Skip to main content
Log in

Death ligand concentration and the membrane proximal signaling module regulate the type 1/type 2 choice in apoptotic death signaling

  • Research Article
  • Published:
Systems and Synthetic Biology

Abstract

Apoptotic death pathways are frequently activated by death ligand induction and subsequent activation of the membrane proximal signaling module. Death receptors cluster upon binding to death ligands, leading to formation of a membrane proximal death-inducing-signaling-complex (DISC). In this membrane proximal signalosome, initiator caspases (caspase 8) are processed resulting in activation of both type 1 and type 2 pathways of apoptosis signaling. How the type 1/type 2 choice is made is an important question in the systems biology of apoptosis signaling. In this study, we utilize a Monte Carlo based in silico approach to elucidate the role of membrane proximal signaling module in the type 1/type 2 choice of apoptosis signaling. Our results provide crucial mechanistic insights into the formation of DISC signalosome and caspase 8 activation. Increased concentration of death ligands was shown to correlate with increased type 1 activation. We also study the caspase 6 mediated system level feedback activation of apoptosis signaling and its role in the type 1/type 2 choice. Our results clarify the basis of cell-to-cell stochastic variability in apoptosis activation and ramifications of this issue is further discussed in the context of therapies for cancer and neurodegenerative disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Accordi B, Pillozzi S, Dell’Orto MC, Cazzaniga G, Arcangeli A, Kronnie GT, Basso G (2007) Hepatocyte growth factor receptor c-MET is associated with FAS and when activated enhances drug-induced apoptosis in pediatric B acute lymphoblastic leukemia with TEL-AML1 translocation. J Biol Chem 282(40):29384–29393. doi:10.1074/jbc.M706314200

    Article  CAS  PubMed  Google Scholar 

  • Albeck JG, Burke JM, Spencer SL, Lauffenburger DA, Sorger PK (2008) Modeling a snap-action, variable-delay switch controlling extrinsic cell death. PLoS Biol 6(12):2831–2852. doi:10.1371/journal.pbio.0060299

    Article  CAS  PubMed  Google Scholar 

  • Bagci EZ, Vodovotz Y, Billiar TR, Ermentrout GB, Bahar I (2006) Bistability in apoptosis: roles of bax, bcl-2, and mitochondrial permeability transition pores. Biophys J 90(5):1546–1559. doi:10.1529/biophysj.105.068122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brittain T, Skommer J, Raychaudhuri S, Birch N (2010) An antiapoptotic neuroprotective role for neuroglobin. Int J Mol Sci 11(6):2306–2321. doi:10.3390/ijms11062306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Certo M, Del Gaizo Moore V, Nishino M, Wei G, Korsmeyer S, Armstrong SA, Letai A (2006) Mitochondria primed by death signals determine cellular addiction to antiapoptotic BCL-2 family members. Cancer Cell 9(5):351–365. doi:10.1016/j.ccr.2006.03.027

    Article  CAS  PubMed  Google Scholar 

  • Daniels RA, Turley H, Kimberley FC, Liu XS, Mongkolsapaya J, Ch’En P, Xu XN, Jin BQ, Pezzella F, Screaton GR (2005) Expression of TRAIL and TRAIL receptors in normal and malignant tissues. Cell Res 15(6):430–438. doi:10.1038/sj.cr.7290311

    Article  CAS  PubMed  Google Scholar 

  • Di Carlo M (2010) Beta amyloid peptide: from different aggregation forms to the activation of different biochemical pathways. Eur Biophys J 39(6):877–888. doi:10.1007/s00249-009-0439-8

    Article  PubMed  Google Scholar 

  • Dussmann H, Rehm M, Concannon CG, Anguissola S, Wurstle M, Kacmar S, Voller P, Huber HJ, Prehn JH (2010) Single-cell quantification of Bax activation and mathematical modelling suggest pore formation on minimal mitochondrial Bax accumulation. Cell Death Differ 17(2):278–290. doi:10.1038/cdd.2009.123

    Article  CAS  PubMed  Google Scholar 

  • Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35(4):495–516. doi:10.1080/01926230701320337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Falschlehner C, Emmerich CH, Gerlach B, Walczak H (2007) TRAIL signalling: decisions between life and death. Int J Biochem Cell Biol 39(7–8):1462–1475. doi:10.1016/j.biocel.2007.02.007

