Skip to main content
Log in

Effects of hot-air and vacuum drying on drying kinetics, bioactive compounds and color of bee pollen

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

This study aims to investigate drying kinetics of bee pollen as thick as 5 mm and change of color, total phenolic content, total flavonoid content, and antioxidant capacity of fresh and dried bee pollen by using both hot-air and vacuum drying at 40, 45 and 50 °C. Six well-known thin-layer drying models were used to predict drying kinetics by nonlinear analysis of regression. The Midilli & Kucuk model best fitted the experimental data for the whole range of temperatures. The moisture diffusivity coefficient at each temperature was determined by Fick’s second law of diffusion, in which their value varied from 8.40 × 10− 11 to 6.29 × 10− 10 m2/s over the mentioned temperature range. The dependence of effective diffusivity coefficient on temperature was expressed by an Arrhenius type equation. The calculated values of the activation energy of moisture diffusion were 49.47 and 33.57 kJ/mol for hot-air and vacuum dryers, respectively. After drying processes, total phenolic content, total flavonoid content and antioxidant activity of bee pollen decreased. Higher total phenolic and total flavonoid content values were obtained in a vacuum drying at 45 °C. In addition, the total color change of bee pollen dried at vacuum conditions was lower than dried at hot-air conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. L.M. Estevinho, S. Rodrigues, A.P. Pereira, X. Feas, Int. J. Food Eng. 47, 429–435 (2012)

    CAS  Google Scholar 

  2. K. Komosinska-Vassev, P. Olczyk, J. Kafmierczak, L. Mencner, K. Olczyk, Evid. Based Complement. (2015). https://doi.org/10.1155/2015/297425

    Google Scholar 

  3. M.R.G. Campos, S. Bogdanov, L.B. de Almeida-Muradian, T. Szczesna, Y. Mancebo, C. Frigerio, F. Ferreira, J. Apicult. Res. 47, 156–163 (2008)

    Article  Google Scholar 

  4. S.T. Carpes, R. Begnini, S. Matias, L.M. de Alencar, Masson, Cienc. Agrotecnol. 31, 1818–1825 (2007)

    Article  CAS  Google Scholar 

  5. K. Fatrcová-Šramková, J. Nôžková, M. Kačániová, M. Máriássyová, K. Rovná, M. Stričík, J. Environ. Sci. Health B 48, 133–138 (2013)

    Article  Google Scholar 

  6. M.S. Bárbara, C.S. Machado, G. da Silva Sodré, L.G. Dias, L.M. Estevinho, C.A.L. de Carvalho, Molecules 20, 12525–12544 (2015)

    Article  Google Scholar 

  7. C. Avsar, H. Ozler, I. Berber, S. Civek, Int. Food Res. J. 23, 1711–1716 (2016)

    CAS  Google Scholar 

  8. V. Ceksteryte, B. Kurtinaitiene, P.R. Venskutonis, A. Pukalskas, R. Kazernaviciute, J. Balzekas, Czech J. Food Sci. 34, 133–142 (2016)

    Article  CAS  Google Scholar 

  9. E.M. Abdella, A. Tohamy, R.R. Ahmad, Int. J. Clin. Pract. 2, 175–181 (2009)

    Google Scholar 

  10. E. Basim, H. Basim, M. Ozcan, J. Food Eng. 77, 992–996 (2006)

    Article  Google Scholar 

  11. A. Pascoal, S. Rodrigues, A. Teixeira, X. Feas, L.M. Estevinho, Food Chem. Toxicol. 63, 233–239 (2014)

    Article  CAS  Google Scholar 

  12. B. Denisow, M. Denisow-Pietrzyk, J. Sci. Food Agric. 96, 4303–4309 (2016)

    Article  CAS  Google Scholar 

  13. A.G.R. Campos, C. Frigerio, J. Lopes, S. Bogdanov, J.A.A.S. 2, 131–144 (2010)

    Google Scholar 

  14. S. Bogdanov, Pollen: production, nutrition and health: a review. http://www.bee-hexagon.net/files/file/fileE/Health/PollenBook2Review.pdf. Accessed 5 January 2016

  15. J. Barajas, M. Cortes-Rodriguez, E. Rodríguez-Sandoval, J. Food Process Eng. 35, 134–148 (2012)

    Article  Google Scholar 

  16. L. Wu, T. Orikasa, Y. Ogawa, A. Tagawa, J. Food Eng. 83, 422–429 (2007)

    Article  Google Scholar 

  17. S. Doymaz, M. Karasu, Baslar, J. Food Meas. Charact. 10, 283–291 (2016)

    Article  Google Scholar 

  18. M.S. Rahman, C.O. Perera, Handbook of Food Preservation, in: M. Shafiur, Rahman eds. (CRC Press, Boca Raton, 2007), pp. 403–532

    Chapter  Google Scholar 

  19. T. Orikasa, L. Wu, T. Shiina, A. Tagawa, J. Food Eng. 85, 303–308 (2008)

    Article  Google Scholar 

  20. J. Alibas, Biol. Environ. Sci. 6, 1–13 (2012)

    Google Scholar 

  21. A. Arévalo-Pinedo, F.E.X. Murr, J. Food Eng. 76, 562–567 (2006)

    Article  Google Scholar 

  22. S. Kayisoglu, C. Ertekin, Philipp. Agric. Sci. 94, 285–291 (2011)

    Google Scholar 

  23. S. Akdas, M. Baslar, J. Food Process Preserv. 39, 1098–1107 (2014)

    Article  Google Scholar 

  24. A. Canale, G. Benelli, A. Castagna, C. Sgherri, P. Poli, A. Serra, M. Mele, A. Ranieri, F. Signorini, M. Bientinesi, C. Nicolella, Materials 9,1–11 (2016)

