Skip to main content

Advertisement

Log in

Developmental Plasticity, Epigenetics and Human Health

  • Synthesis paper
  • Published:
Evolutionary Biology Aims and scope Submit manuscript

Abstract

The unrelenting rise in global rates of non-communicable disease has necessitated a thorough re-evaluation of the current use of adult- and lifestyle-based strategies to curb the growing epidemic. There is a rapidly emerging set of epidemiological, experimental and clinical data suggesting that developmental factors play a considerable role in determining individual disease risk later in life. This phenomenon is known as the Developmental Origins of Health and Disease (DOHaD). Developmental factors, such as maternal and paternal nutrition, gestational diabetes mellitus, and even the normative range of developmental experiences, may evoke the processes of developmental plasticity which enable an organism to change its developmental trajectory in response to environmental cues. However in the event of a mismatch between the early and mature environment, such anticipatory responses may become maladaptive and lead to elevated risk of disease. The evo-devo and eco-evo-devo framework for DOHaD has more recently been supported by mechanistic insights enabled by rapid advances in epigenetic research. Increasing evidence suggests that developmental plasticity may be effected by epigenetically mediated modulation of the expression of specific genes. These mechanisms include DNA methylation, histone modifications and noncoding RNA activity. A growing number of animal studies also point towards the transgenerational inheritance of epigenetic marks, which may have implications for the perpetuation of ill-health. However early-life epigenotyping may find utility as a prognostic marker of metabolic dysfunction for identification and treatment of at-risk individuals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aagaard-Tillery, K. M., Grove, K., Bishop, J., Ke, X., Fu, Q., McKnight, R., et al. (2008). Developmental origins of disease and determinants of chromatin structure: Maternal diet modifies the primate fetal epigenome. Journal of Molecular Endocrinology, 41(2), 91–102.

    Article  PubMed  CAS  Google Scholar 

  • Aerts, L., & Van Assche, F. A. (2006). Animal evidence for the transgenerational development of diabetes mellitus. International Journal of Biochemistry and Cell Biology, 38, 894–903.

    Article  PubMed  CAS  Google Scholar 

  • Alkemade, F. E., Gittenberger-de Groot, A. C., Schiel, A. E., VanMunsteren, J. C., Hogers, B., van Vliet, L. S. J., et al. (2007). Intrauterine exposure to maternal atherosclerotic risk factors increases the susceptibility to atherosclerosis in adult life. Arteriosclerosis, Thrombosis, and Vascular Biology, 27(10), 2228–2235.

    Article  PubMed  CAS  Google Scholar 

  • Alkemade, F. E., van Vliet, P., Henneman, P., van Dijk, K. W., Hierck, B. P., van Munsteren, J. C., et al. (2010). Prenatal exposure to apoE deficiency and postnatal hypercholesterolemia are associated with altered cell-specific lysine methyltransferase and histone methylation patterns in the vasculature. American Journal of Pathology, 176(2), 542–548.

    Article  PubMed  CAS  Google Scholar 

  • Barker, D. J., & Osmond, C. (1986). Infant mortality, childhood nutrition, and ischaemic heart disease in England and Wales. Lancet, 1(8489), 1077–1081.

    Article  PubMed  CAS  Google Scholar 

  • Barker, D. J. P., Osmond, C., Golding, J., Kuh, D., & Wadsworth, M. E. (1989). Growth in utero, blood pressure in childhood and adult life, and mortality from cardiovascular disease. BMJ, 298, 564–567.

    Article  PubMed  CAS  Google Scholar 

  • Barski, A., Jothi, R., Cuddapah, S., Cui, K., Roh, T.-Y., Schones, D. E., et al. (2009). Chromatin poises miRNA- and protein-coding genes for expression. Genome Research, 19, 1742–1751.

    Article  PubMed  CAS  Google Scholar 

  • Bateson, P., Barker, D., Clutton-Brock, T., Deb, D., D’Udine, B., Foley, R. A., et al. (2004). Developmental plasticity and human health. Nature, 430, 419–421.

