Skip to main content

Advertisement

Log in

Unlocking the potential of bispecific ADCs for targeted cancer therapy

  • Review
  • Published:
Frontiers of Medicine Aims and scope Submit manuscript

Abstract

Antibody–drug conjugates (ADCs) are biologically targeted drugs composed of antibodies and cytotoxic drugs connected by linkers. These innovative compounds enable precise drug delivery to tumor cells, minimizing harm to normal tissues and offering excellent prospects for cancer treatment. However, monoclonal antibody-based ADCs still present challenges, especially in terms of balancing efficacy and safety. Bispecific antibodies are alternatives to monoclonal antibodies and exhibit superior internalization and selectivity, producing ADCs with increased safety and therapeutic efficacy. In this review, we present available evidence and future prospects regarding the use of bispecific ADCs for cancer treatment, including a comprehensive overview of bispecific ADCs that are currently in clinical trials. We offer insights into the future development of bispecific ADCs to provide novel strategies for cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Strebhardt K, Ullrich A. Paul Ehrlich’s magic bullet concept: 100 years of progress. Nat Rev Cancer 2008; 8(6): 473–480

    Article  CAS  PubMed  Google Scholar 

  2. Schwartz RS. Paul Ehrlich’s magic bullets. N Engl J Med 2004; 350(11): 1079–1080

    Article  CAS  PubMed  Google Scholar 

  3. Chu Y, Zhou X, Wang X. Antibody-drug conjugates for the treatment of lymphoma: clinical advances and latest progress. J Hematol Oncol 2021; 14(1): 88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rosner S, Valdivia A, Hoe HJ, Murray JC, Levy B, Felip E, Solomon BJ. Antibody-drug conjugates for lung cancer: payloads and progress. Am Soc Clin Oncol Educ Book 2023; 43: e389968

    Article  PubMed  Google Scholar 

  5. Liu H, Bolleddula J, Nichols A, Tang L, Zhao Z, Prakash C. Metabolism of bioconjugate therapeutics: why, when, and how? Drug Metab Rev 2020; 52(1): 66–124.

    Article  CAS  PubMed  Google Scholar 

  6. Su Z, Xiao D, Xie F, Liu L, Wang Y, Fan S, Zhou X, Li S. Antibody-drug conjugates: recent advances in linker chemistry. Acta Pharm Sin B 2021; 11(12): 3889–3907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fu Z, Li S, Han S, Shi C, Zhang Y. Antibody drug conjugate: the “biological missile” for targeted cancer therapy. Signal Transduct Target Ther 2022; 7(1): 93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hurvitz SA. Recent progress in antibody-drug conjugate therapy for cancer. Nat Cancer 2022; 3(12): 1412–1413

    Article  CAS  PubMed  Google Scholar 

  9. Ali S, Dunmore HM, Karres D, Hay JL, Salmonsson T, Gisselbrecht C, Sarac SB, Bjerrum OW, Hovgaard D, Barbachano Y, Nagercoil N, Pignatti F. The EMA review of Mylotarg (gemtuzumab ozogamicin) for the treatment of acute myeloid leukemia. Oncologist 2019; 24(5): e171–e179

    Article  PubMed  PubMed Central  Google Scholar 

  10. Godwin CD, Gale RP, Walter RB. Gemtuzumab ozogamicin in acute myeloid leukemia. Leukemia 2017; 31(9): 1855–1868

    Article  CAS  PubMed  Google Scholar 

  11. Tsuchikama K, An Z. Antibody-drug conjugates: recent advances in conjugation and linker chemistries. Protein Cell 2018; 9(1): 33–46

    Article  CAS  PubMed  Google Scholar 

  12. Beck A, Goetsch L, Dumontet C, Corvaïa N. Strategies and challenges for the next generation of antibody-drug conjugates. Nat Rev Drug Discov 2017; 16(5): 315–337

    Article  CAS  PubMed  Google Scholar 

  13. Epaillard N, Bassil J, Pistilli B. Current indications and future perspectives for antibody-drug conjugates in brain metastases of breast cancer. Cancer Treat Rev 2023; 119: 102597

    Article  CAS  PubMed  Google Scholar 

  14. Castaigne S, Pautas C, Terré C, Raffoux E, Bordessoule D, Bastie JN, Legrand O, Thomas X, Turlure P, Reman O, de Revel T, Gastaud L, de Gunzburg N, Contentin N, Henry E, Marolleau JP, Aljijakli A, Rousselot P, Fenaux P, Preudhomme C, Chevret S, Dombret H; Acute Leukemia French Association. Effect of gemtuzumab ozogamicin on survival of adult patients with denovo acute myeloid leukaemia (ALFA-0701): a randomised, open-label, phase 3 study. Lancet 2012; 379(9825): 1508–1516