    Article  CAS  PubMed  Google Scholar 

  • Fricker N, Beaudouin J, Richter P, Eils R, Krammer PH, Lavrik IN (2010) Model-based dissection of CD95 signaling dynamics reveals both a pro- and antiapoptotic role of c-FLIPL. J Cell Biol 190(3):377–389. doi:10.1083/jcb.201002060

    Article  CAS  PubMed  Google Scholar 

  • Gajate C, Mollinedo F (2011) Lipid rafts and Fas/CD95 signaling in cancer chemotherapy. Recent Pat Anticancer Drug Discov 6(3):274–283. doi:10.2174/157489211796957766

    Article  CAS  PubMed  Google Scholar 

  • George KS, Wu S (2012) Lipid raft: a floating island of death or survival. Toxicol Appl Pharmacol 259(3):311–319. doi:10.1016/j.taap.2012.01.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldstein JC, Waterhouse NJ, Juin P, Evan GI, Green DR (2000) The coordinate release of cytochrome c during apoptosis is rapid, complete and kinetically invariant. Nat Cell Biol 2(3):156–162. doi:10.1038/35004029

    Article  CAS  PubMed  Google Scholar 

  • Gu C, Zhang J, Chen Y, Lei J (2011) A trigger model of apoptosis induced by tumor necrosis factor signaling. BMC Syst Biol 5(Suppl 1):S13. doi:10.1186/1752-0509-5-S1-S13

    Article  PubMed  PubMed Central  Google Scholar 

  • Gulbins E, Kolesnick R (2003) Raft ceramide in molecular medicine. Oncogene 22(45):7070–7077. doi:10.1038/sj.onc.1207146

    Article  CAS  PubMed  Google Scholar 

  • Ho IA, Ng WH, Lam PY (2010) FasL and FADD delivery by a glioma-specific and cell cycle-dependent HSV-1 amplicon virus enhanced apoptosis in primary human brain tumors. Mol cancer 9:270. doi:10.1186/1476-4598-9-270

    Article  PubMed  PubMed Central  Google Scholar 

  • Hua F, Cornejo MG, Cardone MH, Stokes CL, Lauffenburger DA (2005) Effects of Bcl-2 levels on Fas signaling-induced caspase-3 activation: molecular genetic tests of computational model predictions. J Immunol 175(2):985–995

    CAS  PubMed  Google Scholar 

  • Huang DC, Hahne M, Schroeter M, Frei K, Fontana A, Villunger A, Newton K, Tschopp J, Strasser A (1999) Activation of Fas by FasL induces apoptosis by a mechanism that cannot be blocked by Bcl-2 or Bcl-x(L). Proc Natl Acad Sci USA 96(26):14871–14876

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Rich RL, Myszka DG, Wu H (2003) Requirement of both the second and third BIR domains for the relief of X-linked inhibitor of apoptosis protein (XIAP)-mediated caspase inhibition by Smac. J Biol Chem 278(49):49517–49522. doi:10.1074/jbc.M310061200

    Article  CAS  PubMed  Google Scholar 

  • Jost PJ, Grabow S, Gray D, McKenzie MD, Nachbur U, Huang DC, Bouillet P, Thomas HE, Borner C, Silke J, Strasser A, Kaufmann T (2009) XIAP discriminates between type I and type II FAS-induced apoptosis. Nature 460(7258):1035–1039. doi:10.1038/nature08229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim K, Fisher MJ, Xu SQ, el-Deiry WS (2000) Molecular determinants of response to TRAIL in killing of normal and cancer cells. Clin Cancer Res 6(2):335–346

    CAS  PubMed  Google Scholar 

  • Kurita S, Mott JL, Cazanave SC, Fingas CD, Guicciardi ME, Bronk SF, Roberts LR, Fernandez-Zapico ME, Gores GJ (2011) Hedgehog inhibition promotes a switch from type II to type I cell death receptor signaling in cancer cells. PLoS One 6(3):e18330. doi:10.1371/journal.pone.0018330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leblanc AC (2013) Caspase-6 as a novel early target in the treatment of Alzheimer’s disease. Eur J Neurosci 37(12):2005–2018. doi:10.1111/ejn.12250