    Article  PubMed  CAS  Google Scholar 

  • Bateson, P., & Gluckman, P. (2011). Plasticity, robustness, development and evolution. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Bruce, K. D., Cagampang, F. R., Argenton, M., Zhang, J., Ethirajan, P. L., Burdge, G. C., et al. (2009). Maternal high-fat feeding primes steatohepatitis in adult mice offspring, involving mitochondrial dysfunction and altered lipogenesis gene expression. Hepatology, 50(6), 1796–1808.

    Article  PubMed  CAS  Google Scholar 

  • Burdge, G., Hoile, S., Uller, T., Gluckman, P. D., & Hanson, M. A. (2011). Progressive, transgenerational changes in offspring phenotype and epigenotype following nutritional transition. PLoS One, 6(11), e28282.

    Article  PubMed  CAS  Google Scholar 

  • Burdge, G. C., Slater-Jefferies, J. L., Torrens, C., Phillips, E. S., Hanson, M. A., & Lillycrop, K. A. (2007). Dietary protein restriction of pregnant rats in the F0 generation induces altered methylation of hepatic gene promoters in the adult male offspring in the F1 and F2 generations. British Journal of Nutrition, 97(3), 435–439.

    Article  PubMed  CAS  Google Scholar 

  • Carone, B. R., Fauquier, L., Habib, N., Shea, J. M., Hart, C. E., Li, R., et al. (2010). Paternally induced transgenerational environmental reprogramming of metabolic gene expression in mammals. Cell, 143(7), 1084–1096.

    Article  PubMed  CAS  Google Scholar 

  • Cleal, J. K., Poore, K. R., Boullin, J. P., Khan, O., Chau, R., Hambidge, O., et al. (2007). Mismatched pre- and postnatal nutrition leads to cardiovascular dysfunction and altered renal function in adulthood. Proceedings of the National Academy of Sciences of the United States of America, 104, 9529–9533.

    Article  PubMed  CAS  Google Scholar 

  • Crozier, S. R., Inskip, H. M., Godfrey, K. M., Cooper, C., Harvey, N. C., Cole, Z. A., et al. (2011). Weight gain in pregnancy and childhood body composition: Findings from the Southampton Women’s Survey. American Journal of Clinical Nutrition, 91(6), 1745–1751.

    Article  CAS  Google Scholar 

  • Curhan, G. C., Chertow, G. M., Willett, W. C., Spiegelman, D., Colditz, G. A., Manson, J. E., et al. (1996). Birth weight and adult hypertension and obesity in women. Circulation, 94(6), 1310–1315.

    Article  PubMed  CAS  Google Scholar 

  • Dörner, G. (1973). Die mögliche bedeutung der prä- und/oder perinatalen ernährung für die pathogenese der obesitas. Acta Biologica et Medica Germanica, 30, 19–22.

    Google Scholar 

  • Dörner, G., Haller, K., & Leonhardt, M. (1973). Zur möglichen bedeutung der prä- und/oder früh postnatalen ernährung für die pathogenese der arterioskleroze. Acta Biologica et Medica Germanica, 31, 31–35.

    Google Scholar 

  • Dörner, G., & Mohnike, A. (1973). Zur möglichen bedeutung der prä- und/oder frühpostnatalen ernährung für die pathogenese der diabetes mellitus. Acta Biologica et Medica Germanica, 31, 7–10.

    Google Scholar 

  • Drake, A. J., Walker, B. R., & Seckl, J. R. (2005). Intergenerational consequences of fetal programming by in utero exposure to glucocorticoids in rats. American Journal of Physiology, 288(1), R34–R38.

    PubMed  CAS  Google Scholar 

  • Dunn, G. A., & Bale, T. L. (2009). Maternal high-fat diet promotes body length increases and insulin insensitivity in second-generation mice. Endocrinology, 150(11), 4999–5009.

