Skip to main content

Advertisement

Log in

An Integrated Approach for Landmark-Based Resistant Shape Analysis in 3D

  • Tools and Techniques
  • Published:
Evolutionary Biology Aims and scope Submit manuscript

Abstract

The study of shape changes in morphology has seen a significant renovation in the last 20 years, particularly as a consequence of the development of geometric morphometric methods based on Cartesian coordinates of points. In order to extract information about shape differences when Cartesian coordinates are used, it is necessary to establish a common reference frame or system for all specimens to be compared. Therefore, a central issue in coordinate-based methods is which criterion should be used to align these configurations of points, since shape differences highly depend on those alignments. This is usually accomplished by aligning the configurations in a way that the sum of squared distances between coordinates of homologous points (landmarks) is minimized: the least-squares superimposition method. However, it is widely recognized that this method has some limitations when shape differences are not homogeneous across landmarks. Here we present an integrated approach for the resistant shape comparison of 3D landmark sets. It includes a new ordinary resistant Procrustes superimposition and its corresponding generalized resistant Procrustes version. In addition, they are combined with existing resistant multivariate statistical techniques for depicting the results. We demonstrate, by using both simulated and real datasets, that resistant Procrustes better detects and measures localized shape variation whenever present in up to half but one of the landmarks. The resistant Procrustes results are highly concordant with a priori biological information, and might dramatically improve the quality of inferences on patterns of shape variation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Adams, D. C., Rohlf, F. J., & Slice, D. E. (2004). Geometric morphometrics: 10 years of progress following the ‘revolution’. Italian Journal of Zoology, 71, 5–16.

    Article  Google Scholar 

  • Adams, D. C., Rohlf, F. J., & Slice, D. E. (2013). A field comes of age: Geometric morphometries in the twenty first century. Hystrix, 24(1), 7–14.

    Google Scholar 

  • Agarwal, A., Phillips, J. M., & Venkatasubramanian, S. (2010). Universal multidimensional scaling. In KDD’10: Proceedings of the 16th ACM SIGKDD international conference on knowledge discovery and data mining (pp. 1149–1158). New York: ACM.

  • Bookstein, F. L. (1991). Morphometric tools for landmark data: Geometry and biology. New York: Cambridge University Press.

    Google Scholar 

  • Bookstein, F. L. (1996). Biometrics, biomathematics and the morphometric synthesis. Bulletin of Mathematical Biology, 58(2), 313–365.

    Article  CAS  PubMed  Google Scholar 

  • Catalano, S. A., & Goloboff, P. A. (2012). Simultaneously mapping and superimposing landmark configurations with parsimony as optimality criterion. Systematical Biology, 61(3), 392–400.

    Article  CAS  Google Scholar 

  • Cayton, L., & Dasgupta, S. (2006). Robust Euclidean embedding. In ICML’06: Proceedings of the 23rd international conference on machine learning (pp. 169–176). New York, ACM.

  • Cheverud, J. (1995). Morphological integration in the saddleback tamarin (Saguinus fuscicollis) cranium. American Naturalist, 145(1), 63–89.

    Article  Google Scholar 

  • Davis, J. C. (1986). Statistics and data analysis in geology. New York: Wiley.

    Google Scholar 

  • Donoho, D. L., & Huber, P. J. (1983). The notion of breakdown point. In P. J. Bickel et al. (Eds.), A Festschrift for Erich L. Lehmann (pp. 157–184). Belmont, Wadsworth.

  • Gantmacher, F. R. (1959). The theory of matrices, Vols. 1 and 2. New York, Chelsea.

  • Gower, J. C. (1970). Statistical methods of comparing different multivariate analyses of the same data. In F.R. Hodson et al. (Eds.), Mathematics in the archaelogical and historical sciences (pp. 138–149). Edinburgh, Edinburgh University Press.

  • Gower, J. C. (1975). Generalized procrustes analysis. Psychometrika, 40(1), 33–51.

    Article  Google Scholar 

  • Hallgrimsson, B., & Lieberman, D. E. (2008). Mouse models and the evolutionary developmental biology of the skull. Integrative and Comparative Biology, 48(3), 373–384. doi:10.1093/icb/icn076.

    Article  PubMed  Google Scholar 

  • Hammer, Ø., Harper, D. A. T., & Ryan, P. D. (2001). PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4(1), art. 4, 9.

    Google Scholar 

  • Hampel, F. R., Ronchetti, E. M., Rouseeuw, P. J., & Stahel, W. A. (1986). Robust statistics: The approach based on influence functions. New York: Wiley.

    Google Scholar 

  • Hartwig, W., Rosenberger, A. L., Norconk, M. A., & Owl, M. Y. (2011). Relative brain size, gut size, and evolution in New World monkeys. Anatomical Record (Hoboken), 294(12), 2207–2221.