    Article  PubMed  Google Scholar 

  • Lee JK, Lu S, Madhukar A (2010) Real-time dynamics of Ca2+, caspase-3/7, and morphological changes in retinal ganglion cell apoptosis under elevated pressure. PLoS One 5(10):e13437. doi:10.1371/journal.pone.0013437

    Article  PubMed  PubMed Central  Google Scholar 

  • Legembre P, Daburon S, Moreau P, Ichas F, de Giorgi F, Moreau JF, Taupin JL (2005) Amplification of Fas-mediated apoptosis in type II cells via microdomain recruitment. Mol Cell Biol 25(15):6811–6820. doi:10.1128/MCB.25.15.6811-6820.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopez-Araiza H, Ventura JL, Lopez-Diazguerrero NE, Gonzalez-Marquez H, Gutierrez-Ruiz MC, Zentella A, Konigsberg M (2006) Organ- and tissue-specific alterations in the anti-apoptotic protein Bcl-2 in CD1 female mice of different ages. Biogerontology 7(1):63–67. doi:10.1007/s10522-005-6038-x

    Article  CAS  PubMed  Google Scholar 

  • Mantovani A, Locati M, Vecchi A, Sozzani S, Allavena P (2001) Decoy receptors: a strategy to regulate inflammatory cytokines and chemokines. Trends Immunol 22(6):328–336

    Article  CAS  PubMed  Google Scholar 

  • Meng XW, Peterson KL, Dai H, Schneider P, Lee SH, Zhang JS, Koenig A, Bronk S, Billadeau DD, Gores GJ, Kaufmann SH (2011) High cell surface death receptor expression determines type I versus type II signaling. J Biol Chem 286(41):35823–35833. doi:10.1074/jbc.M111.240432

    Article  CAS  PubMed  Google Scholar 

  • Miyazaki T, Reed JC (2001) A GTP-binding adapter protein couples TRAIL receptors to apoptosis-inducing proteins. Nat Immunol 2(6):493–500. doi:10.1038/88684

    Article  CAS  PubMed  Google Scholar 

  • Neumann L, Pforr C, Beaudouin J, Pappa A, Fricker N, Krammer PH, Lavrik IN, Eils R (2010) Dynamics within the CD95 death-inducing signaling complex decide life and death of cells. Mol Syst Biol 6:352. doi:10.1038/msb.2010.6

    Article  PubMed  PubMed Central  Google Scholar 

  • Newman MEJ, Barkema GT (1999) Monte Carlo methods in statistical physics. Oxford University Press, USA

    Google Scholar 

  • Okazaki N, Asano R, Kinoshita T, Chuman H (2008) Simple computational models of type I/type II cells in Fas signaling-induced apoptosis. J Theor Biol 250(4):621–633. doi:10.1016/j.jtbi.2007.10.030

    Article  CAS  PubMed  Google Scholar 

  • Ozoren N, El-Deiry WS (2002) Defining characteristics of types I and II apoptotic cells in response to TRAIL. Neoplasia 4(6):551–557. doi:10.1038/sj.neo.7900270

    Article  PubMed  PubMed Central  Google Scholar 

  • Pan G, Ni J, Wei YF, Yu G, Gentz R, Dixit VM (1997) An antagonist decoy receptor and a death domain-containing receptor for TRAIL. Science 277(5327):815–818

    Article  CAS  PubMed  Google Scholar 

  • Peter ME, Krammer PH (2003) The CD95(APO-1/Fas) DISC and beyond. Cell Death Differ 10(1):26–35. doi:10.1038/sj.cdd.4401186

    Article  CAS  PubMed  Google Scholar 

  • Picarda G, Trichet V, Teletchea S, Heymann D, Redini F (2012) TRAIL receptor signaling and therapeutic option in bone tumors: the trap of the bone microenvironment. Am J Cancer Res 2(1):45–64

    CAS  PubMed  PubMed Central  Google Scholar 

  • Picone P, Carrotta R, Montana G, Nobile MR, San Biagio PL, Di Carlo M (2009) Abeta oligomers and fibrillar aggregates induce different apoptotic pathways in LAN5 neuroblastoma cell cultures. Biophys J 96(10):4200–4211. doi:10.1016/j.bpj.2008.11.056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quintana E, Shackleton M, Sabel MS, Fullen DR, Johnson TM, Morrison SJ (2008) Efficient tumour formation by single human melanoma cells. Nature 456(7222):593–598. doi:10.1038/nature07567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raychaudhuri S (2010) A minimal model of signaling network elucidates cell-to-cell stochastic variability in apoptosis. PLoS One 5(8):e11930. doi:10.1371/journal.pone.0011930