    Article  PubMed  CAS  Google Scholar 

  • Elahi, M. M., Cagampang, F. R., Anthony, F. W., Curzen, N., Ohri, S. K., & Hanson, M. A. (2008). Statin treatment in hypercholesterolemic pregnant mice reduces cardiovascular risk factors in their offspring. Hypertension, 51(4), 939–944.

    Article  PubMed  CAS  Google Scholar 

  • Elahi, M. M., Cagampang, F. R., Mukhter, D., Anthony, F. W., Ohri, S. K., & Hanson, M. A. (2009). Long-term maternal high-fat feeding from weaning through pregnancy and lactation predisposes offspring to hypertension, raised plasma lipids and fatty liver in mice. British Journal of Nutrition, 102, 514–519.

    Article  PubMed  CAS  Google Scholar 

  • Franklin, T. B., Russig, H., Weiss, I. C., Gräff, J., Linder, N., Michalon, A., et al. (2010). Epigenetic transmission of the impact of early stress across generations. Biological Psychiatry, 68(5), 408–415.

    Article  PubMed  Google Scholar 

  • Gale, C. R., Jiang, B., Robinson, S. M., Godfrey, K. M., Law, C. M., & Martyn, C. N. (2006). Maternal diet during pregnancy and carotid intima-media thickness in children. Arteriosclerosis, Thrombosis, and Vascular Biology, 26, 1877–1882.

    Article  PubMed  CAS  Google Scholar 

  • Gemma, C., Sookoian, S., Alvarinas, J., Garcia, S. I., Quintana, L., Kanevsky, D., et al. (2009). Maternal pregestational BMI is associated with methylation of the PPARGC1A promoter in newborns. Obesity, 17(5), 1032–1039.

    Article  PubMed  CAS  Google Scholar 

  • Gluckman, P. D., Beedle, A. S., & Hanson, M. A. (2009). Principles of evolutionary medicine. Oxford: Oxford University Press.

    Google Scholar 

  • Gluckman, P. D., & Hanson, M. A. (2004). Maternal constraint of fetal growth and its consequences. Seminars in Fetal & Neonatal Medicine, 9(5), 419–425.

    Article  Google Scholar 

  • Gluckman, P. D., & Hanson, M. A. (2005). The fetal matrix: Evolution, development, and disease. Cambridge: Cambridge University Press.

    Google Scholar 

  • Gluckman, P. D., & Hanson, M. A. (Eds.). (2006). Developmental origins of health and disease. Cambridge: Cambridge University Press.

    Google Scholar 

  • Gluckman, P. D., Hanson, M. A., Beedle, A. S., & Spencer, H. G. (2008). Predictive adaptive responses in perspective. Trends in Endocrinology and Metabolism, 19(4), 109–110.

    Article  PubMed  CAS  Google Scholar 

  • Gluckman, P. D., Hanson, M. A., & Spencer, H. G. (2005a). Predictive adaptive responses and human evolution. Trends in Ecology & Evolution, 20(10), 527–533.

    Article  Google Scholar 

  • Gluckman, P. D., Hanson, M. A., Spencer, H. G., & Bateson, P. (2005b). Environmental influences during development and their later consequences for health and disease: Implications for the interpretation of empirical studies. Proceedings of the Royal Society. Section B, 272, 671–677.

    Article  Google Scholar 

  • Gluckman, P. D., Hanson, M., Zimmet, P., & Forrester, T. (2011a). Losing the war against obesity: The need for a developmental perspective. Science Translational Medicine, 3(93), 93cm19.

    Google Scholar 

  • Gluckman, P. D., Lillycrop, K. A., Vickers, M. H., Pleasants, A. B., Phillips, E. S., Beedle, A. S., et al. (2007). Metabolic plasticity during mammalian development is directionally dependent on early nutritional status. Proceedings of the National Academy of Sciences of the United States of America, 104(31), 12796–12800.

    Article  PubMed  CAS  Google Scholar 

  • Gluckman, P. D., Low, F. M., Buklijas, T., Hanson, M. A., & Beedle, A. S. (2011b). How evolutionary principles improve the understanding of human health and disease. Evolutionary Applications, 4, 249–263.

