Skip to main content
Log in

Focal Review: The Origin(s) of Modern Amphibians

  • Focal Reviews
  • Published:
Evolutionary Biology Aims and scope Submit manuscript

Abstract

The recent description of the stem batrachian Gerobatrachus has changed the terms of the ongoing debate on the origin of extant amphibians (Lissamphibia: frogs, salamanders, and the limbless caecilians). This important fossil, through a shared mosaic of unique derived salientian and urodele characters, links frogs and salamanders with an archaic group of fossil amphibians known as amphibamid temnospondyls. The present paper reviews the impact of this fossil on morphological and molecular phylogenies, and divergence timing estimates based on molecular models and the fossil record. In morphology, most recent efforts have focused on better characterizing the anatomy and relationships of amphibamid temnospondyls. Progress has also been made with the complete description of the earliest caecilian Eocaecilia; however, the question of caecilian origins remains unresolved at present. The large scale phylogenetic analyses all agree on the overall tetrapod tree phylogenetic structure, and the largest analyses agree that the origin of at least frogs and salamanders among fossils from family Amphibamidae. Conversely, all molecular based analyses find a monophyletic Lissamphibia, and a Batrachia terminal dichotomy, which raises questions over either the validity of morphological analyses that support lissamphibian polyphyly or about the possibility of long branch attraction given the short internal divergences and long subsequent branches. Paradoxically, the estimated date of the lissamphibian divergence best matches the fossil record if timed to the split between lepospondyls and temnospondyls. Future research should focus on development and fine details of cranial anatomy of fossil and extant amphibians to produce new evidence and clarity into the question of lissamphibian, and especially caecilian, origins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anderson, J. S. (2001). The phylogenetic trunk: Maximal inclusion of taxa with missing data in an analysis of the Lepospondyli. Systematic Biology, 50(2), 170–193. doi:10.1080/10635150119889.

    Article  PubMed  CAS  Google Scholar 

  • Anderson, J. S. (2002a). Revision of the aïstopod genus Phlegethontia (Tetrapoda: Lepospondyli). Journal of Paleontology, 76, 1029–1046. doi:10.1666/0022-3360(2002)076<1029:ROTAGP>2.0.CO;2.

    Article  Google Scholar 

  • Anderson, J. S. (2002b). Use of well-known names in phylogenetic nomenclature: A reply to Laurin. Systematic Biology, 51(5), 822–827. doi:10.1080/10635150290102447.

    Article  PubMed  Google Scholar 

  • Anderson, J. S. (2007). Incorporating ontogeny into the matrix: A phylogenetic evaluation of developmental evidence for the origins of modern amphibians. In J. S. Anderson & H.-D. Sues (Eds.), Major transitions in vertebrate evolution (pp. 182–227). Bloomington: Indiana University Press.

    Google Scholar 

  • Anderson, J. S., Carroll, R. L., & Rowe, T. B. (2003). New information on Lethiscus stocki (Tetrapoda: Lepospondyli: Aistopoda) from high-resolution computed tomography and a phylogenetic analysis of Aistopoda. Canadian Journal of Earth Sciences, 40, 1071–1083. doi:10.1139/e03-023.

    Article  Google Scholar 

  • Anderson, J. S., Henrici, A. C., Sumida, S. S., Martens, T., & Berman, D. S. (2008a). Georgenthalia clavinasica, a new genus and species of dissorophoid temnospondyl from the Early Permian of Germany, and the relationships of the Family Amphibamidae. Journal of Vertebrate Paleontology, 28(1), 61–75. doi:10.1671/0272-4634(2008)28[61:GCANGA]2.0.CO;2.

    Article  Google Scholar 

  • Anderson, J. S., & Reisz, R. R. (2003). A new microsaur (Tetrapoda: Lepospondyli) from the Lower Permian of Richards Spur (Fort Sill) Oklahoma. Canadian Journal of Earth Sciences, 40, 499–505. doi:10.1139/e02-066.

    Article  Google Scholar 

  • Anderson, J. S., Reisz, R. R., Scott, D., Fröbisch, N. B., & Sumida, S. S. (2008b). A stem batrachian from the Early Permian of Texas and the origin of frogs and salamanders. Nature, 453, 515–518. doi:10.1038/nature06865.