    Article  Google Scholar 

  • Kendall, D. G. (1984). Shape manifolds, procrustean metrics, and complex projective spaces. Bulletin London Mathematical Society,. doi:10.1112/blms/16.2.81.

    Google Scholar 

  • Klingenberg, C. P. (2013). Visualizations in geometric morphometrics: How to read and how to make graphs showing shape changes. Hystrix, 24(1), 15–24.

    Google Scholar 

  • Lemey, M., Salemi, M., & Vandamme, A. M. (2009). The phylogenetic handbook: A practical approach to phylogenetic analysis and hypothesis testing. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Mitteroecker, P., & Gunz, P. (2009). Advances in geometric morphometrics. Evolutionary Biology, 36, 235–247.

    Article  Google Scholar 

  • Mitteroecker, P., Gunz, P., & Bookstein, F. L. (2005). Heterochrony and geometric morphometrics: a comparison of cranial growth in Pan paniscus versus Pan troglodytes. Evolution and Development, 7(3), 244–258.

    Article  PubMed  Google Scholar 

  • Perez, S. I., Bernal, V., & Gonzalez, P. N. (2006). Differences between sliding semi-landmark methods in geometric morphometrics, with an application to human craniofacial and dental variation. Journal of Anatomy, 208(6), 769–784.

    Article  PubMed  Google Scholar 

  • Perez, S. I., Klaczko, J., Rocatti, G., & dos Reis, S. F. (2011). Patterns of cranial shape diversification during the phylogenetic branching process of New World monkeys (Primates: Platyrrhini). Journal of Evolutionary Biology, 24(8), 1826–1835.

    Article  CAS  PubMed  Google Scholar 

  • Richtsmeier, J. T., DeLeon, V. B., & Lele, S. R. (2002). The promise of geometric morphometrics. American Journal of Physical Anthropoloy, Supplement 35, 63–91.

    Article  Google Scholar 

  • Rocha, M. A. (1995). Les collections ostéologiques humaines identifiées du Musée Anthropologique de l′Université de Coimbra. Antropologia Portuguesa, 13, 7–38.

    Google Scholar 

  • Rohlf, F. J. (1990). Rotational fit (Procrustes) methods. In F.J. Rohlf et al., (Eds.) Proceedings Michigan morphometrics workshop (pp. 227–236). Special publication no. 2, Museum of Zoology. Michigan, University of Michigan.

  • Rohlf, F. J., & Marcus, L. F. (1993). A revolution in morphometrics. Tree, 8, 129–132.

    Google Scholar 

  • Rohlf, F. J., & Slice, D. E. (1990). Extensions of the Procrustes method for the optimal superimposition of landmarks. Systematic Zoology, 39(1), 40–59.

    Article  Google Scholar 

  • Siegel, A. F. (1982). Robust regression using repeated medians. Biometrika, 69(1), 242–244.

    Article  Google Scholar 

  • Siegel, A. F., & Benson, R. H. (1982). A robust comparison of biological shapes. Biometrics, 38, 341–350.

    Article  CAS  PubMed  Google Scholar 

  • Slice, D. E. (1996). Three-dimensional generalized resistant fitting and the comparison of least-squares and resistant fit residuals. In L. F. Marcus et al., (Eds.), Advances in morphometrics (pp. 179–199). New York, Plenum Press.

  • Slice, D. E. (2001). Landmark coordinates aligned by Procrustes analysis do not lie in Kendall’s shape space. Systematic Biology, 50(1), 141–149.

    Article  CAS  PubMed  Google Scholar 

  • Sperber, G. H. (2001). Craniofacial development. Hamilton: BC Decker Inc.

    Google Scholar 

  • Taguchi, Y. H., & Oono, Y. (2004). Novel non-metric MDS algorithm with confidence level test. http://www.granular.com/MDS/src/paper.pdf.

  • Theobald, D. L., & Wuttke, D. S. (2006). Empirical Bayes hierarchical models for regularizing maximum likelihood estimation in the matrix Gaussian Procrustes problem. Proceedings of the National Academy of Sciences of the United States of America, 103, 18521–18527.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Van der Linde, K., & Houle, D. (2009). Inferring the nature of allometry from geometric data. Evolutionary Biology, 36, 311–322.

    Article  Google Scholar 

  • Walker, J. A. (2000). Ability of geometric morphometric methods to estimate a known covariance matrix. Systematic Biology, 49(4), 686–696.

    Article  CAS  PubMed  Google Scholar 

  • Weiszfeld, E. (1937). Sur le point pour lequel la somme des distances de n points donnés est minimum. Tohoku Mathematical Journal, 43, 355–386.