    Article  Google Scholar 

  • Godfrey, K. M. (1998). Maternal regulation of fetal development and health in adult life. European Journal of Obstetrics, Gynecology, and Reproductive Biology, 78(2), 141–150.

    Article  PubMed  CAS  Google Scholar 

  • Godfrey, K. (2006). The ‘developmental origins’ hypothesis: Epidemiology. In P. D. Gluckman & M. A. Hanson (Eds.), Developmental origins of health and disease (pp. 6–32). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Godfrey, K. M., Gluckman, P. D., & Hanson, M. A. (2010). Developmental origins of metabolic disease: Life course and intergenerational perspectives. Trends in Endocrinology and Metabolism, 21(4), 199–205.

    Article  PubMed  CAS  Google Scholar 

  • Godfrey, K. M., Sheppard, A., Gluckman, P. D., Lillycrop, K. A., Burdge, G. C., McLean, C., et al. (2011). Epigenetic gene promoter methylation at birth is associated with child’s later adiposity. Diabetes, 60, 1528–1534.

    Article  PubMed  CAS  Google Scholar 

  • Goyal, R., Goyal, D., Leitzke, A., Gheorghe, C. P., & Longo, L. D. (2010). Brain renin-angiotensin system: Fetal epigenetic programming by maternal protein restriction during pregnancy. Reproductive Sciences, 17(3), 227–238.

    Article  PubMed  CAS  Google Scholar 

  • Guerrero-Bosagna, C., Settles, M., Lucker, B., & Skinner, M. K. (2010). Epigenetic transgenerational actions of vinclozolin on promoter regions of the sperm epigenome. PLoS One, 5(9), e13100.

    Article  PubMed  CAS  Google Scholar 

  • Guerrero-Preston, R., Goldman, L. R., Brebi-Mieville, P., Ili-Gangas, C., LeBron, C., Hernández-Arroyo, M., et al. (2010). Global DNA hypomethylation is associated with in utero exposure to cotinine and perfluorinated alkyl compounds. Epigenetics, 5(6), 539–546.

    Article  PubMed  CAS  Google Scholar 

  • Hales, C. N., & Barker, D. J. (1992). Type 2 (non-insulin-dependent) diabetes mellitus: The thrifty phenotype hypothesis. Diabetologia, 35(7), 595–601.

    Article  PubMed  CAS  Google Scholar 

  • Hammoud, S. S., Nix, D. A., Zhang, H., Purwar, J., Carrell, D. T., & Cairns, B. R. (2009). Distinctive chromatin in human sperm packages genes for embryo development. Nature, 460(7254), 473–478.

    PubMed  CAS  Google Scholar 

  • Heijmans, B. T., Tobi, E. W., Stein, A. D., Putter, H., Blauw, G. J., Susser, E. S., et al. (2008). Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proceedings of the National Academy of Sciences of the United States of America, 105(44), 17046–17049.

    Article  PubMed  CAS  Google Scholar 

  • Heslehurst, N., Ells, L. J., Simpson, H., Batterham, A., Wilkinson, J., & Summerbell, C. D. (2007). Trends in maternal obesity incidence rates, demographic predictors, and health inequalities in 36 821 women over a 15-year period. BJOG, 114(2), 187–194.

    Article  PubMed  CAS  Google Scholar 

  • Higgins, M., Keller, J., Moore, F., Ostrander, L., Metzner, H., & Stock, L. (1980). Studies of blood pressure in Tecumseh, Michigan. I. Blood pressure in young people and its relationship to personal and familial characteristics and complications of pregnancy in mothers. American Journal of Epidemiology, 111, 142–155.

    PubMed  CAS  Google Scholar 

  • Hitchins, M. P., Wong, J. J., Suthers, G., Suter, C. M., Martin, D. I., Hawkins, N. J., et al. (2007). Inheritance of a cancer-associated MLH1 germ-line epimutation. New England Journal of Medicine, 356(7), 697–705.