    Article  CAS  PubMed  Google Scholar 

  15. Younes A, Gopal AK, Smith SE, Ansell SM, Rosenblatt JD, Savage KJ, Ramchandren R, Bartlett NL, Cheson BD, de Vos S, Forero-Torres A, Moskowitz CH, Connors JM, Engert A, Larsen EK, Kennedy DA, Sievers EL, Chen R. Results of a pivotal phase II study of brentuximab vedotin for patients with relapsed or refractory Hodgkin’s lymphoma. J Clin Oncol 2012; 30(18): 2183–2189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Verma S, Miles D, Gianni L, Krop IE, Welslau M, Baselga J, Pegram M, Oh DY, Dieras V, Guardino E, Fang L, Lu MW, Olsen S, Blackwell K; EMILIA Study Group. Trastuzumab emtansine for HER2-positive advanced breast cancer. N Engl J Med 2012; 367(19): 1783–1791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. von Minckwitz G, Huang CS, Mano MS, Loibl S, Mamounas EP, Untch M, Wolmark N, Rastogi P, Schneeweiss A, Redondo A, Fischer HH, Jacot W, Conlin AK, Arce-Salinas C, Wapnir IL, Jackisch C, DiGiovanna MP, Fasching PA, Crown JP, Wülfing P, Shao Z, Rota Caremoli E, Wu H, Lam LH, Tesarowski D, Smitt M, Douthwaite H, Smgel SM, Geyer CE Jr; KATHERINE Investigators. Trastuzumab emtansine for residual invasive HER2-positive breast cancer. N Engl J Med 2019; 380(7): 617–628

    Article  CAS  PubMed  Google Scholar 

  18. Amiri-Kordestani L, Blumenthal GM, Xu QC, Zhang L, Tang SW, Ha L, Wemberg WC, Chi B, Candau-Chacon R, Hughes P, Russell AM, Miksinski SP, Chen XH, McGuinn WD, Palmby T, Schrieber SJ, Liu Q, Wang J, Song P, Mehrotra N, Skarupa L, Clouse K, Al-Hakim A, Sridhara R, Ibrahim A, Justice R, Pazdur R, Cortazar P. FDA approval: ado-trastuzumab emtansine for the treatment of patients with HER2-positive metastatic breast cancer. Clin Cancer Res 2014; 20(17): 4436–4441

    Article  CAS  PubMed  Google Scholar 

  19. Kantarjian H, Thomas D, Jorgensen J, Jabbour E, Kebriaei P, Rytting M, York S, Ravandi F, Kwari M, Faderl S, Rios MB, Cortes J, Fayad L, Tarnai R, Wang SA, Champlin R, Advani A, O’Brien S. Inotuzumab ozogamicin, an anti-CD22-calecheamicin conjugate, for refractory and relapsed acute lymphocytic leukaemia: aphase 2 study. Lancet Oncol 2012; 13(4): 403–411

    Article  CAS  PubMed  Google Scholar 

  20. Kantarjian HM, DeAngelo DJ, Stelljes M, Martinelli G, Liedtke M, Stock W, Gökbuget N, O’Brien S, Wang K, Wang T, Paccagnella ML, Sleight B, Vandendries E, Advani AS. Inotuzumab ozogamicin versus standard therapy for acute lymphoblastic leukemia. N Engl J Med 2016; 375(8): 740–753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kreitman RJ, Dearden C, Zinzani PL, Delgado J, Karlin L, Robak T, Gladstone DE, le Coutre P, Dietrich S, Gotic M, Larratt L, Offner F, Schiller G, Swords R, Bacon L, Bocchia M, Bouabdallah K, Breems DA, Cortelezzi A, Dinner S, Doubek M, Gjertsen BT, Gobbi M, Hellmann A, Lepretre S, Maloisel F, Ravandi F, Rousselot P, Rummel M, Siddiqi T, Tadmor T, Troussard X, Yi CA, Saglio G, Roboz GJ, Balic K, Standifer N, He P, Marshall S, Wilson W, Pastan I, Yao NS, Giles F. Moxetumomab pasudotox in relapsed/refractory hairy cell leukemia. Leukemia 2018; 32(8): 1768–1777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sehn LH, Herrera AF, Flowers CR, Kamdar MK, McMillan A, Hertzberg M, Assouline S, Kim TM, Kim WS, Ozean M, Hirata J, Penuel E, Paulson JN, Cheng J, Ku G, Matasar MJ. Polatuzumab vedotin in relapsed or refractory diffuse large B-cell lymphoma. J Clin Oncol 2020; 38(2): 155–165