    Google Scholar 

  • Zelditch, M. L., Swiderski, D. L., Sheets, H. D., & Fink, W. L. (2004). Geometric morphometric for biologists: A primer. London: Academic Press.

    Google Scholar 

Download references

Acknowledgments

We want to thank Fundación Antorchas for partially funding Mr. Torcida for this research. We are grateful to Dennis Slice, Dean Adams and Sergio F. dos Reis for their helpful comments on early versions of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastián Torcida.

Appendix: Optimality of the Presented Resistant Method (Overall Performance When Shape Variation is Located in Half but One of the Landmarks)

Appendix: Optimality of the Presented Resistant Method (Overall Performance When Shape Variation is Located in Half but One of the Landmarks)

The 3D version of the resistant method presented in this work achieves the best possible superimposition whenever shape differences are located in up to 50 % of the landmarks. This is proved next.

Theorem

Suppose there exist parameters ρ > 0 (an isotropic scaling), R (v , θ) (a 3D rotation matrix with associated rotation angle θ and rotation axis v , respectively) and t (a translation vector) such that the equation:

$$ {\mathbf{l}}_{i}^{(2)} = \rho {\mathbf{l}}_{i}^{(1)} {\mathbf{R}}_{{({\mathbf{v}},\theta )}}\, { + } \, {\mathbf{t}} $$
(14)

holds for more than \( \frac{{{n} + 1}}{2} \) different landmarks, the repeated-medians estimates (6), (7), (9) and the single median (11) are exactly those values; that is,

$$ \mathop {\text{med} }\limits_{i} \,(\mathop {\text{med} }\limits_{{{j} \ne {i}}} \, \rho_{ij} ) = \widetilde{\rho }, $$
$$ \mathop {\text{med} }\limits_{i}\, (\mathop {\text{med} }\limits_{{{j} \ne {i}}} \, {\mathbf{v}}_{ij} ) = \widetilde{{\mathbf{v}}}, $$
$$ \mathop {\text{med} }\limits_{i} \,(\mathop {\text{med} }\limits_{{{j} \ne {i}}} \, \theta_{ij} ) = \tilde{\theta }, $$

and

$$ \mathop {\text{med} }\limits_{i} \, {\mathbf{t}}_{i} = \widetilde{{\mathbf{t}}}. $$

Proof

The result is showed only for the rotation matrix parameters, because they use the specific formulation for the 3D case. The proof for the remaining parameters is analogous.

Whenever more than \( \frac{{{n} + 1}}{2} \) in a set of values are the same, the median is that repeated value. Then, when landmarks l (k) i and l (k) j satisfy (14):

$$ {\mathbf{l}}_{j}^{(2)} - {\mathbf{l}}_{i}^{(2)} = \rho ({\mathbf{l}}_{j}^{(2)} - {\mathbf{l}}_{i}^{(2)} ){\mathbf{R}}_{{({\mathbf{v}},\theta )}}\, { + }\,{\mathbf{t}}, $$
(15)

and setting for the moment ρ = 1 (the scale factor can be estimated afterwards, without loss of generality) the rotation matrix R ij satisfies equations (1), (2), (3) and consequently (4), producing:

$$ {\mathbf{R}}_{ij} = {\mathbf{R}}_{{({\mathbf{v}}_{ij} ,\theta_{ij} )}} = {\mathbf{R}}_{{({\mathbf{v}},\theta )}}. $$

From this, whenever landmark l (k) i satisfies (14), more than half of the remaining landmarks l (k) j (j ≠ i) also satisfy (14) and therefore:

$$ \mathop {\text{med} }\limits_{{{j} \ne {i}}} \, {\mathbf{v}}_{ij} = {\mathbf{v}},\,\left( {\text{componentwise median}} \right) $$
$$ \mathop {\text{med} }\limits_{{{j} \ne {i}}} \, \theta_{ij} = \theta , $$

which leads to:

$$ \mathop {\text{med} }\limits_{i}\, (\mathop {\text{med} }\limits_{{{j} \ne {i}}} \, {\mathbf{v}}_{ij} ) = \widetilde{{\mathbf{v}}} = {\mathbf{v}}, $$
$$ \mathop {\text{med} }\limits_{i} \,(\mathop {\text{med} }\limits_{{{j} \ne {i}}} \, \theta_{ij} ) = \widetilde{\theta } = \theta, $$

and finally:

$$ \tilde{\bf{R}}_{{(\tilde{\bf{v}},\tilde{\theta })}} \, = \,\bf{R}_{(\bf{v},\theta )}, $$

which concludes the proof.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Torcida, S., Ivan Perez, S. & Gonzalez, P.N. An Integrated Approach for Landmark-Based Resistant Shape Analysis in 3D. Evol Biol 41, 351–366 (2014). https://doi.org/10.1007/s11692-013-9264-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11692-013-9264-1

Keywords

Navigation