    Article  PubMed  CAS  Google Scholar 

  • Ibanez, L., Ong, K., Dunger, D. B., & de Zegher, F. (2006). Early development of adiposity and insulin resistance after catch-up weight gain in small-for-gestational age children. Journal of Clinical Endocrinology and Metabolism, 91(6), 2153–2158.

    Article  PubMed  CAS  Google Scholar 

  • Ibanez, L., Potau, N., Enriquez, G., & de Zegher, F. (2000). Reduced uterine and ovarian size in adolescent girls born small for gestational age. Pediatric Research, 47(5), 575–577.

    Article  PubMed  CAS  Google Scholar 

  • Jablonka, E., Oborny, B., Molnar, I., Kisdi, E., Hofbauer, J., & Czaran, T. (1995). The adaptive advantage of phenotypic memory in changing environments. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 350(1332), 133–141.

    Article  PubMed  CAS  Google Scholar 

  • Jasienska, G., Thune, I., & Ellison, P. T. (2006). Fatness at birth predicts adult susceptibility to ovarian suppression: An empirical test of the predictive adaptive response hypothesis. Proceedings of the National Academy of Sciences of the United States of America, 103(34), 12759–12762.

    Article  PubMed  CAS  Google Scholar 

  • Jones, P. A. (1999). The DNA methylation paradox. Trends in Genetics, 15(1), 34–37.

    Article  PubMed  CAS  Google Scholar 

  • Jones, J. H. (2009). The force of selection on the human life cycle. Evolution and Human Behavior, 30, 305–314.

    Article  PubMed  Google Scholar 

  • Kagami, M., Nagai, T., Fukami, M., Yamazawa, K., & Ogata, T. (2007). Silver-Russell syndrome in a girl born after in vitro fertilization: Partial hypermethylation at the differentially methylated region of PEG1/MEST. Journal of Assisted Reproduction and Genetics, 24(4), 131–136.

    Article  PubMed  Google Scholar 

  • Kermack, W., McKendrick, A., & McKinlay, P. (1934). Death rates in Great Britain and Sweden: Some general regularities and their significance. Lancet, 223(5770), 698–703.

    Article  Google Scholar 

  • Khan, I., Dekou, V., Hanson, M., Poston, L., & Taylor, P. (2004). Predictive adaptive responses to maternal high-fat diet prevent endothelial dysfunction but not hypertension in adult rat offspring. Circulation, 110, 1097–1102.

    Article  PubMed  CAS  Google Scholar 

  • Kuzawa, C. W., Gluckman, P. D., & Hanson, M. A. (2007). Developmental perspectives on the origin of obesity. In G. Fantuzzi & T. Mazzone (Eds.), Adipose tissue and adipokines in health and disease (pp. 207–219). Totowa, NJ: Humana Press.

    Chapter  Google Scholar 

  • Lawlor, D. A., Lichtenstein, P., & Langstrom, N. (2011). Association of maternal diabetes mellitus in pregnancy with offspring adiposity into early adulthood sibling study in a prospective cohort of 280 866 men from 248 293 families. Circulation, 123(3), 258–265.

    Article  PubMed  Google Scholar 

  • Lillycrop, K. A., Phillips, E. S., Jackson, A. A., Hanson, M. A., & Burdge, G. C. (2005). Dietary protein restriction of pregnant rats induces and folic acid supplementation prevents epigenetic modification of hepatic gene expression in the offspring. Journal of Nutrition, 135, 1382–1386.

    PubMed  CAS  Google Scholar 

  • Lillycrop, K. A., Slater-Jefferies, J. L., Hanson, M. A., Godfrey, K. M., Jackson, A. A., & Burdge, G. C. (2007). Induction of altered epigenetic regulation of the hepatic glucocorticoid receptor in the offspring of rats fed a protein-restricted diet during pregnancy suggests that reduced DNA methyltransferase-1 expression is involved in impaired DNA methylation and changes in histone modifications. British Journal of Nutrition, 97(6), 1064–1073.