    Article  PubMed  PubMed Central  Google Scholar 

  • Raychaudhuri S (2013) Kinetic Monte Carlo simulation in biophysics and systems biology. In: Chan WKV (ed) Theory and applications of Monte Carlo simulations. InTech, Rijeka, Croatia

  • Raychaudhuri S, Das SC (2013) Low probability activation of Bax/Bak can induce selective killing of cancer cells by generating heterogeneoity in apoptosis. J Healthc Eng 4:47–66

    Article  PubMed  Google Scholar 

  • Raychaudhuri S, Raychaudhuri SC (2013) Monte Carlo study elucidates the type 1/type 2 choice in apoptotic death signaling in healthy and cancer cells. Cells 2(2):361–392. doi:10.3390/cells2020361

    Article  Google Scholar 

  • Raychaudhuri S, Willgohs E, Nguyen TN, Khan EM, Goldkorn T (2008) Monte Carlo simulation of cell death signaling predicts large cell-to-cell stochastic fluctuations through the type 2 pathway of apoptosis. Biophys J 95(8):3559–3562. doi:10.1529/biophysj.108.135483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raychaudhuri S, Skommer J, Henty K, Birch N, Brittain T (2010) Neuroglobin protects nerve cells from apoptosis by inhibiting the intrinsic pathway of cell death. Apoptosis 15(4):401–411. doi:10.1007/s10495-009-0436-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riedl SJ, Renatus M, Schwarzenbacher R, Zhou Q, Sun C, Fesik SW, Liddington RC, Salvesen GS (2001) Structural basis for the inhibition of caspase-3 by XIAP. Cell 104(5):791–800

    Article  CAS  PubMed  Google Scholar 

  • Safa AR, Pollok KE (2011) Targeting the anti-apoptotic protein c-FLIP for cancer therapy. Cancers 3(2):1639–1671. doi:10.3390/cancers3021639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanlioglu AD, Dirice E, Aydin C, Erin N, Koksoy S, Sanlioglu S (2005) Surface TRAIL decoy receptor-4 expression is correlated with TRAIL resistance in MCF7 breast cancer cells. BMC cancer 5:54. doi:10.1186/1471-2407-5-54

    Article  PubMed  PubMed Central  Google Scholar 

  • Scaffidi C, Fulda S, Srinivasan A, Friesen C, Li F, Tomaselli KJ, Debatin KM, Krammer PH, Peter ME (1998) Two CD95 (APO-1/Fas) signaling pathways. EMBO J 17(6):1675–1687. doi:10.1093/emboj/17.6.1675

    Article  CAS  PubMed  Google Scholar 

  • Scaffidi C, Schmitz I, Zha J, Korsmeyer SJ, Krammer PH, Peter ME (1999) Differential modulation of apoptosis sensitivity in CD95 type I and type II cells. J Biol Chem 274(32):22532–22538

    Article  CAS  PubMed  Google Scholar 

  • Scott FL, Stec B, Pop C, Dobaczewska MK, Lee JJ, Monosov E, Robinson H, Salvesen GS, Schwarzenbacher R, Riedl SJ (2009) The Fas-FADD death domain complex structure unravels signalling by receptor clustering. Nature 457(7232):1019–1022. doi:10.1038/nature07606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheridan JP, Marsters SA, Pitti RM, Gurney A, Skubatch M, Baldwin D, Ramakrishnan L, Gray CL, Baker K, Wood WI, Goddard AD, Godowski P, Ashkenazi A (1997) Control of TRAIL-induced apoptosis by a family of signaling and decoy receptors. Science 277(5327):818–821

    Article  CAS  PubMed  Google Scholar 

  • Shiozaki EN, Chai J, Rigotti DJ, Riedl SJ, Li P, Srinivasula SM, Alnemri ES, Fairman R, Shi Y (2003) Mechanism of XIAP-mediated inhibition of caspase-9. Mol Cell 11(2):519–527