    Article  PubMed  CAS  Google Scholar 

  • Benton, M. J. (1994). Palaeontological data and identifying mass extinctions. Trends in Ecology & Evolution, 9(5), 181. doi:10.1016/0169-5347(94)90083-3.

    Article  Google Scholar 

  • Benton, M. J. (2003). The quality of the fossil record. In P. C. J. Donoghue & M. P. Smith (Eds.), Telling the evolutionary time: Molecular clocks and the fossil record (pp. 66–90). London: Taylor and Francis.

    Google Scholar 

  • Benton, M. J., & Ayala, F. J. (2003). Dating the tree of life. Science, 300, 1698–1700. doi:10.1126/science.1077795.

    Article  PubMed  CAS  Google Scholar 

  • Benton, M. J., & Donoghue, P. C. J. (2007). Paleontological evidence to date the tree of life. Molecular Biology and Evolution, 24(1), 26–53. doi:10.1093/molbev/msl150.

    Article  PubMed  CAS  Google Scholar 

  • Bergsten, J. (2005). A review of long-branch attraction. Cladistics, 21(2), 163–193. doi:10.1111/j.1096-0031.2005.00059.x.

    Article  Google Scholar 

  • Bolt, J. R. (1969). Lissamphibian origins: Possible protolissamphibian from the Lower Permian of Oklahoma. Science, 166, 888–891. doi:10.1126/science.166.3907.888.

    Article  PubMed  Google Scholar 

  • Bolt, J. R. (1977). Dissorophoid relationships and ontogeny, and the origin of the Lissamphibia. Journal of Paleontology, 51(2), 235–249.

    Google Scholar 

  • Bolt, J. R. (1979). Amphibamus grandiceps as a juvenile dissorophid: Evidence and implications. In M. H. Nitecki (Ed.), Mazon creek fossils (pp. 529–563). New York: Academic Press.

    Google Scholar 

  • Bolt, J. R. (1980). New tetrapods with bicuspid teeth from the Fort Sill locality (Lower Permian, Oklahoma). Neues Jahrbuch für Geologie und Paläontologie. Monatshefte, 8, 449–459.

    Google Scholar 

  • Bolt, J. R. (1991). Lissamphibian origins. In H.-P. Schultze & L. Trueb (Eds.), Origins of the higher groups of tetrapods: Controversy and consensus (pp. 194–222). Ithaca and London: Comstock Publishing Associates.

    Google Scholar 

  • Boy, J. A., & Sues, H.-D. (2000). Branchiosaurs: Larvae, metamorphosis and heterochrony in temnospondyls and seymouriamorphs. In H. Heatwole & R. L. Carroll (Eds.), Amphibian biology. Volume 4: Paleontology: The evolutionary history of amphibians (pp. 1150–1197). Chipping Norton: Surrey Beatty & Sons.

    Google Scholar 

  • Carroll, R. L. (2000). Eocaecilia and the origin of caecilians. In H. Heatwole & R. L. Carroll (Eds.), Amphibian biology. Vol. 4: Palaeontology: The evolutionary history of amphibians (pp. 1402–1411). Chipping Norton: Surrey Beatty and Sons.

    Google Scholar 

  • Carroll, R. L. (2004). The importance of branchiosaurs in determining the ancestry of the modern amphibian orders. Neues Jahrbuch für Geologie und Palaontologie. Abhandlungen, 232, 157–180.

    Google Scholar 

  • Carroll, R. L. (2007). The Palaeozoic ancestry of salamanders, frogs and caecilians. Zoological Journal of the Linnean Society, 150(s1), 1–140. doi:10.1111/j.1096-3642.2007.00246.x.

    Article  Google Scholar 

  • Carroll, R. L., & Currie, P. J. (1975). Microsaurs as possible apodan ancestors. Zoological Journal of the Linnean Society, 57(3), 229–247. doi:10.1111/j.1096-3642.1975.tb00817.x.

    Article  Google Scholar 

  • Carroll, R. L., & Gaskill, P. (1978). The order Microsauria. Memoirs of the American Philosophical Society, 126, 1–211.