    Article  PubMed  CAS  Google Scholar 

  • Lister, R., Pelizzola, M., Dowen, R. H., Hawkins, R. D., Hon, G., Tonti-Filippini, J., et al. (2009). Human DNA methylomes at base resolution show widespread epigenomic differences. Nature, 462(7271), 315–322.

    Article  PubMed  CAS  Google Scholar 

  • Longini, I. M., Jr., Higgins, M. W., Hinton, P. C., Moll, P. P., & Keller, J. B. (1984). Environmental and genetic sources of familial aggregation of blood pressure in Tecumseh, Michigan. American Journal of Epidemiology, 120, 131–144.

    PubMed  Google Scholar 

  • Martens, J. H. A., Stunnenberg, H. G., & Logie, C. (2011). The decade of the epigenomes? Genes Cancer, 2(6), 680–687.

    Article  PubMed  CAS  Google Scholar 

  • Mattick, J. S. (2011). The central role of RNA in human development and cognition. FEBS Letters, 585(11), 1600–1616.

    Article  PubMed  CAS  Google Scholar 

  • McCurdy, C. E., Bishop, J. M., Williams, S. M., Grayson, B. E., Smith, M. S., Friedman, J. E., et al. (2009). Maternal high-fat diet triggers lipotoxicity in the fetal livers of nonhuman primates. Journal of Clinical Investigation, 119(2), 323–335.

    PubMed  CAS  Google Scholar 

  • McGowan, P. O., Sasaki, A., D’Alessio, A. C., Dymov, S., Labonté, B., Szyf, M., et al. (2009). Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse. Nature Neuroscience, 12(3), 342–348.

    Article  PubMed  CAS  Google Scholar 

  • McGowan, P. O., Sasaki, A., Huang, T. C. T., Unterberger, A., Suderman, M., Ernst, C., et al. (2008). Promoter-wide hypermethylation of the ribosomal RNA gene promoter in the suicide brain. PLoS One, 3(5), e2085.

    Article  PubMed  CAS  Google Scholar 

  • Mericq, V., Ong, K. K., Bazaes, R. A., Pena, V., Avila, A., Salazar, T., et al. (2005). Longitudinal changes in insulin sensitivity and secretion from birth to age three years in small- and appropriate-for-gestational-age children. Diabetologia, 48, 2609–2614.

    Article  PubMed  CAS  Google Scholar 

  • Modi, N., Murgasova, D., Ruager-Martin, R., Thomas, E. L., Hyde, M. J., Gale, C., et al. (2011). The influence of maternal body mass index on infant adiposity and hepatic lipid content. Pediatric Research, 70(3), 287–291.

    Article  PubMed  Google Scholar 

  • Moore, S. E., Cole, T. J., Collinson, A. C., Poskitt, E. M., McGregor, I. A., & Prentice, A. M. (1999). Prenatal or early postnatal events predict infectious deaths in young adulthood in rural Africa. International Journal of Epidemiology, 28(6), 1088–1095.

    Article  PubMed  CAS  Google Scholar 

  • Neel, J. V. (1962). Diabetes mellitus: A “thrifty” genotype rendered detrimental by “progress”? American Journal of Human Genetics, 14(4), 353–362.

    PubMed  CAS  Google Scholar 

  • Ng, S.-F., Lin, R. C. Y., Laybutt, D. R., Barres, R., Owens, J. A., & Morris, M. J. (2010). Chronic high-fat diet in fathers programs β-cell dysfunction in female rat offspring. Nature, 467(7318), 963–966.

    Article  PubMed  CAS  Google Scholar 

  • Oberlander, T. F., Weinberg, J., Papsdorf, M., Grunau, R., Misri, S., & Devlin, A. M. (2008). Prenatal exposure to maternal depression, neonatal methylation of human glucocorticoid receptor gene (NR3C1) and infant cortisol stress responses. Epigenetics, 3(2), 97–106.