    Article  CAS  PubMed  Google Scholar 

  23. Powles T, Rosenberg JE, Sonpavde GP, Loriot Y, Durán I, Lee JL, Matsubara N, Vulsteke C, Castellano D, Wu C, Campbell M, Matsangou M, Petrylak DP. Enfortumab vedotin in previously treated advanced urothelial carcinoma. N Engl J Med 2021; 384(12): 1125–1135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rosenberg J, Sridhar SS, Zhang J, Smith D, Ruether D, Flaig TW, Baranda J, Lang J, Plimack ER, Sangha R, Heath EI, Merchan J, Quinn DI, Srinivas S, Milowsky M, Wu C, Gartner EM, Zuo P, Melhem-Bertrandt A, Petrylak DP. EV-101: a phase I study of single-agent enfortumab vedotin in patients with nectin-4-positive solid tumors, including metastatic urothelial carcinoma. J Clin Oncol 2020; 38(10): 1041–1049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cortés J, Kim SB, Chung WP, Im SA, Park YH, Hegg R, Kim MH, Tseng LM, Perry V, Chung CF, Iwata H, Hamilton E, Cungliano G, Xu B, Huang CS, Kim JH, Chiu JWY, Pedrmi JL, Lee C, Liu Y, Cathcart J, Bako E, Verma S, Hurvitz SA; DESTINY-Breast03 Trial Investigators. Trastuzumab deruxtecan versus trastuzumab emtansine for breast cancer. N Engl J Med 2022; 386(12): 1143–1154

    Article  PubMed  Google Scholar 

  26. Shitara K, Bang YJ, Iwasa S, Sugimoto N, Ryu MH, Sakai D, Chung HC, Kawakami H, Yabusaki H, Lee J, Saito K, Kawaguchi Y, Kamio T, Kojima A, Sugihara M, Yamaguchi K; DESTINY-Gastric01 Investigators. Trastuzumab deruxtecan in previously treated HER2-positive gastric cancer. N Engl J Med 2020; 382(25): 2419–2430

    Article  CAS  PubMed  Google Scholar 

  27. Yamaguchi K, Bang YJ, Iwasa S, Sugimoto N, Ryu MH, Sakai D, Chung HC, Kawakami H, Yabusaki H, Lee J, Shimoyama T, Lee KW, Saito K, Kawaguchi Y, Kamio T, Kojima A, Sugihara M, Shitara K. Trastuzumab deruxtecan in anti-human epidermal growth factor receptor 2 treatment-naive patients with human epidermal growth factor receptor 2-low gastric or gastroesophageal junction adenocarcinoma: exploratory cohort results in a phase II trial. J Clin Oncol 2023; 41(4): 816–825

    Article  CAS  PubMed  Google Scholar 

  28. Bardia A, Hurvitz SA, Tolaney SM, Loirat D, Punie K, Oliveira M, Brufsky A, Sardesai SD, Kalinsky K, Zelnak AB, Weaver R, Traina T, Dalenc F, Aftimos P, Lynce F, Diab S, Cortés J, O’Shaughnessy J, Dieras V, Ferrario C, Schmid P, Carey LA, Gianni L, Piccart MJ, Loibl S, Goldenberg DM, Hong Q, Olivo MS, Itri LM, Rugo HS; ASCENT Clinical Trial Investigators. Sacituzumab govitecan in metastatic triple-negative breast cancer. N Engl J Med 2021; 384(16): 1529–1541

    Article  CAS  PubMed  Google Scholar 

  29. Lonial S, Lee HC, Badros A, Trudel S, Nooka AK, Chari A, Abdallah AO, Callander N, Lendvai N, Sborov D, Suvannasankha A, Weisel K, Karlin L, Libby E, Arnulf B, Facon T, Hulin C, Kortüm KM, Rodriguez-Otero P, Usmani SZ, Hari P, Baz R, Quach H, Moreau P, Voorhees PM, Gupta I, Hoos A, Zhi E, Baron J, Piontek T, Lewis E, Jewell RC, Dettman EJ, Popat R, Esposti SD, Opalinska J, Richardson P, Cohen AD. Belantamab mafodotin for relapsed or refractory multiple myeloma (DREAMM-2): a two-arm, randomised, open-label, phase 2 study. Lancet Oncol 2020; 21(2): 207–221

    Article  CAS  PubMed  Google Scholar 

  30. Markham A. Belantamab mafodotin: first approval. Drugs 2020; 80(15): 1607–1613

    Article  CAS  PubMed  Google Scholar 

  31. Gomes-da-Silva LC, Kepp O, Kroemer G. Regulatory approval of photoimmunotherapy: photodynamic therapy that induces immunogenic cell death. Oncolmmunology 2020; 9(1): 1841393

    Article  Google Scholar 

  32. Caimi PF, Ai W, Alderuccio JP, Ardeshna KM, Hamadani M, Hess B, Kahl BS, Radford J, Solh M, Stathis A, Zinzani PL, Havenith K, Feingold J, He S, Qin Y, Ungar D, Zhang X, Carlo-Stella C. Loncastuximab tesirine in relapsed or refractory diffuse large B-cell lymphoma (LOTIS-2): a multicentre, open-label, single-arm, phase 2 trial. Lancet Oncol 2021; 22(6): 790–800