    Google Scholar 

  • Carroll, R. L., & Holmes, R. (1980). The skull and jaw musculature as guides to the ancestry of salamanders. Zoological Journal of the Linnean Society, 68(1), 1–40. doi:10.1111/j.1096-3642.1980.tb01916.x.

    Article  Google Scholar 

  • Clack, J. A., & Milner, A. R. (1993). Platyrhinops from the upper carboniferous of Linton and Nýřany, and the family Peliontidae (Amphibia; Temnospondyli). In D. Schweiss & U. Heidtke (Eds), New results on permo-carboniferous fauna (pp. 185–192). Bad Dürkheim.

  • Coates, M. I., & Ruta, M. (2000). Early tetrapod evolution. Trends in Ecology & Evolution, 15(8), 327–328. doi:10.1016/S0169-5347(00)01927-3.

    Article  Google Scholar 

  • Davit-Beal, T., Chisaka, H., Delgado, S., & Sire, J.-Y. (2007). Amphibian teeth: Current knowledge, unanswered questions, and some directions for future research. Biological Reviews of the Cambridge Philosophical Society, 82(1), 49–81. doi:10.1111/j.1469-185X.2006.00003.x.

    Article  PubMed  Google Scholar 

  • de Queiroz, K. (1992). Phylogenetic definitions and taxonomic philosophy. Biology and Philosophy, 7, 295–313. doi:10.1007/BF00129972.

    Article  Google Scholar 

  • de Queiroz, K., & Gauthier, J. (1990). Phylogeny as a central principle in taxonomy: Phylogenetic definitions of taxon names. Systematic Zoology, 39(4), 307–322. doi:10.2307/2992353.

    Article  Google Scholar 

  • de Queiroz, K., & Gauthier, J. (1992). Phylogenetic taxonomy. Annual Review of Ecology and Systematics, 23, 449–480.

    Article  Google Scholar 

  • Duellman, W. E., & Trueb, L. (1994). Biology of amphibians (2nd ed., pp. 1–670). Baltimore: The Johns Hopkins University Press.

    Google Scholar 

  • Felsenstein, J. (1978). Cases in which parsimony or compatability methods will be positively misleading. Systematic Zoology, 27(4), 401–410. doi:10.2307/2412923.

    Article  Google Scholar 

  • Fröbisch, N. B., Carroll, R. L., & Schoch, R. R. (2007). Limb ossification in the Paleozoic branchiosaurid Apateon (Temnospondyli) and the early evolution of preaxial dominance in tetrapod limb development. Evolution & Development, 9, 69–75.

    Google Scholar 

  • Fröbisch, N. B., & Reisz, R. R. (2008). A new Lower Permian amphibamid (Dissorophoidea, Temnospondyli) from the fissure fill deposits near Richards Spur, Oklahoma. Journal of Vertebrate Paleontology, 28 (in press). doi:10.1671/0272-4634(2008)28[770:ANSOES]2.0.CO;2.

  • Frost, D. R., Grant, T., Faivovich, J., Bain, R. H., Haas, A., Haddad, C. F. B., et al. (2006). The amphibian tree of life. Bulletin of the American Museum of Natural History, 297, 1–370. doi:10.1206/0003-0090(2006)297[0001:TATOL]2.0.CO;2.

    Article  Google Scholar 

  • Haas, A., & Kleinteich, T. (2007). Homologies of larval amphibians and the evolution of the anuran tadpole. Journal of Morphology, 268(12), 1079.

    Google Scholar 

  • Havelková, P., & Roček, Z. (2006). Transformation of the pectoral girdle in the evolutionary origin of frogs: insights from the primitive anuran Discoglossus. Journal of Anatomy, 209(1), 1–11. doi:10.1111/j.1469-7580.2006.00583.x.

    Article  PubMed  Google Scholar 

  • Huelsenbeck, J. P. (1994). Comparing the stratigraphic record to estimates of phylogeny. Paleobiology, 20(4), 470.

    Google Scholar 

  • Huelsenbeck, J. P., & Hillis, D. M. (1993). Success of phylogenetic methods in the four-taxon case. Systematic Biology, 42(3), 247–264. doi:10.2307/2992463.

