google Scholar 

  35. M.B. Grosvenor, L.A. Smolin, Nutrition from Science to Life, 1st edn. (Harcourt College Publishers, Philadelphia, 2002), pp. 94–99

    Google Scholar 

  36. M.J. Periago, G. Ros, G. López, C. Martínez, Mn, Zn, Cu and Fe content in dietary fiber residues in peas. Nahrung 39(1), 77–82 (1995)

    Article  CAS  Google Scholar 

  37. M. Paciulli, T. Ganino, N. Pellegrini, M. Rinaldi, M. Zaupa, A. Fabbri, E. Chiavaro, Impact of the industrial freezing process on selected vegetables—part I. Structure, texture and antioxidant capacity. Food Res. Int. 74, 329–337 (2014)

    Article  CAS  PubMed  Google Scholar 

  38. P. Gunness, M.J. Gidley, Mechanisms underlying the cholesterol-lowering properties of soluble dietary fibre polysaccharides. Food Funct. 1(2), 149–155 (2010)

    Article  CAS  PubMed  Google Scholar 

  39. R.K. Grizotto, Study of the flash drying of the residue from soymilk processing okara. Ciênc. Tecnol. Aliment. 31(3), 645–653 (2011)

    Article  Google Scholar 

  40. S. Vesterlund, K. Salminen, S. Salminen, Water activity in dry foods containing live probiotic bacteria should be carefully considered: a case study with Lactobacillus rhamnosus GG in flaxseed. Int. J. Food Microbiol. 157(2), 319–321 (2012)

    Article  PubMed  Google Scholar 

  41. E. Maltini, D. Torreggiani, E. Venir, G. Bertolo, Water activity and the preservation of plant foods. Food Chem. 82(1), 79–86 (2003)

    Article  CAS  Google Scholar 

  42. E. Coton, I. Leguerinel, Ecology of Bacteria and Fungi in Foods, ed. by C.A. Batt, R.K. Robinson. Encyclopedia of Food Microbiology (Elsevier Science, USA, 2014), pp. 577–586

    Chapter  Google Scholar 

  43. L. Cai, X. Wu, X. Li, K. Zhong, Y. Li, J. Li, Effects of different freezing treatments on physicochemical responses and microbial characteristics of Japanese sea bass (Lateolabrax japonicas) fillets during refrigerated storage. LWT-Food Sci. Technol. 59(1), 122–129 (2014)

    Article  CAS  Google Scholar 

  44. W. Lili, C. Yeming, L. Zaigui, The effects of freezing on soybean microstructure and qualities of soymilk. J. Food Eng. 116(1), 1–6 (2013)

    Article  Google Scholar 

  45. S. Wachiraphansakul, S. Devahastin, Drying kinetics and quality of okara dried in a jet spouted bed of sorbent particles. LWT-Food Sci. Technol. 40(2), 207–219 (2007)

    Article  CAS  Google Scholar 

  46. A. Cadun, S. Cakli, D. Kisla, A study of marination of deepwater pink shrimp (Parapenaeus longirostris, Lucas, 1846) and its shelf life. Food Chem. 90(1–2), 53–59 (2005)

    Article  CAS  Google Scholar 

  47. Y.J. Lee, W.B. Yoon, Effects of particle size and heating time on thiobarbituric acid (TBA) test of soybean powder. Food Chem. 138(2–3), 841–850 (2013)

    Article  CAS  PubMed  Google Scholar 

  48. A.K. Warda, H.M.W. Den Besten, N. Sha, T. Abee, M.N. Nierop Groot, Influence of food matrix on outgrowth heterogeneity of heat damaged Bacillus cereus spores. Int. J. Food Microbiol. 201, 27–34 (2015)  

    Article  CAS  PubMed  Google Scholar 

  49. B.Z. Han, R.R. Beumer, F.M. Rombouts, M.J.R. Nout, Microbiological safety and quality of commercial sufu—a Chinese fermented soybean food. Food Control 12(8), 541–547 (2001)

    Article  Google Scholar 

  50. M. Palermo, A. Fiore, V. Fogliano, Okara promoted acrylamide and carboxymethyl-lysine formation in bakery products. J. Agric. Food Chem. 60(40), 10141–10146 (2012)

    Article  CAS  PubMed  Google Scholar 

  51. A.C. Barbosa, N. Hassimotto, F. Lajolo, M.I. Genovese, Teores de isoflavonas e capacidade antioxidante da soja e produtos derivados. Ciênc. Tecnol. Aliment. 26, 921–926 (2006)

    Article  CAS  Google Scholar 

  52. C. Niamnuy, M. Nachaisin, F. Laohavanich, S. Devahastin, Evaluation of bioactive compounds and bioactivities of soybean dried by different methods and conditions. Food Chem. 129(3), 899–906 (2011)

    Article  CAS  PubMed  Google Scholar 

  53. M.B. Ruiz-Larrea, A.R. Mohan, G. Paganga, Antioxidant activity of phytoestrogenic isoflavones. Free Rad. Res. 26(1), 63–70 (1997)

    Article  CAS  Google Scholar 

  54. P. Suvarnakuta, C. Chaweerungrat, S. Devahastin, Effects of drying methods on assay and antioxidant activity of xanthones in mangosteen rind. Food Chem. 125(1), 240–247 (2011)