    Article  CAS  PubMed  Google Scholar 

  33. Deeks ED. Disitamab vedotin: first approval. Drugs 2021; 81(16): 1929–1935

    Article  CAS  PubMed  Google Scholar 

  34. Coleman RL, Lorusso D, Gennigens C, González-Martín A, Randall L, Cibula D, Lund B, Woelber L, Pignata S, Forget F, Redondo A, Vindeløv SD, Chen M, Harris JR, Smith M, Nicacio LV, Teng MSL, Laenen A, Rangwala R, Manso L, Mirza M, Monk BJ, Vergote I; innovaTV 204/GOG-3023/ENGOT-cx6 Collaborators. Efficacy and safety of tisotumab vedotin in previously treated recurrent or metastatic cervical cancer (innovaTV 204/GOG-3023/ENGOT-cx6): a multicentre, open-label, single-arm, phase 2 study. Lancet Oncol 2021; 22(5): 609–619

    Article  CAS  PubMed  Google Scholar 

  35. Hong DS, Concin N, Vergote I, de Bono JS, Slomovitz BM, Drew Y, Arkenau HT, Machiels JP, Spicer JF, Jones R, Forster MD, Cornez N, Gennigens C, Johnson ML, Thistlethwaite FC, Rangwala RA, Ghana S, Windfeld K, Harris JR, Lassen UN, Coleman RL. Tisotumab vedotin in previously treated recurrent or metastatic cervical cancer. Clin Cancer Res 2020; 26(6): 1220–1228

    Article  CAS  PubMed  Google Scholar 

  36. Heo YA. Mirvetuximab soravtansine: first approval. Drugs 2023; 83(3): 265–273

    Article  CAS  PubMed  Google Scholar 

  37. Nieto-Jiménez C, Sanvicente A, Díaz-Tejeiro C, Moreno V, Lopez de Sá A, Calvo E, Martínez-Löpez J, Pérez-Segura P, Ocaña A. Uncovering therapeutic opportunities in the clinical development of antibody-drug conjugates. Clin Transi Med 2023; 13(9): el329

    Google Scholar 

  38. Maecker H, Jonnalagadda V, Bhakta S, Jammalamadaka V, Junutula JR. Exploration of the antibody-drug conjugate clinical landscape. MAbs 2023; 15(1): 2229101

    Article  PubMed  PubMed Central  Google Scholar 

  39. Weisel K, Hungria VT, Radinoff A, Delimpasi S, Mikala G, Masszi T, Li J, Capra M, Matsumoto M, Sule N, Li M, McKeown A, He W, Bright S, Currie B, Boyle J, Opalinska J, Dimopoulos MA. A phase 3, open-label, randomized study to evaluate the efficacy and safety of single-agent belantamab mafodotin (belamaf) compared to pomalidomide plus low-dose dexamethasone (Pd) in patients (pts) with relapsed/refractory multiple myeloma (RRMM): DREAMM-3. J Clin Oncol 2023; 41(16 suppl): 8007

    Article  Google Scholar 

  40. Wolska-Washer A, Robak T. Safety and tolerability of antibody-drug conjugates in cancer. Drug Saf 2019; 42(2): 295–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mahalingaiah PK, Ciurlionis R, Durbin KR, Yeager RL, Philip BK, Bawa B, Mantena SR Enright BP, Liguori MJ, Van Vleet TR. Potential mechanisms of target-independent uptake and toxicity of antibody-drug conjugates. Pharmacol Ther 2019; 200: 110–125

    Article  CAS  PubMed  Google Scholar 

  42. Suurs FV, Lub-de Hooge MN, de Vries EGE, de Groot DJA. A review of bispecific antibodies and antibody constructs in oncology and clinical challenges. Pharmacol Ther 2019; 201: 103–119

    Article  CAS  PubMed  Google Scholar 

  43. Cavaliere A, Sun S, Lee S, Bodner J, Li Z, Huang Y, Moores SL, Marquez-Nostra B. Development of [89Zr]ZrDFO-amivantamab bispecific to EGFR and c-MET for PET imaging of triple-negative breast cancer. Eur J Nucl Med Mol Imaging 2021; 48(2): 383–394

    Article  CAS  PubMed  Google Scholar 

  44. Cm X, Jia H, Xin H, Zhang L, Chen S, Xia S, Li X, Xu W, Chen X, Feng Y, Wei X, Yu H, Wang Y, Zhan Y, Zhu X, Zhang X. A novel bispecific antibody targeting PD-L1 and VEGF with combined anti-tumor activities. Front Immunol 2021; 12: 778978