    Article  Google Scholar 

  • Hugall, A. F., Foster, R., & Lee, M. S. Y. (2007). Calibration choice, rate smoothing, and the pattern of tetrapod diversification according to the long nuclear gene RAG-1. Systematic Biology, 56(4), 543–563. doi:10.1080/10635150701477825.

    Article  PubMed  CAS  Google Scholar 

  • Huttenlocker, A. K., Pardo, J. D., & Small, B. J. (2007). Plemmyradytes shintoni, gen. et sp. nov., an Early Permian amphibamid (Temnospondyli: Dissorophoidea) from the Eskridge formation, Nebraska. Journal of Vertebrate Paleontology, 27(2), 316–328. doi:10.1671/0272-4634(2007)27[316:PSGESN]2.0.CO;2.

    Article  Google Scholar 

  • Igawa, T., Kurabayashi, A., Usuki, C., Fujii, T., & Sumida, M. (2008). Complete mitochondrial genomes of three neobatrachian anurans: A case study of divergence time estimation using different data and calibration settings. Gene, 407(1–2), 116–129. doi:10.1016/j.gene.2007.10.001.

    Article  PubMed  CAS  Google Scholar 

  • Jenkins, F. A., Walsh, D. M., & Carroll, R. L. (2007). Anatomy of Eocaecilia micropodia, a limbed caecilian of the Early Jurassic. Bulletin of the Museum of Comparative Zoology, 158(6), 285–365. doi:10.3099/0027-4100(2007)158[285:AOEMAL]2.0.CO;2.

    Article  Google Scholar 

  • Kim, J. (1996). General inconsistency conditions for maximum parsimony: Effects of branch lengths and increasing numbers of taxa. Systematic Biology, 45(3), 363–374. doi:10.2307/2413570.

    Article  Google Scholar 

  • Laurin, M. (1998). The importance of global parsimony and historical bias in understanding tetrapod evolution. Part I. Systematics, middle ear evolution and jaw suspension. Annales des Science Naturelles, Paris, 1, 1–42.

    Google Scholar 

  • Laurin, M. (2002). Tetrapod phylogeny, amphibian origins, and the definition of the name Tetrapoda. Systematic Biology, 51, 364–369. doi:10.1080/10635150252899815.

    Article  PubMed  Google Scholar 

  • Laurin, M., & Anderson, J. S. (2004). Meaning of the name Tetrapoda in the scientific literature: An exchange. Systematic Biology, 53(1), 68–80. doi:10.1080/10635150490264716.

    Article  PubMed  Google Scholar 

  • Laurin, M., Girondot, M., & de Ricqlès, A. (2000a). Early tetrapod evolution. Trends in Ecology & Evolution, 15(3), 118–123. doi:10.1016/S0169-5347(99)01780-2.

    Article  Google Scholar 

  • Laurin, M., Girondot, M., & de Ricqlès, A. (2000b). Reply. Trends in Ecology & Evolution, 15(8), 328. doi:10.1016/S0169-5347(00)01928-5.

    Article  Google Scholar 

  • Laurin, M., & Reisz, R. R. (1997). A new perspective on tetrapod phylogeny. In S. S. Sumida & K. L. M. Martin (Eds.), Amniote origins (pp. 9–59). San Diego: Academic Press.

    Chapter  Google Scholar 

  • Laurin, M., & Reisz, R. R. (1999). A new study of Solenodonsaurus janenschi, and a reconsideration of amniote origins and stegocephalian evolution. Canadian Journal of Earth Sciences, 36(8), 1239–1255. doi:10.1139/cjes-36-8-1239.

    Article  Google Scholar 

  • Lebedkina, N. S. (2004). Evolution of the amphibian skull. In S. V. Smirnov (translator) & S. L. Kuzmin (Ed.). Sofia, Bulgaria: Pensoft Publishers, 265 pp.

  • Lee, M. S. Y., & Anderson, J. S. (2006). Molecular clocks and the origin(s) of modern amphibians. Molecular Phylogenetics and Evolution, 40, 635–639. doi:10.1016/j.ympev.2006.03.013.