    Article  CAS  Google Scholar 

  55. U. Grün, K. Adhikari, C. Li, Y. Li, B. Lin, J. Zhang, L.N. Fernando, Changes in the profile of genistein, daidzein, and their conjugates during thermal processing of tofu. J. Agric. Food Chem. 49, 2839–2843 (2001)

    Article  CAS  PubMed  Google Scholar 

  56. M.I. Genovese, J. Davila, F.M. Lajolo, Isoflavones in processed soybean products from Ecuador. Braz. Arch. Biol. Technol. 49(5), 853–859 (2006)

    Article  CAS  Google Scholar 

  57. L.R. Silva, M.J. Pereira, J. Azevedo, R.F. Gonçalves, P. Valentão, P.G. de Pinho, P.B. Andrade, Glycine max (L.) Merr., Vigna radiata L. and Medicago sativa L. sprouts: a natural source of bioactive compounds. Food Res. Int. 50(1), 167–175 (2013)

    Article  CAS  Google Scholar 

  58. T. Izumi, M.K. Piskula, S. Osawa, A. Obata, K. Tobe, M. Saito, S. Kataoka, Y. Kubota, M. Kikuchi, Soy isoflavone aglycones are absorbed faster and in higher amounts than their glucosides in humans. J. Nutr. 130, 1659–1699 (2000)

    Article  Google Scholar 

  59. C.J. Jackson, J.P. Dini, C. Lavandier, H.P. Rupasinghe, H. Faulkner, V. Poysa, S. De Grandis, Effects of processing on the content and composition of isoflavones during manufacturing of soy beverage and tofu. Process Biochem. 37(10), 1117–1123 (2002)

    Article  CAS  Google Scholar 

  60. A. Redondo-Cuenca, M.J. Villanueva-Suárez, M.D. Rodríguez-Sevilla, I. Mateos-Aparicio, Chemical composition and dietary fibre of yellow and green commercial soybeans (Glycine max). Food Chem. 101(3), 1216–1222 (2006)

    Article  CAS  Google Scholar 

  61. O.F. Galão, M.C. Carrão-Panizzi, J.M.G. Mandarino, O.O.S. Júnior, S.S.A. Maruyama, L.C. Figueiredo, J.V. Visentainer, Differences of fatty acid composition in Brazilian genetic and conventional soybeans (Glycine max (L.) Merrill) grown in different regions. Food Res. Int. 62, 589–594 (2014)

    Article  CAS  Google Scholar 

  62. M.A. Hossain, K. Becker, In vitro rumen degradability of crude protein in seeds from four Sesbania spp. and the effects of treatments designed to reduce the levels of antinutrients in the seeds. Anim. Feed Sci. Technol. 95(1–2), 49–62 (2002)

    Article  CAS  Google Scholar 

  63. P. Susmel, M. Spanghero, C.R. Mills, B. Stefanon, Rumen fermentation characteristics and digestibility of cattle diets containing different whey: maize ratios. Anim. Feed Sci. Technol. 53(1), 81–90 (1995)

    Article  Google Scholar 

  64. E.A. El-Hady, R.A. Habiba, Effect of soaking and extrusion conditions on antinutrients and protein digestibility of legume seeds. LWT-Food Sci. Technol. 36(3), 285–293 (2003)

    Article  CAS  Google Scholar 

  65. P. Siddhuraju, K. Vijayakumari, K. Janardhanan, Chemical composition and protein quality of the little-known legume, velvet bean (Mucuna pruriens (L.) DC.). J. Agric. Food Chem. 8561(95), 2636–2641 (1996)

    Article  Google Scholar 

  66. M.C. Olguin, N. Hisano, A.E. D´Ottavio, M.I. Zingale, G.C. Revelant, S.A. Calderari, Nutritional and antinutritional aspects of an Argentinian soy flour assessed on weanling rats. J. Food Compos. Anal. 16, 441 (2003)

    Article  CAS  Google Scholar 

  67. L.G. Elias, D.G. De Fernandez, R. Bressani, Possible effects of seed coat polyphenolics on the nutritional quality of bean protein. J. Food Sci. 44, 524 (1979)

    Article  CAS  Google Scholar 

  68. B.O. De Lumen, L.A. Salamat, Trypsin inhibitor activity in winged bean (Psophocarpus tetragonolobus) and the possible role of tannin. J. Agric. Food Chem. 28, 533 (1980)

    Article  CAS  PubMed  Google Scholar 

  69. Y.S. Hafez, A.L. Mohamed, Presence of nonprotein trypsin inhibitor in soy and winged beans. J. Food Sci. 48, 75–76 (1983)

    Article  CAS  Google Scholar 

  70. W.Y. Fung, K.H. Yuen, M.T. Liong, Characterization of fibrous residues from agrowastes and the production of nanofibers. J. Agric. Food Chem. 58, 8077 (2010)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)/Brazil, for the scholarship and NUTRE industry for providing the byproduct used in this study. This work was also supported by FCT—Fundação para a Ciência e Tecnologia through project UID/Multi/50016/2013 and project BiValBi—Biotechnologies to Valorise the regional Biodiversity in Latin America (Refª PIRSES-GA-2013-611493 BI_1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Pintado.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voss, G.B., Rodríguez-Alcalá, L.M., Valente, L.M.P. et al. Impact of different thermal treatments and storage conditions on the stability of soybean byproduct (okara). Food Measure 12, 1981–1996 (2018). https://doi.org/10.1007/s11694-018-9813-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-018-9813-5

Keywords

Navigation