    Article  Google Scholar 

  45. Neijssen J, Cardoso RMF, Chevalier KM, Wiegman L, Valerius T, Anderson GM, Moores SL, Schuurman J, Parren PWHI, Strohl WR, Chiu ML. Discovery of amivantamab (JNJ-61186372), a bispecific antibody targeting EGFR and MET. J Biol Chem 2021; 296: 100641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wu Q, Zhen Y, Shi L, Vu P, Greilinger P, Adil R, Merritt J, Egan R, Wu MJ, Yin X, Ferrone CR, Deshpande V, Baiev I, Pinto CJ, McLoughlin DE, Walmsley CS, Stone JR, Gordan JD, Zhu AX, Juric D, Goyal L, Benes CH, Bardeesy N. EGFR inhibition potentiates FGFR inhibitor therapy and overcomes resistance in FGFR2 fusion-positive cholangiocarcinoma. Cancer Discov 2022; 12(5): 1378–1395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Cheng J, Liang M, Carvalho MF, Tigue N, Faggioni R, Roskos LK, Vainshtein I. Molecular mechanism of HER2 rapid internalization and redirected trafficking induced by anti-HER2 biparatopic antibody. Antibodies (Basel) 2020; 9(3): 49

    Article  CAS  PubMed  Google Scholar 

  48. Dovedi SJ, Elder MJ, Yang C, Sitnikova SI, Irving L, Hansen A, Hair J, Jones DC, Hasani S, Wang B, Im SA, Tran B, Subramaniam DS, Gainer SD, Vashisht K, Lewis A, Jin X, Kentner S, Mulgrew K, Wang Y, Overstreet MG, Dodgson J, Wu Y, Palazon A, Morrow M, Rainey GJ, Browne GJ, Neal F, Murray TV, Toloczko AD, Dall’Acqua W, Achour I, Freeman DJ, Wilkinson RW, Mazor Y. Design and efficacy of a monovalent bispecific PD-1/CTLA4 antibody that enhances CTLA4 blockade on PD-1+ activated T cells. Cancer Discov 2021; 11(5): 1100–1117

    Article  CAS  PubMed  Google Scholar 

  49. Wang Y, Ni H, Zhou S, He K, Gao Y, Wu W, Wu M, Wu Z, Qiu X, Zhou Y, Chen B, Pan D, Huang C, Li M, Bian Y, Yang M, Miao L, Liu J. Tumor-selective blockade of CD47 signaling with a CD47/PD-L1 bispecific antibody for enhanced anti-tumor activity and limited toxicity. Cancer Immunol Immunother 2021; 70(2): 365–376

    Article  CAS  PubMed  Google Scholar 

  50. Robinson MK, Hodge KM, Horak E, Sundberg AL, Russeva M, Shaller CC, von Mehren M, Shchaveleva I, Simmons HH, Marks JD, Adams GP. Targeting ErbB2 and ErbB3 with a bispecific single-chain Fv enhances targeting selectivity and induces a therapeutic effect in vitro. Br J Cancer 2008; 99(9): 1415–1425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhao H, Luo F, Xue J, Li S, Xu RH. Emerging immunological strategies: recent advances and future directions. Front Med 2021; 15(6): 805–828

    Article  PubMed  Google Scholar 

  52. Frampton JE. Catumaxomab: in malignant ascites. Drugs 2012; 72(10): 1399–1410

    Article  CAS  PubMed  Google Scholar 

  53. Kantarjian H, Stein A, Gökbuget N, Fielding AK, Schuh AC, Ribera JM, Wei A, Dombret H, Foà R, Bassan R, Arslan Ö, Sanz MA, Bergeron J, Demirkan F, Lech-Maranda E, Rambaldi A, Thomas X, Horst HA, Brüggemann M, Klapper W, Wood BL, Fleishman A, Nagorsen D, Holland C, Zimmerman Z, Topp MS. Blinatumomab versus chemotherapy for advanced acute lymphoblastic leukemia. N Engl J Med 2017; 376(9): 836–847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Oldenburg J, Mahlangu JN, Kim B, Schmitt C, Callaghan MU, Young G, Santagostino E, Kruse-Jarres R, Negrier C, Kessler C, Valente N, Asikanius E, Levy GG, Windyga J, Shima M. Emicizumab prophylaxis in hemophilia A with inhibitors. N Engl J Med 2017; 377(9): 809–818

    Article  CAS  PubMed  Google Scholar 

  55. Zhou C, Tang KJ, Cho BC, Liu B, Paz-Ares L, Cheng S, Kitazono S, Thiagarajan M, Goldman JW, Sabari JK, Sanborn RE, Mansfield AS, Hung JY, Boyer M, Popat S, Mourão Dias J, Felip E, Majem M, Gumus M, Kim SW, Ono A, Xie J, Bhattacharya A, Agrawal T, Shreeve SM, Knoblauch RE, Park K, Girard N; PAPILLON Investigators. Amivantamab plus chemotherapy in NSCLC with EGFR exon 20 insertions. N Engl J Med 2023; 389(22): 2039–2051

    Article  CAS  PubMed  Google Scholar 

  56. Nathan P, Hassel JC, Rutkowski P, Baurain JF, Butler MO, Schlaak M, Sullivan RJ, Ochsenreither S, Dummer R, Kirkwood JM, Joshua AM, Sacco JJ, Shoushtari AN, Orloff M, Piulats JM, Milhem M, Salama AKS, Curti B, Demidov L, Gastaud L, Mauch C, Yushak M, Carvajal RD, Hamid O, Abdullah SE, Holland C, Goodall H, Piperno-Neumann S; IMCgp100-202 Investigators. Overall survival benefit with tebentafusp in metastatic uveal melanoma. N Engl J Med 2021; 385(13): 1196–1206

