Skip to main content
Log in

Determination of total phenolic content and antioxidant capacity of blueberries using Fourier transformed infrared (FT-IR) spectroscopy and Raman spectroscopy

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

This study investigated the feasibility of using Fourier-transform infrared (FT-IR) and Raman spectroscopies to quantify total phenolic content and antioxidant capacity of blueberries. Blueberry extracts were applied to determine total phenolic content (Folin–Ciocalteu assay) and antioxidant capacity [oxygen radical absorbance capacity (ORAC) and 2,2-diphenyl-1-picrylhydrazyl (DPPH)], while pressed juices were used for spectroscopic analysis. Six partial least squares regression models with cross-validation were developed using FT-IR and Raman spectra of blueberries from 11 locations and their corresponding chemical testing values, followed by prediction tests using samples from another five locations. FT-IR prediction models show relatively good prediction power for ORAC, DPPH, and Folin–Ciocalteu values (R2-prediction = 0.6359, 0.6580, and 0.8092; RMSE-prediction = 6.19 and 0.71 µmol trolox equivalents/g fresh weight, and 0.14 µg GAE/g fresh weight), but Raman prediction models did not yield a satisfactory result. FT-IR spectroscopy may be used to rapidly determine blueberry antioxidants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. B.G. Arrobas, L. Ciaccheri, A.A. Mencaglia, F.J. Rodriguez-Pulido, C. Stinco, M.L. González-Miret, F.J. Heredia, A.G. Mignani, Raman spectroscopy for analyzing anthocyanins of lyophilized blueberries, in SENSORS, 2015 IEEE, 1–4 Nov 2015, pp. 1–4

  2. M. Baranska, H. Schulz, E. Joubert, M. Manley, In situ flavonoid analysis by FT-Raman spectroscopy: identification, distribution, and quantification of aspalathin in green rooibos (Aspalathus linearis). Anal. Chem. 78(22), 7716–7721 (2006)

    Article  CAS  Google Scholar 

  3. K. Baumann, M. von Korff, H. Albert, A systematic evaluation of the benefits and hazards of variable selection in latent variable regression. Part II. Practical applications. J. Chemometrics 16(7), 351–360 (2002)

  4. A. Brambilla, R. Lo Scalzo, G. Bertolo, D. Torreggiani, Steam-blanched highbush blueberry (Vaccinium corymbosum L.) juice: phenolic profile and antioxidant capacity in relation to cultivar selection. J. Agric. Food. Chem. 56(8), 2643–2648 (2008)

    Article  CAS  Google Scholar 

  5. K. Dastmalchi, G. Flores, V. Petrova, P. Pedraza-Peñalosa, E.J. Kennelly, Edible neotropical blueberries: antioxidant and compositional fingerprint analysis. J. Agric. Food. Chem. 59(7), 3020–3026 (2011)

    Article  CAS  Google Scholar 

  6. G. Flores, K. Dastmalchi, A.J. Dabo, K. Whalen, P. Pedraza-Peñalosa, R.F. Foronjy, J.M. D’Armiento, E.J. Kennelly, Antioxidants of therapeutic relevance in COPD from the neotropical blueberry Anthopterus wardii. Food. Chem. 131(1), 119–125 (2012)

    Article  CAS  Google Scholar 

  7. S. Gorinstein, M. Weisz, M. Zemser, K. Tilis, A. Stiller, I. Flam, Y. Gat, Spectroscopic analysis of polyphenols in white wines. J. Ferment. Bioeng. 75(2), 115–120 (1993)

    Article  CAS  Google Scholar 

  8. C. Henry, X. Vitrac, A. Decendit, R. Ennamany, S. Krisa, J.-M. Mérillon, Cellular uptake and efflux of trans-piceid and its aglycone trans-resveratrol on the apical membrane of human intestinal Caco-2 cells. J. Agric. Food. Chem. 53(3), 798–803 (2005)

    Article  CAS  Google Scholar 

  9. Y. Hu, Z.J. Pan, W. Liao, J. Li, P. Gruget, D.D. Kitts, X. Lu, Determination of antioxidant capacity and phenolic content of chocolate by attenuated total reflectance-Fourier transformed-infrared spectroscopy. Food. Chem. 202, 254–261 (2016)

    Article  CAS  Google Scholar 

  10. D. Huang, B. Ou, R.L. Prior, The chemistry behind antioxidant capacity assays. J. Agric. Food. Chem. 53(6), 1841–1856 (2005)

    Article  CAS  Google Scholar 

  11. H.S. Lam, A. Proctor, L. Howard, M.J. Cho, Rapid fruit extracts antioxidant capacity determination by Fourier transform infrared spectroscopy. J. Food Sci. 70(9), C545–C549 (2005)

    Article  CAS  Google Scholar 

  12. V. Lohachoompol, M. Mulholland, G. Srzednicki, J. Craske, Determination of anthocyanins in various cultivars of highbush and rabbiteye blueberries. Food. Chem. 111(1), 249–254 (2008)

    Article  CAS  Google Scholar 

  13. X. Lu, B.A. Rasco, Determination of antioxidant content and antioxidant activity in foods using infrared spectroscopy and chemometrics: a review. Crit. Rev. Food Sci. Nutr. 52(10), 853–875 (2012)