    Article  PubMed  Google Scholar 

  • Osmond, C., Barker, D. J. P., Winter, P. D., Fall, C. H. D., & Simmonds, S. J. (1993). Early growth and death from cardiovascular disease in women. BMJ, 307, 1519–1524.

    Article  PubMed  CAS  Google Scholar 

  • Painter, R. C., Osmond, C., Gluckman, P., Hanson, M., Phillips, D. I. W., & Roseboom, T. J. (2008). Transgenerational effects of prenatal exposure to the Dutch famine on neonatal adiposity and health in later life. BJOG, 115(10), 1243–1249.

    Article  PubMed  CAS  Google Scholar 

  • Painter, R. C., Roseboom, T. J., & Bleker, O. P. (2005). Prenatal exposure to the Dutch famine and disease in later life: An overview. Reproductive Toxicology, 20, 345–352.

    Article  PubMed  CAS  Google Scholar 

  • Park, J. H., Stoffers, D. A., Nicholls, R. D., & Simmons, R. A. (2008). Development of type 2 diabetes following intrauterine growth retardation in rats is associated with progressive epigenetic silencing of Pdx1. Journal of Clinical Investigation, 118(6), 2316–2324.

    PubMed  CAS  Google Scholar 

  • Pembrey, M. E., Bygren, L. O., Kaati, G., Edvinsson, S., Northstone, K., Sjöström, M., et al. (2006). Sex-specific, male-line transgenerational responses in humans. European Journal of Human Genetics, 14(2), 159–166.

    Article  PubMed  Google Scholar 

  • Peng, X. (1987). Demographic consequences of the Great Leap Forward in China’s provinces. Population and Development Review, 13(4), 639–670.

    Article  Google Scholar 

  • Perera, F., Tang, W.-Y., Herbstman, J., Tang, D., Levin, L., Miller, R., et al. (2009). Relation of DNA methylation of 5’-CpG island of ACSL3 to transplacental exposure to airborne polycyclic aromatic hydrocarbons and childhood asthma. PLoS One, 4(2), e4488.

    Article  PubMed  CAS  Google Scholar 

  • Pfeifer, G. P. (2006). Mutagenesis at methylated CpG sequences. Current Topics in Microbiology and Immunology, 301, 259–281.

    Article  PubMed  CAS  Google Scholar 

  • Pilsner, J. R., Hu, H., Ettinger, A., Sanchez, B. N., Wright, R. O., Cantonwine, D., et al. (2009). Influence of prenatal lead exposure on genomic methylation of cord blood DNA. Environmental Health Perspectives, 117(9), 1466–1471.

    PubMed  CAS  Google Scholar 

  • Pinney, S., Jaeckle Santos, L., Han, Y., Stoffers, D., & Simmons, R. (2011). Exendin-4 increases histone acetylase activity and reverses epigenetic modifications that silence Pdx1 in the intrauterine growth retarded rat. Diabetologia, 54(10), 2606–2614.

    Article  PubMed  CAS  Google Scholar 

  • Prentice, A. M., & Prentice, A. (2005). Evolutionary and environmental influences on human lactation. Proceedings of the Nutrition Society, 54, 391–400.

    Article  Google Scholar 

  • Sloboda, D. M., Hart, R., Doherty, D. A., Pennell, C. E., & Hickey, M. (2007). Age at menarche: Influences of prenatal and postnatal growth. Journal of Clinical Endocrinology and Metabolism, 92(1), 46–50.

    Article  PubMed  CAS  Google Scholar 

  • Sloboda, D. M., Howie, G. J., Pleasants, A., Gluckman, P. D., & Vickers, M. H. (2009). Pre- and postnatal nutritional histories influence reproductive maturation and ovarian function in the rat. PLoS One, 4(8), e6744.

    Article  PubMed  CAS  Google Scholar 

  • Steegers-Theunissen, R. P., Obermann-Borst, S. A., Kremer, D., Lindemans, J., Siebel, C., Steegers, E. A., et al. (2009). Periconceptional maternal folic acid use of 400 μg per day is related to increased methylation of the IGF2 gene in the very young child. PLoS One, 4(11), e7845.

