Skip to main content
Log in

Modularity and Complete Natural Homeoses in Cervical Vertebrae of Extant and Extinct Penguins (Aves: Sphenisciformes)

  • Research Article
  • Published:
Evolutionary Biology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The cervical system of extant penguins (Aves: Sphenisciformes) is organised into morphological modules, each with its biomechanical function. Indeed, for these marine pelagic birds to acquire hydrodynamic morphology, the folding of the neck is essential. Despite a common general structure, the cervical vertebrae exhibit morphological differences depending on their positioning. These characteristics are identified as apparent cases of complete natural homeotic transformations—therefore, the composition of some modules varies. Two types of complete cervical homeoses are identified between species, but the second type can also occur within some species when the post hatching development is considered. The fossil material analysed here makes it apparent that the two modular configurations characterising the anterior part of the neck—a consequence of the first homeosis—existed 36 My and 25 My ago, for one, and circa 10 My ago, for the other. These comparisons also reveal a clear differentiation in vertebral features between the fossil species of the Oligocene–Miocene ages and the more recent and extant penguins. Ultimately, these observations make the proposal of a hypothesis in relation to the ontogenetic influence of Hox genes, and their regulators, based on the changes observed in the cervical segment of Sphenisciformes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Notes

  1. Adult A. patagonicus possess tiny ventral apophyses on their transitional vertebra but these cannot be regarded as the strong processus caroticus characteristic of module 5 in all species. This is why the word “true” is used.

References

  • Abu-Abed, S., Dolle, P., Metzger, D., Beckett, B., Chambon, P., & Petkovich, M. (2000). The retinoic acid-metabolizing enzyme, CYP26A1, is essential for normal hindbrain patterning, vertebral identity, and development of posterior structures. Genes and Development, 15, 226–240.

    Article  Google Scholar 

  • Acosta Hospitaleche, C., Tambussi, C., Donato, M., & Cozzuol, M. (2007). A new Miocene penguin from Patagonia and its phylogenetic relationships. Acta Palaeontologica Polonica, 52(2), 299–314.

    Google Scholar 

  • Alexander, T., Nolte, C., & Krumlauf, R. (2009). Hox Genes and segmentation of the hindbrain and axial skeleton. Annual Review of Cell and Developmental Biology, 25, 431–456.

    Article  CAS  PubMed  Google Scholar 

  • Aubin, J., & Jeanotte, L. (2001). Implication des gènes Hox dans les processus d’organogenèse chez les mammifères. Medicine and Science, 17, 54–62.

    Google Scholar 

  • Baumel, J. J., King, A. S., Breazile, J. E., Evans, H. E., & Vanden Berge, J. C. (1993). Handbook of avian anatomy: Nomina anatomica avium (2nd ed.). Cambridge, MA: Publications of the Nuttall Ornithological Club.

    Google Scholar 

  • Bertelli, S., Giannini, N. P., & Ksepka, D. T. (2006). Redescription and phylogenetic position of the early Miocene penguin Paraptenodytes antarcticus from Patagonia. American Museum Novitates, 3525, 1–36.

    Article  Google Scholar 

  • Burke, A. C., Nelson, C. E., Morgan, B. A., & Tabin, C. (1995). Hox genes and the evolution of vertebrate axial morphology. Development, 121, 333–346.

    CAS  PubMed  Google Scholar 

  • Carapuço, M., Nóvoa, A., Bobola, N., & Mallo, M. (2005). Hox genes specify vertebral types in the presomitic mesoderm. Genes and Development, 19, 2116–2121.

    Article  PubMed  Google Scholar 

  • Clarke, J. A., Ksepka, D. T., Stucchi, M., Urbina, M., Giannini, N., Bertelli, D., et al. (2007). Paleogene equatorial penguins challenge the proposed relationship between biogeography, diversity, and Cenozoic climate change. Proceedings of the National Academy of Science, 104(28), 11545–11550.

    Article  CAS  Google Scholar 

  • Colon, R. A. (1995). Retinoic acid and pattern formation in vertebrates. Trends in Genetics, 11(8), 314–319.

    Article  Google Scholar 

  • Cordes, R., Schuster-Gossler, K., Serth, K., & Gossler, A. (2004). Specification of vertebral identity is coupled to Notch signaling and the segmentation clock. Development, 131, 1221–1233.

    Article  CAS  PubMed  Google Scholar 

  • Deschamps, J., Van Den Akker, E., Forlani, S., De Graaff, W., Oosterveen, T., Roelen, B., et al. (1999). Initiation, establishment and maintenance of Hox gene expression patterns in the mouse. International Journal of Developmental Biology, 43, 635–650.

    CAS  PubMed  Google Scholar 

  • Deschamps, J., & Van Nes, J. (2005). Developmental regulation of the Hox genes during axial morphogenesis in the mouse. Development, 132(13), 2931–2942.

    Article  CAS  PubMed  Google Scholar 

  • Gaunt, S. J. (1994). Conservation in the Hox code during morphological evolution. International Journal of Developmental Biology, 38(3), 549–552.

    CAS  PubMed  Google Scholar 

  • Gaunt, S. J. (2000). Evolutionary shifts of vertebrate structures and Hox expression up and down the axial series of segments: a consideration of possible mechanisms. International Journal of Developmental Biology, 44, 109–117.

    CAS  PubMed  Google Scholar 

  • Guinard, G., Marchand, D., Courant, F., Gauthier-Clerc, M., & Le Bohec, C. (2010). Morphology, ontogenesis and mechanics of cervical vertebrae in four species of Penguins (Aves: Spheniscidae). Polar Biology, 33, 807–822.