    Article  CAS  PubMed  Google Scholar 

  • Shirley S, Morizot A, Micheau O (2011) Regulating TRAIL receptor-induced cell death at the membrane: a deadly discussion. Recent Pat Anticancer Drug Discov 6(3):311–323. doi:10.2174/157489211796957757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skommer J, Brittain T, Raychaudhuri S (2010) Bcl-2 inhibits apoptosis by increasing the time-to-death and intrinsic cell-to-cell variations in the mitochondrial pathway of cell death. Apoptosis 15(10):1223–1233. doi:10.1007/s10495-010-0515-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skommer J, Das SC, Nair A, Brittain T, Raychaudhuri S (2011a) Nonlinear regulation of commitment to apoptosis by simultaneous inhibition of Bcl-2 and XIAP in leukemia and lymphoma cells. Apoptosis 16(6):619–626. doi:10.1007/s10495-011-0593-1

    Article  CAS  PubMed  Google Scholar 

  • Skommer J, Raychaudhuri S, Wlodkowic D (2011b) Timing is everything: stochastic origins of cell-to-cell variability in cancer cell death. Front Biosci 16:307–314

    Article  CAS  Google Scholar 

  • Song JH, Tse MC, Bellail A, Phuphanich S, Khuri F, Kneteman NM, Hao C (2007) Lipid rafts and nonrafts mediate tumor necrosis factor related apoptosis-inducing ligand induced apoptotic and nonapoptotic signals in non small cell lung carcinoma cells. Cancer Res 67(14):6946–6955. doi:10.1158/0008-5472.CAN-06-3896

    Article  CAS  PubMed  Google Scholar 

  • Spencer SL, Gaudet S, Albeck JG, Burke JM, Sorger PK (2009) Non-genetic origins of cell-to-cell variability in TRAIL-induced apoptosis. Nature 459(7245):428–432. doi:10.1038/nature08012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun XM, Bratton SB, Butterworth M, MacFarlane M, Cohen GM (2002) Bcl-2 and Bcl-xL inhibit CD95-mediated apoptosis by preventing mitochondrial release of Smac/DIABLO and subsequent inactivation of X-linked inhibitor-of-apoptosis protein. J Biol Chem 277(13):11345–11351. doi:10.1074/jbc.M109893200

    Article  CAS  PubMed  Google Scholar 

  • Sun Z, Ma X, Yang H, Zhao J, Zhang J (2012) Brain-derived neurotrophic factor prevents beta-amyloid-induced apoptosis of pheochromocytoma cells by regulating Bax/Bcl-2 expression. Neural Regen Res 7(5):347–351

    CAS  Google Scholar 

  • Takeda K, Hayakawa Y, Smyth MJ, Kayagaki N, Yamaguchi N, Kakuta S, Iwakura Y, Yagita H, Okumura K (2001) Involvement of tumor necrosis factor-related apoptosis-inducing ligand in surveillance of tumor metastasis by liver natural killer cells. Nat Med 7(1):94–100. doi:10.1038/83416

    Article  CAS  PubMed  Google Scholar 

  • Thome CH, dos Santos GA, Ferreira GA, Scheucher PS, Izumi C, Leopoldino AM, Simao AM, Ciancaglini P, de Oliveira KT, Chin A, Hanash SM, Falcao RP, Rego EM, Greene LJ, Faca VM (2012) Linker for activation of T-cell family member2 (LAT2) a lipid raft adaptor protein for AKT signaling, is an early mediator of alkylphospholipid anti-leukemic activity. Mol Cell Proteomics 11(12):1898–1912. doi:10.1074/mcp.M112.019661

    Article  PubMed  Google Scholar 

  • Xiao W, Ishdorj G, Sun J, Johnston JB, Gibson SB (2011) Death receptor 4 is preferentially recruited to lipid rafts in chronic lymphocytic leukemia cells contributing to tumor necrosis related apoptosis inducing ligand-induced synergistic apoptotic responses. Leuk Lymphoma 52(7):1290–1301. doi:10.3109/10428194.2011.567317

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhadip Raychaudhuri.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 114 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raychaudhuri, S., Raychaudhuri, S.C. Death ligand concentration and the membrane proximal signaling module regulate the type 1/type 2 choice in apoptotic death signaling. Syst Synth Biol 8, 83–97 (2014). https://doi.org/10.1007/s11693-013-9124-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11693-013-9124-4

Keywords

Navigation