    Article  CAS  PubMed  Google Scholar 

  57. Heier JS, Khanani AM, Quezada Ruiz C, Basu K, Ferrone PJ, Brittain C, Figueroa MS, Lin H, Holz FG, Patel V, Lai TYY, Silverman D, Regillo C, Swaminathan B, Viola F, Cheung CMG, Wong TY; TENAYA and LUCERNE Investigators. Efficacy, durability, and safety of intravitreal faricimab up to every 16 weeks for neovascular age-related macular degeneration (TENAYA and LUCERNE): two randomised, double-masked, phase 3, non-inferiority trials. Lancet 2022; 399(10326): 729–740

    Article  CAS  PubMed  Google Scholar 

  58. Wykoff CC, Abreu F, Adamis AP, Basu K, Eichenbaum DA, Haskova Z, Lin H, Loewenstein A, Mohan S, Pearce IA, Sakamoto T, Schlottmann PG, Silverman D, Sun JK, Wells JA, Willis JR, Tadayoni R; YOSEMITE and RHINE Investigators. Efficacy, durability, and safety of intravitreal faricimab with extended dosing up to every 16 weeks in patients with diabetic macular oedema (YOSEMITE and RHINE): two randomised, double-masked, phase 3 trials. Lancet 2022; 399(10326): 741–755

    Article  CAS  PubMed  Google Scholar 

  59. Budde LE, Sehn LH, Matasar M, Schuster SJ, Assouline S, Giri P, Kuruvilla J, Canales M, Dietrich S, Fay K, Ku M, Nastoupil L, Cheah CY, Wei MC, Yin S, Li CC, Huang H, Kwan A, Penuel E, Bartlett NL. Safety and efficacy of mosunetuzumab, a bispecific antibody, in patients with relapsed or refractory follicular lymphoma: a single-arm, multicentre, phase 2 study. Lancet Oncol 2022; 23(8): 1055–1065

    Article  CAS  PubMed  Google Scholar 

  60. Keam SJ. Cadonilimab: first approval. Drugs 2022; 82(12): 1333–1339

    Article  CAS  PubMed  Google Scholar 

  61. Moreau P, Garfall AL, van de Donk NWCJ, Nahi H, San-Miguel JF, Oriol A, Nooka AK, Martin T, Rosinol L, Chari A, Karlin L, Benboubker L, Mateos MV, Bahlis N, Popat R, Besemer B, Martínez-López J, Sidana S, Delforge M, Pei L, Trancucci D, Verona R, Girgis S, Lm SXW, Olyslager Y, Jaffe M, Uhlar C, Stephenson T, Van Rampelbergh R, Banerjee A, Goldberg JD, Kobos R, Krishnan A, Usmani SZ. Teclistamab in relapsed or refractory multiple myeloma. N Engl J Med 2022; 387(6): 495–505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Takeuchi T, Kawanishi M, Nakanishi M, Yamasaki H, Tanaka Y. Phase II/III results of a trial of anti-tumor necrosis factor multivalent NANOBODY compound ozoralizumab in patients with rheumatoid arthritis. Arthritis Rheumatol 2022; 74(11): 1776–1785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Thieblemont C, Phillips T, Ghesquieres H, Cheah CY, Clausen MR, Cunningham D, Do YR, Feldman T, Gasiorowski R, Jurczak W, Kim TM, Lewis DJ, van der Poel M, Poon ML, Cota Stirner M, Kilavuz N, Chiu C, Chen M, Sacchi M, Elliott B, Ahmadi T, Hutchings M, Lugtenburg PJ. Epcoritamab, a novel, subcutaneous CD3xCD20 bispecific T-cell-engaging antibody, in relapsed or refractory large B-cell lymphoma: dose expansion in a phase I/II trial. J Clm Oncol 2023; 41(12): 2238–2247

    Article  CAS  Google Scholar 

  64. Dickinson MJ, Carlo-Stella C, Morschhauser F, Bachy E, Corradini P, Iacoboni G, Khan C, Wröbel T, Offner F, Trněný M, Wu SJ, Cartron G, Hertzberg M, Sureda A, Perez-Callejo D, Lundberg L, Reif J, Dixon M, Clark E, Humphrey K, Hutchings M. Glofitamab for relapsed or refractory diffuse large B-cell lymphoma. N Engl J Med 2022; 387(24): 2220–2231