    Article  PubMed  CAS  Google Scholar 

  • Maddin, H. C., & Anderson, J. S. (2008). Neurocranial anatomy of a microsaurian lepospondyl, Carrolla craddocki, extracted via high-resolution computed tomography. Journal of Vertebrate Paleontology, 28(Supplement to 3), 110A.

    Google Scholar 

  • Maddin, H. C., Anderson, J. S., & Reisz, R. R. (2007). Braincase ontogeny of a new large trematopid (Temnospondyli: Dissorophoidea) from Richards Spur, Oklahoma. Journal of Vertebrate Paleontology, 27(Supplement to 3), 110A.

    Google Scholar 

  • Marcus, H., Stimmelmayr, E., & Porsch, G. (1935). Die Ossifikation des Hypogeophisschädels. Beitrag zur Kenntnis der Gymnophionen XXV. Gegenbaurs Morphologisches Jahrbuch, 76, 375–420.

    Google Scholar 

  • Marjanović, D., & Laurin, M. (2007). Fossils, molecules, divergence times, and the origin of lissamphibians. Systematic Biology, 56(3), 369–388. doi:10.1080/10635150701397635.

    Article  PubMed  Google Scholar 

  • Müller, H. (2006). Ontogeny of the skull, lower jaw, and hyobranchial skeleton of Hypogeophis rostratus (Amphibia: Gymnophiona: Caeciliidae) revisited. Journal of Morphology, 267(8), 968–986. doi:10.1002/jmor.10454.

    Article  PubMed  Google Scholar 

  • Müller, H., Oommen, O., & Bartsch, P. (2005). Skeletal development of the direct-developing caecilian Gegeneophis ramaswamii (Amphibia: Gymnophiona: Caeciliidae). Zoomorphology, 124(4), 171–188. doi:10.1007/s00435-005-0005-6.

    Article  Google Scholar 

  • Nussbaum, R. A. (1983). The evolution of a unique dual jaw closing mechanism in caecilians (Amphibia: Gymnophiona). Journal of Zoology, 199, 545–554.

    Article  Google Scholar 

  • Panchen, A. L., & Smithson, T. R. (1988). The relationships of the earliest tetrapods. In M. J. Benton (Ed.), The phylogeny and classification of the tetrapods Vol. 1: Amphibians, reptiles, birds (pp. 1–32). Oxford: Clarendon Press.

    Google Scholar 

  • Parsons, T., & Williams, E. (1963). The relationship of modern Amphibia: A re-examination. The Quarterly Review of Biology, 38, 26–53. doi:10.1086/403748.

    Article  Google Scholar 

  • Poe, S., & Swofford, D. L. (1999). Taxon sampling revisited. Nature, 398, 299–300. doi:10.1038/18592.

    Article  PubMed  CAS  Google Scholar 

  • Robinson, J., Ahlberg, P. E., & Koentges, G. (2005). The braincase and middle ear region of Dendrerpeton acadianum (Tetrapoda: Temnospondyli). Zoological Journal of the Linnean Society, 143, 577–597. doi:10.1111/j.1096-3642.2005.00156.x.

    Article  Google Scholar 

  • Roček, Z., & Van Dijk, E. (2006). Patterns of larval development in Cretaceous pipid frogs. Acta Palaeontologica Polonica, 51(1), 111–126.

    Google Scholar 

  • Rocková, H., & Roček, Z. (2005). Development of the pelvis and posterior part of the vertebral column in the Anura. Journal of Anatomy, 206, 17–35. doi:10.1111/j.0021-8782.2005.00366.x.

    Article  PubMed  Google Scholar 

  • Roelants, K., Gower, D. J., Wilkinson, M., Loader, S. P., Biju, S. D., Guillaume, K., et al. (2007). Global patterns of diversification in the history of modern amphibians. Proceedings of the National Academy of Sciences of the United States of America, 104(3), 887–892. doi:10.1073/pnas.0608378104.

    Article  PubMed  CAS  Google Scholar 

  • Romer, A. S. (1945). Vertebrate paleontology (p. 687). Chicago: University of Chicago Press.

    Google Scholar 

  • Ruta, M., & Coates, M. I. (2007). Dates, nodes and character conflict: Addressing the lissamphibian origin problem. Journal of Systematic Palaeontology, 5, 69–122. doi:10.1017/S1477201906002008.