    Article  Google Scholar 

  25. B. Midilli, H. Olgun, P. Rzayev, T. Ayhan, J. Sci. Food Agric. 80, 1973–1980 (2000)

    Article  CAS  Google Scholar 

  26. J. Doymaz, Food Eng. 69, 275–279 (2005)

    Article  Google Scholar 

  27. J.S. Roberts, D.R. Kidd, O. Padilla-Zakour, J. Food Eng. 89, 460–465 (2008)

    Article  Google Scholar 

  28. S.M. Henderson, S. Pabis, J. Agric. Eng. Res. 6, 169–174 (1961)

    Google Scholar 

  29. A. Yagcioglu, A. Degirmencioglu, F. Cagatay, in Proceedings of the 7th International Congress on Agricultural Mechanization and Energy, Adana, Turkey, pp 565–569 (1999)

  30. S. Simal, A. Femenia, M.C. Grau, C. Roselló, J. Food Eng. 66, 323–328 (2005)

    Article  Google Scholar 

  31. A. Midilli, H. Kucuk, Energy Convers. Manag. 44, 1111–1122 (2003)

    Article  Google Scholar 

  32. C.Y. Wang, R.P. ASAE Paper No, 78-3001, ASAE, St. Joseph, MI (1978)

  33. M. Aktas, A. Sozen, A. Amini, A. Khanlari, Dry. Technol. 35, 766–783 (2017)

    Article  CAS  Google Scholar 

  34. M. Beigi, Heat Mass Transfer 52, 1435–1442 (2016)

    Article  CAS  Google Scholar 

  35. J. Crank, The Mathematics of Diffusion (Clarendon Press, Oxford, 1975)

    Google Scholar 

  36. F. Salehi, M. Kashaninejad, A. Jafarianlari, Heat Mass Transfer 53, 1751–1759 (2017)

    Article  Google Scholar 

  37. A. Yesiltas, E. Capanoglu, E. Firatligil-Durmus, A.E. Sunay, T. Samanci, D. Boyacioglu, J. Apicult. Res. 53, 101–108 (2014)

    Article  Google Scholar 

  38. V.L. Singleton, J.A. Rossi, Am. J. Enol. Viticult. 16, 144–158 (1965)

    CAS  Google Scholar 

  39. J. Zhishen, T. Mengcheng, W. Jianming, Food Chem. 64, 555–559 (1999)

    Article  CAS  Google Scholar 

  40. R.P. Singh, K.N. Chidambara Murthy, G.K. Jayaprakasha, J. Agric. Food Chem. 50, 81–86 (2002)

    Article  CAS  Google Scholar 

  41. R. Apak, K. Guclu, M. Ozyurek, S.E. Karademir, J. Agric. Food Chem. 52, 7970–7981 (2004)

    Article  CAS  Google Scholar 

  42. N.P. Zogzas, Z.B. Maroulis, D. Marinos-Kouris, Dry. Technol. 14, 2225–2253 (1996)

    Article  CAS  Google Scholar 

  43. K. Papoutsis, P. Pristijono, J.B. Golding, K.E. Stathopoulos, M.C. .Bowyer, C.J. Scarlett, O.V. Vuong, Int. J. Food Sci. Technol. 52, 880–887 (2017)

    Article  CAS  Google Scholar 

  44. M.A. Madrau, A. Piscopo, A.M. Sanguinetti, A.D. Caro, M. Poiana, F.V. Romeo, A. Piga, Eur. Food Res. Technol. 228, 441–448 (2009)

    Article  CAS  Google Scholar 

  45. J.S. Bonvehi, R.E. Jorda, J. Agric. Food Chem. 45, 725–732 (1997)

    Article  CAS  Google Scholar 

  46. Z. Šumić, A. Tepić, S. Vidović, S. Jokić, R. Malbaša, Food Chem. 136, 55–63 (2013)

    Article  Google Scholar 

  47. A. Wojdyło, A. Figiel, K. Lech, P. Nowicka, J. Oszmiański, Food Bioprocess Technol. 7, 829–841 (2013)

    Article  Google Scholar 

  48. S. Karasu, M. Kilicli, M. Baslar, M. Arici, O. Sagdic, M. Karaagacli, J. Food Process Preserv. 39, 2096–2106 (2015)

    Article  CAS  Google Scholar 

  49. I.G. Mandala, E.F. Anagnostaras, C.K. Oikonomou, J. Food Eng. 69, 307–316 (2005)

    Article  Google Scholar 

  50. T. Orikasa, S. Koide, S. Okamoto, T. Imaizumi, Y. Muramatsu, J. Takeda, T. Shiina, A. Tagawa, J. Food Eng. 125, 51–58 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Selma Kayacan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kayacan, S., Sagdic, O. & Doymaz, I. Effects of hot-air and vacuum drying on drying kinetics, bioactive compounds and color of bee pollen. Food Measure 12, 1274–1283 (2018). https://doi.org/10.1007/s11694-018-9741-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-018-9741-4

Keywords

Navigation