    Article  CAS  PubMed  Google Scholar 

  65. Lesokhin AM, Tomasson MH, Arnulf B, Bahlis N J, Miles Prince H, Niesvizky R, Rodríguez-Otero P, Martinez-López J, Koehne G, Touzeau C, Jethava Y, Quach H, Depaus J, Yokoyama H, Gabayan AE, Stevens DA, Nooka AK, Manier S, Raje N, Iida S, Raab MS, Searle E, Leip E, Sullivan ST, Conte U, Elmeliegy M, Czibere A, Viqueira A, Mohty M. Elranatamab in relapsed or refractory multiple myeloma: phase 2 MagnetisMM-3 trial results. Nat Med 2023; 29(9): 2259–2267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Chari A, Minnema MC, Berdeja JG, Oriol A, van de Donk NWCJ, Rodríguez-Otero P, Askari E, Mateos MV, Costa LJ, Caers J, Verona R, Girgis S, Yang S, Goldsmith RB, Yao X, Pillarisetti K, Hilder BW, Russell J, Goldberg JD, Krishnan A. Talquetamab, a T-cell-redirecting GPRC5D bispecific antibody for multiple myeloma. N Engl J Med 2022; 387(24): 2232–2244

    Article  CAS  PubMed  Google Scholar 

  67. Labrijn AF, Janmaat ML, Reichert JM, Parren PWHI. Bispecific antibodies: a mechanistic review of the pipeline. Nat Rev Drug Discov 2019; 18(8): 585–608

    Article  CAS  PubMed  Google Scholar 

  68. Khaw BA, Gada KS, Patil V, Panwar R, Mandapati S, Hatefl A, Majewski S, Weisenberger A. Bispecific antibody complex pretargeting and targeted delivery of polymer drug conjugates for imaging and therapy in dual human mammary cancer xenografts: targeted polymer drug conjugates for cancer diagnosis and therapy. Eur J Nucl Med Mol Imaging 2014; 41(8): 1603–1616

    Article  CAS  PubMed  Google Scholar 

  69. Sharkey RM, van Rij CM, Karacay H, Rossi EA, Frielrnk C, Regino C, Cardillo TM, McBride WJ, Chang CH, Boerman OC, Goldenberg DM. A new Tri-Fab bispecific antibody for pretargeting Trop-2-expressing epithelial cancers. J Nucl Med 2012; 53(10): 1625–1632

    Article  CAS  PubMed  Google Scholar 

  70. Brinkmann U, Kontermann RE. The making of bispecific antibodies. MAbs 2017; 9(2): 182–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ridgway JBB, Presta LG, Carter P. ‘Knobs-into-holes’ engineering of antibody CH3 domains for heavy chain heterodimerization. Protein Eng 1996; 9(7): 617–621

    Article  CAS  PubMed  Google Scholar 

  72. Davis JH, Aperlo C, Li Y, Kurosawa E, Lan Y, Lo KM, Huston JS. SEEDbodies: fusion proteins based on strand-exchange engineered domain (SEED) CH3 heterodimers in an Fc analogue platform for asymmetric binders or immunofusions and bispecific antibodies. Protein Eng Des Sel 2010; 23(4): 195–202

    Article  CAS  PubMed  Google Scholar 

  73. Rossi EA, Goldenberg DM, Chang CH. The dock-and-lock method combines recombinant engineering with site-specific covalent conjugation to generate multifunctional structures. Bioconjug Chem 2012; 23(3): 309–323

    Article  CAS  PubMed  Google Scholar 

  74. Shim H. Bispecific antibodies and antibody-drug conjugates for cancer therapy: technological considerations. Biomolecules 2020; 10(3): 360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Khongorzul P, Ling CJ, Khan FU, Ihsan AU, Zhang J. Antibody-drug conjugates: a comprehensive review. Mol Cancer Res 2020; 18(1): 3–19

    Article  CAS  PubMed  Google Scholar 

  76. Li B, Meng Y, Zheng L, Zhang X, Tong Q, Tan W, Hu S, Li H, Chen Y, Song J, Zhang G, Zhao L, Zhang D, Hou S, Qian W, Guo Y. Bispecific antibody to ErbB2 overcomes trastuzumab resistance through comprehensive blockade of ErbB2 heterodimerization. Cancer Res 2013; 73(21): 6471–6483

    Article  CAS  PubMed  Google Scholar 

  77. Castoldi R, Ecker V, Wiehle L, Majety M, Busl-Schuller R, Asmussen M, Nopora A, Jucknischke U, Osl F, Kobold S, Scheuer W, Venturi M, Klein C, Niederfellner G, Sustmann C. A novel bispecific EGFR/Met antibody blocks tumor-promoting phenotypic effects induced by resistance to EGFR inhibition and has potent antitumor activity. Oncogene 2013; 32(50): 5593–5601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kim YJ, Baek DS, Lee S, Park D, Kang HN, Cho BC, Kim YS. Dual-targeting of EGFR and neuropilin-1 attenuates resistance to EGFR-targeted antibody therapy in KRAS-mutant non-small cell lung cancer. Cancer Lett 2019; 466: 23–34

    Article  CAS  PubMed  Google Scholar 

  79. Nguyen TD, Bordeau BM, Balthasar JP. Mechanisms of ADC toxicity and strategies to increase ADC tolerability. Cancers (Basel) 2023; 15(3): 713