    Article  CAS  Google Scholar 

  14. X. Lu, J. Wang, H.M. Al-Qadiri, C.F. Ross, J.R. Powers, J. Tang, B.A. Rasco, Determination of total phenolic content and antioxidant capacity of onion (Allium cepa) and shallot (Allium oschaninii) using infrared spectroscopy. Food. Chem. 129(2), 637–644 (2011)

    Article  CAS  Google Scholar 

  15. J.-C. Merlin, A. Statoua, J.-P. Cornard, M. Saidi-Idrissi, R. Brouillard, The international journal of plant biochemistry resonance Raman spectroscopic studies of anthocyanins and anthocyanidins in aqueous solutions. Phytochemistry 35(1), 227–232 (1993)

    Article  Google Scholar 

  16. Z. Movasaghi, S. Rehman, I.U. Rehman, Raman spectroscopy of biological tissues. Appl. Spectrosc. Rev. 42(5), 493–541 (2007)

    Article  CAS  Google Scholar 

  17. Z. Movasaghi, S. Rehman, D.I. ur Rehman, Fourier transform infrared (FTIR) spectroscopy of biological tissues. Appl. Spectrosc. Rev. 43(2), 134–179 (2008)

    Article  CAS  Google Scholar 

  18. AY Ng, Preventing “overfitting” of cross-validation data, in ICML, 1997, pp. 245–253

  19. Y. Numata, H. Tanaka, Quantitative analysis of quercetin using Raman spectroscopy. Food. Chem. 126(2), 751–755 (2011)

    Article  CAS  Google Scholar 

  20. R.L. Prior, G. Cao, A. Martin, E. Sofic, J. McEwen, C. O’Brien, N. Lischner, M. Ehlenfeldt, W. Kalt, G. Krewer, Antioxidant capacity as influenced by total phenolic and anthocyanin content, maturity, and variety of Vaccinium species. J. Agric. Food. Chem. 46(7), 2686–2693 (1998)

    Article  CAS  Google Scholar 

  21. R.L. Prior, X. Wu, K. Schaich, Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J. Agric. Food. Chem. 53(10), 4290–4302 (2005)

    Article  CAS  Google Scholar 

  22. H. Schulz, M. Baranska, Identification and quantification of valuable plant substances by IR and Raman spectroscopy. Vib. Spectrosc. 43(1), 13–25 (2007)

    Article  CAS  Google Scholar 

  23. N. Sinelli, A. Spinardi, V. Di Egidio, I. Mignani, E. Casiraghi, Evaluation of quality and nutraceutical content of blueberries (Vaccinium corymbosum L.) by near and mid-infrared spectroscopy. Postharvest Biol. Technol. 50(1), 31–36 (2008)

    Article  CAS  Google Scholar 

  24. Socrates G, Infrared and Raman Characteristic Group Frequencies: Table and Charts, 3rd edn. (Wiley, Chichester, 2007)

    Google Scholar 

  25. A. Soriano, P. Pérez-Juan, A. Vicario, J. González, M. Pérez-Coello, Determination of anthocyanins in red wine using a newly developed method based on Fourier transform infrared spectroscopy. Food. Chem. 104(3), 1295–1303 (2007)

    Article  CAS  Google Scholar 

  26. L.-Q. Sun, X.-P. Ding, J. Qi, H. Yu, He S-a, J. Zhang, H.-X. Ge, B.-Y. Yu, Antioxidant anthocyanins screening through spectrum–effect relationships and DPPH-HPLC-DAD analysis on nine cultivars of introduced rabbiteye blueberry in China. Food. Chem. 132(2), 759–765 (2012)

    Article  CAS  Google Scholar 

  27. K. Thaipong, U. Boonprakob, K. Crosby, L. Cisneros-Zevallos, D.H. Byrne, Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J. Food Compos. Anal. 19(6), 669–675 (2006)

    Article  CAS  Google Scholar 

  28. S.Y. Wang, H. Chen, M.J. Camp, M.K. Ehlenfeldt, Genotype and growing season influence blueberry antioxidant capacity and other quality attributes. Int. J. Food Sci. Technol. 47(7), 1540–1549 (2012)

    Article  CAS  Google Scholar 

  29. M.H. Zhang, J. Luypaert, J.A. Fernández Pierna, Q.S. Xu, D.L. Massart, Determination of total antioxidant capacity in green tea by near-infrared spectroscopy and multivariate calibration. Talanta 62(1), 25–35 (2004)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by Discovery, Engage, and Collaborative Research and Development Grants awarded to X. L. by Natural Sciences and Engineering Research Council of Canada. X. L. also thanks the financial support by Mitacs Accelerate Program in Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaonan Lu.

Additional information

Xiaozhen Zheng and Yaxi Hu have equally contributed as co-first authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1627 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, X., Hu, Y., Anggreani, E. et al. Determination of total phenolic content and antioxidant capacity of blueberries using Fourier transformed infrared (FT-IR) spectroscopy and Raman spectroscopy. Food Measure 11, 1909–1918 (2017). https://doi.org/10.1007/s11694-017-9573-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-017-9573-7

Keywords

Navigation