    Article  Google Scholar 

  • Ruta, M., Coates, M. I., & Quicke, D. L. (2003). Early tetrapod relationships revisited. Biological Reviews of the Cambridge Philosophical Society, 78, 251–345. doi:10.1017/S1464793102006103.

    Article  PubMed  Google Scholar 

  • San Mauro, D., Gower, D. J., Oommen, O. V., Wilkinson, M., & Zardoya, R. (2004). Phylogeny of caecilian amphibians (Gymnophiona) based on complete mitochondrial genomes and nuclear RAG1. Molecular Phylogenetics and Evolution, 33, 413–427. doi:10.1016/j.ympev.2004.05.014.

    Article  PubMed  CAS  Google Scholar 

  • San Mauro, D., Vences, M., Alcobendas, M., Zardoya, R., & Meyer, A. (2005). Initial diversification of living amphibians predated the breakup of Pangaea. American Naturalist, 165(5), 590–599. doi:10.1086/429523.

    Article  PubMed  Google Scholar 

  • Schoch, R. R. (1992). Comparative ontogeny of Early Permian branchiosaurid amphibians. Developmental stages. Palaeontographica. Abteilung A, 222, 43–83.

    Google Scholar 

  • Schoch, R. R. (2002). The early formation of the skull in extant and Paleozoic amphibians. Paleobiology, 28(2), 278–296. doi:10.1666/0094-8373(2002)028<0278:TEFOTS>2.0.CO;2.

    Article  Google Scholar 

  • Schoch, R. R. (2003). Early larval ontogeny of the Permo-Carboniferous temnospondyl Sclerocephalus. Palaeontology, 46(5), 1055–1072. doi:10.1111/1475-4983.00333.

    Article  Google Scholar 

  • Schoch, R. R. (2004). Skeleton formation in the Branchiosauridae: A case study in comparing ontogenetic trajectories. Journal of Vertebrate Paleontology, 24(2), 309–319. doi:10.1671/1950.

    Article  Google Scholar 

  • Schoch, R. R. (2006). Skull ontogeny: Developmental patterns of fishes conserved across major tetrapod clades. Evolution & Development, 8(6), 524–536. doi:10.1111/j.1525-142X.2006.00125.x.

    Article  Google Scholar 

  • Schoch, R. R., & Carroll, R. L. (2003). Ontogenetic evidence for the Paleozoic ancestry of salamanders. Evolution & Development, 5(3), 314–324. doi:10.1046/j.1525-142X.2003.03038.x.

    Article  Google Scholar 

  • Schoch, R. R., & Fröbisch, N. B. (2006). Metamorphosis and neoteny: Alternative pathways in an extinct amphibian clade. Evolution; International Journal of Organic Evolution, 60(7), 1467–1475.

    PubMed  Google Scholar 

  • Schoch, R. R., & Milner, A. R. (2004). Structure and implications of theories on the origin of lissamphibians. In G. Arratia, M. V. H. Wilson, & R. Cloutier (Eds.), Recent advances in the origin and early radiation of vertebrates (pp. 345–377). München: Verlag Dr. Fredrich Pfeil.

    Google Scholar 

  • Schoch, R. R., & Rubidge, B. S. (2005). The amphibamid Micropholis from the Lystrosaurus Assemblage Zone of South Africa. Journal of Vertebrate Paleontology, 25(3), 502–522. doi:10.1671/0272-4634(2005)025[0502:TAMFTL]2.0.CO;2.

    Article  Google Scholar 

  • Shearman, R. (2008). Chondrogenesis and ossification of the lissamphibian pectoral girdle. Journal of Morphology, 269(4), 479–495. doi:10.1002/jmor.10597.

    Article  PubMed  Google Scholar 

  • Shubin, N. H., & Wake, D. B. (2003). Morphological variation, development, and evolution of the limb skeleton of Salamanders. In H. Heatwole & M. Davies (Eds.), Amphibian biology, Volume 5: Osteology (pp. 1782–1808). Chipping Norton, NSW, Australia: Surrey Beatty & Sons.

    Google Scholar 

  • Sigurdsen, T. (2008). The otic region of Doleserpeton (Temnospondyli) and its implications for the evolutionary origin of frogs. Zoological Journal of the Linnean Society, 154, 738–751.