    Article  PubMed  CAS  Google Scholar 

  • Strahl, B. D., & Allis, C. D. (2000). The language of covalent histone modifications. Nature, 403(6765), 41–45.

    Article  PubMed  CAS  Google Scholar 

  • Sultan, S. E., Barton, K., & Wilczek, A. M. (2009). Contrasting patterns of transgenerational plasticity in ecologically distinct congeners. Ecology, 90(7), 1831–1839.

    Article  PubMed  Google Scholar 

  • Sultan, S. E., & Spencer, H. G. (2002). Metapopulation structure favors plasticity over local adaptation. The American Naturalist, 160, 271–283.

    Article  PubMed  Google Scholar 

  • Susser, M., & Stein, Z. (1994). Timing in prenatal nutrition: A reprise of the Dutch famine study. Nutrition Reviews, 52(3), 84–94.

    Article  PubMed  CAS  Google Scholar 

  • Tobi, E. W., Lumey, L. H., Talens, R. P., Kremer, D., Putter, H., Stein, A. D., et al. (2009). DNA methylation differences after exposure to prenatal famine are common and timing- and sex-specific. Human Molecular Genetics, 18(21), 4046–4053.

    Article  PubMed  CAS  Google Scholar 

  • van Straten, E. M. E., Bloks, V. W., Huijkman, N. C. A., Baller, J. F. W., van Meer, H., Lutjohann, D., et al. (2009). The Liver X-Receptor (LXR) gene promoter is hypermethylated in a mouse model of prenatal protein restriction. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 298(2), R275–R282.

    Article  PubMed  CAS  Google Scholar 

  • Vickers, M. H., Breier, B. H., Cutfield, W. S., Hofman, P. L., & Gluckman, P. D. (2000). Fetal origins of hyperphagia, obesity and hypertension and its postnatal amplification by hypercaloric nutrition. American Journal of Physiology, 279, E83–E87.

    PubMed  CAS  Google Scholar 

  • Vickers, M. H., Breier, B. H., McCarthy, D., & Gluckman, P. D. (2003). Sedentary behavior during postnatal life is determined by the prenatal environment and exacerbated by postnatal hypercaloric nutrition. American Journal of Physiology, 285(1), R271–R273.

    PubMed  CAS  Google Scholar 

  • Vickers, M. H., Gluckman, P. D., Coveny, A. H., Hofman, P. L., Cutfield, W. S., Gertler, A., et al. (2005). Neonatal leptin treatment reverses developmental programming. Endocrinology, 146, 4211–4216.

    Article  PubMed  CAS  Google Scholar 

  • Waddington, C. H. (1940). Organisers and genes. Cambridge: Cambridge University Press.

    Google Scholar 

  • Weaver, I. C. G., Cervoni, N., Champagne, F. A., D’Alessio, A. C., Sharma, S., Seckl, J. R., et al. (2004). Epigenetic programming by maternal behavior. Nature Neuroscience, 7(8), 847–854.

    Article  PubMed  CAS  Google Scholar 

  • Wells, J. C. K. (2007). Flaws in the theory of predictive adaptive responses. Trends in Endocrinology and Metabolism, 18(9), 331–337.

    Article  PubMed  CAS  Google Scholar 

  • Wells, J. C. K. (2011). The thrifty phenotype: An adaptation in growth or metabolism? American Journal of Human Biology, 23(1), 65–75.

    Article  PubMed  Google Scholar 

  • West-Eberhard, M. J. (2003). Developmental plasticity and evolution. New York: Oxford University Press.

    Google Scholar 

Download references

Acknowledgments

PDG and FML are supported by the National Research Centre for Growth and Development. MAH is supported by the British Heart Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter D. Gluckman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Low, F.M., Gluckman, P.D. & Hanson, M.A. Developmental Plasticity, Epigenetics and Human Health. Evol Biol 39, 650–665 (2012). https://doi.org/10.1007/s11692-011-9157-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11692-011-9157-0

Keywords

Navigation