    Article  Google Scholar 

  • Horan, G. S., Ramirez-Solis, R., Featherstone, M. S., Wolgemuth, D. J., Bradley, A., & Behringer, R. R. (1995). Compound mutants for the paralogous Hoxa-4, Hoxb-4, and Hoxd-4 genes show more complete homeotic transformations and a dose-dependent increase in the number of vertebrae transformed. Genes and Development, 9, 1667–1677.

    Article  CAS  PubMed  Google Scholar 

  • Horan, G. S. B., Wu, K., Woldgemuth, D. J., & Behringer, R. R. (1994). Homeotic transformation of cervical vertebrae in Hoxa-4 mutant mice. Proceedings of the National Academy of Science USA, 91, 12644–12648.

    Article  CAS  Google Scholar 

  • Huang, R., Zhi, Q., Patel, K., Wilting, J., & Christ, B. (2000). Contribution of single somites to the skeleton and muscles of the occipital and cervical regions in avian embryos. Anatomy and Embryology, 202(5), 375–383.

    Article  CAS  PubMed  Google Scholar 

  • Ikeya, M., & Takada, S. (2001). Wnt-3a is required for somite specification along the anteropsoterior axis of the mouse embryo and for regulation of Cdx-1 expression. Mechanical Development, 103, 27–33.

    Article  CAS  Google Scholar 

  • Jadwisczak, P. (2006). Eocene penguins of Seymour Islands, Antarctica: Taxonomy. Polish Polar Research, 21(1), 3–62.

    Google Scholar 

  • Kant, R., & Goldstein, R. S. (1999). Plasticity of axial identity among somites: Cranial somites can generate vertebrae without expressing Hox Genes appropriate to the trunk. Developmental Biology, 216, 507–520.

    Article  CAS  PubMed  Google Scholar 

  • Kessel, M., Bailling, R., & Gruss, P. (1990). Variations of cervical vertebrae after expression of a Hox-1.1 transgene in mice. Cell, 61(2), 301–308.

    Article  CAS  PubMed  Google Scholar 

  • Kessel, M., & Gruss, P. (1991). Homeotic transformations of murine vertebrae and concomitant alteration of Hox codes induced by retinoic acid. Cell, 67, 89–104.

    Article  CAS  PubMed  Google Scholar 

  • Ksepka, D. T., Clarke, J. A., DeVries, T. J., & Urbina, M. (2008). Osteology of Icadyptes salasi a giant penguin from the Eocene of peru. Journal of Anatomy, 213, 131–147.

    Article  PubMed  Google Scholar 

  • Marshall, H., Morrison, M. H., Studer, M., Pöpperl, H., & Krumlauf, R. (1996). Retinoids and Hox genes. The Federation of American Societies for Experimental Biology Journal, 10, 969–978.

    CAS  Google Scholar 

  • Morgan, B. A. (1997). Hox genes and embryonic development. Poultry Science, 76, 96–104.

    CAS  PubMed  Google Scholar 

  • Nowicki, J. L., & Burke, A. C. (2000). Hox genes and morphological identity: Axial versus lateral patterning in the vertebrate mesoderm. Development, 127, 4265–4275.

    CAS  PubMed  Google Scholar 

  • Oostra, R. J., Hennekam, R. C. M., De Rooij, L., & Moorman, A. F. M. (2005). Malformations of the axial skeleton in museum Vrolik I: homeotic transformations and numerical anomalies. American Journal of Medical Genetics, 134A, 268–281.

    Article  Google Scholar 

  • Simpson, G. G. (1946). Fossil penguins. Bulletin of the American Museum of Natural History, 87.

  • Slack, K. E., Jones, C. M., Ando, T., Harrison, G. L. (Abby), Fordyce, R. E., Arnason, U., & Penny, D. (2006). Early penguin fossils, plus mitochondrial genomes, calibrate avian evolution. Molecular Biology and Evolution, 23(6), 1144–1155.

  • Suemori, H., & Noguchi, S. (2000). Hox C cluster genes are dispensable for overall body plan of mouse embryonic development. Developmental Biology, 220, 333–342.

    Article  CAS  PubMed  Google Scholar 

  • Wellik, D. M. (2007). Hox patterning of the vertebrate axial skeleton. Developmental Dynamics, 236, 2454–2463.

    Article  CAS  PubMed  Google Scholar 

  • Young, T., Rowland, J. E., Van de Ven, C., Bialecka, M., Novoa, A., Carapuco, M., et al. (2009). Cdx and Hox genes differentially regulate posterior axial growth in mammalian embryos. Developmental Cell, 17, 516–526.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Carolina Acosta Hospitaleche and Claudia Tambussi (Museo de La Plata), as well as Eduardo Ruigómez (Museo Egidio Feruglio Paleontólogico), for providing photographs of the cervical vertebrae of Madrynornis mirandus, thus allowing the study of this fossil species. Daniel Ksepka (North Carolina State University) for the transmission of additional photographs of the cervical V of Icadyptes salasi, in order to confirm the first impressions on this important vertebra. Rémi Laffont (Université de Bourgogne) for his help in providing some references, René Guinard for checking the manuscript and the department of comparative anatomy of the Muséum National d’Histoire Naturelle de Paris for access to the osteological collections. Benedikt Hallgrimsson—the editor in chief—and two anonymous reviewers, whose very pertinent comments have helped to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geoffrey Guinard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guinard, G., Marchand, D. Modularity and Complete Natural Homeoses in Cervical Vertebrae of Extant and Extinct Penguins (Aves: Sphenisciformes). Evol Biol 37, 210–226 (2010). https://doi.org/10.1007/s11692-010-9097-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11692-010-9097-0

Keywords