    Article  Google Scholar 

  • Trueb, L., & Cloutier, R. (1991). A phylogenetic investigation of the inter- and intrarelationships of the Lissamphibia (Amphibia: Temnospondyli). In H.-P. Schultze & L. Trueb (Eds.), Origins of the higher groups of tetrapods: Controversy and consensus (pp. 174–193). Ithaca and London: Comstock Publishing Associates.

    Google Scholar 

  • Vallin, G., & Laurin, M. (2004). Cranial morphology and affinities of Microbrachis, and a reappraisal of the phylogeny and lifestyle of the first amphibians. Journal of Vertebrate Paleontology, 24(1), 56–72. doi:10.1671/5.1.

    Article  Google Scholar 

  • Vieites, D. R., Min, M.-S., & Wake, D. B. (2007). Rapid diversification and dispersal during periods of global warming by plethodontid salamanders. Proceedings of the National Academy of Sciences of the United States of America, 104(50), 19903–19907. doi:10.1073/pnas.0705056104.

    Article  PubMed  CAS  Google Scholar 

  • Wake, M. H. (2003). The osteology of caecilians. In H. Heatwole & M. Davies (Eds.), Amphibian biology Volume 5: Osteology (pp. 1809–1876). Chipping Norton, NSW: Surrey Beatty & Sons.

    Google Scholar 

  • Wake, M. H., & Hanken, J. (1982). Development of the skull of Dermophis mexicanus (Amphibia: Gymnophiona), with comments on skull kinesis and amphibian relationships. Journal of Morphology, 173(2), 203–223. doi:10.1002/jmor.1051730208.

    Article  Google Scholar 

  • Wellstead, C. F. (1991). Taxonomic revision of the Lysorophia, Permo-Carboniferous lepospondyl amphibians. Bulletin of the American Museum of Natural History, 209, 1–90.

    Google Scholar 

  • Wellstead, C. F. (1998). Order Lysorophia. In P. Wellnhofer (Ed.), Lepospondyli (pp. 133–148). München: Verlag Dr. Friedrich Pfeil.

    Google Scholar 

  • Wills, M. A. (1999). Congruence between phylogeny and stratigraphy: Randomization tests and the gap excess ratio. Systematic Biology, 48(3), 559–580. doi:10.1080/106351599260148.

    Article  Google Scholar 

  • Zardoya, R., Malaga-Trillo, E., Veith, M., & Meyer, A. (2003). Complete nucleotide sequence of the mitochondrial genome of a salamander, Mertensiella luschani. Gene, 317, 17–27. doi:10.1016/S0378-1119(03)00655-3.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, P., Chen, Y. Q., Zhou, H., Wang, X. L., & Qu, L. H. (2003). The complete mitochondrial genome of a relic salamander, Ranodon sibiricus (Amphibia: Caudata) and implications for amphibian phylogeny. Molecular Phylogenetics and Evolution, 28(3), 620–626. doi:10.1016/S1055-7903(03)00059-9.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, P., Zhou, H., Chen, Y.-Q., Liu, Y.-F., & Qu, L.-H. (2005). Mitogenomic perspectives on the origin and phylogeny of living amphibians. Systematic Biology, 54(3), 391–400. doi:10.1080/10635150590945278.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

I thank Benedikt Hallgrimsson for inviting this review, and for his patience during its completion. Reviews by Marcello Ruta and David Wake helped improve the manuscript. I thank Trond Sigurdsen and Nadia Fröbisch for sending me advanced copies of their respective works currently in press. My thoughts on this subject have been challenged and improved through discussions with: David Berman, John Bolt, Robert Carroll, Jenny Clack, Nadia Fröbisch, Susan Evans, Michel Laurin, Mike Lee, David Marjanović, Andrew Milner, Robert Reisz, and Marcello Ruta. This study was supported by a Discovery Grant from the Natural Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason S. Anderson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anderson, J.S. Focal Review: The Origin(s) of Modern Amphibians. Evol Biol 35, 231–247 (2008). https://doi.org/10.1007/s11692-008-9044-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11692-008-9044-5

Keywords

Navigation