    Article  CAS  PubMed  Google Scholar 

  80. Maruani A. Bispecifics and antibody-drug conjugates: a positive synergy. Drug Discov Today Technol 2018; 30: 55–61

    Article  PubMed  Google Scholar 

  81. Bargh JD, Isidro-Llobet A, Parker JS, Spring DR. Cleavable linkers in antibody-drug conjugates. Chem Soc Rev 2019; 48(16): 4361–4374

    Article  CAS  PubMed  Google Scholar 

  82. Coleman N, Yap TA, Heymach JV, Meric-Bernstam F, Le X. Antibody-drug conjugates in lung cancer: dawn of a new era? NPJ Precis Oncol 2023; 7(1): 5

    Article  PubMed  PubMed Central  Google Scholar 

  83. Ogitani Y, Hagihara K, Oitate M, Naito H, Agatsuma T. Bystander killing effect of DS-8201a, a novel anti-human epidermal growth factor receptor 2 antibody-drug conjugate, in tumors with human epidermal growth factor receptor 2 heterogeneity. Cancer Sci 2016; 107(7): 1039–1046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Giugliano F, Corti C, Tarantino P, Michelini F, Curigliano G. Bystander effect of antibody-drug conjugates: fact or fiction? Curr Oncol Rep 2022; 24(7): 809–817

    Article  CAS  PubMed  Google Scholar 

  85. Kovtun YV, Audette CA, Ye Y, Xie H, Ruberti MF, Phinney SJ, Leece BA, Chittenden T, Blättler WA, Goldmacher VS. Antibody-drug conjugates designed to eradicate tumors with homogeneous and heterogeneous expression of the target antigen. Cancer Res 2006; 66(6): 3214–3221

    Article  CAS  PubMed  Google Scholar 

  86. Pronk SD, Schooten E, Heinen J, Helfrich E, Oliveira S, van Bergen en Henegouwen PMP. Single domain antibodies as carriers for intracellular drug delivery: a proof of principle study. Biomolecules 2021; 11(7): 927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Xu S. Internalization, trafficking, intracellular processing and actions of antibody-drug conjugates. Pharm Res 2015; 32(11): 3577–3583

    Article  CAS  PubMed  Google Scholar 

  88. Kelton C, Wesolowski JS, Soloviev M, Schweickhardt R, Fischer D, Kurosawa E, McKenna SD, Gross AW. Anti-EGFR biparatopic-SEED antibody has enhanced combination-activity in a single molecule. Arch Biochem Biophys 2012; 526(2): 219–225

    Article  CAS  PubMed  Google Scholar 

  89. Friedman LM, Rinon A, Schechter B, Lyass L, Lavi S, Bacus SS, Sela M, Yarden Y. Synergistic down-regulation of receptor tyrosine kinases by combinations of mAbs: implications for cancer immunotherapy. Proc Natl Acad Sci USA 2005; 102(6): 1915–1920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Spangler JB, Neil JR, Abramovitch S, Yarden Y, White FM, Lauffenburger DA, Wittrup KD. Combination antibody treatment down-regulates epidermal growth factor receptor by inhibiting endosomal recycling. Proc Natl Acad Sci USA 2010; 107(30): 13252–13257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Comer F, Gao C, Coats S. Bispecific and biparatopic antibody drug conjugates. In: Damelin M. Innovations for Next-Generation Antibody-Drug Conjugates. Cham: Springer International Publishing, 2018: 267–280

    Chapter  Google Scholar 

  92. Hunter FW, Barker HR, Lipert B, Rothe F, Gebhart G, Piccart-Gebhart MJ, Sotiriou C, Jamieson SMF. Mechanisms of resistance to trastuzumab emtansine (T-DM1) in HER2-positive breast cancer. Br J Cancer 2020; 122(5): 603–612

    Article  CAS  PubMed  Google Scholar 

  93. Pegram MD, Mües D, Tsui CK, Zong Y. HER2-overexpressing/amplified breast cancer as a testing ground for antibody-drug conjugate drug development in solid tumors. Clin Cancer Res 2020; 26(4): 775–786

    Article  CAS  PubMed  Google Scholar 

  94. Weisser NE, Sanches M, Escobar-Cabrera E, O’Toole J, Whalen E, Chan PWY, Wickman G, Abraham L, Choi K, Harbourne B, Samiotakis A, Rojas AH, Volkers G, Wong J, Atkinson CE, Baardsnes J, Worrall LJ, Browman D, Smith EE, Baichoo P, Cheng CW, Guedia J, Kang S, Mukhopadhyay A, Newhook L, Ohm A, Raghunatha P, Zago-Schmitt M, Schräg JD, Smith J, Zwierzchowski P, Scurll JM, Fung V, Black S, Strynadka NCJ, Gold MR, Presta LG, Ng G, Dixit S. An anti-HER2 biparatopic antibody that induces unique HER2 clustering and complement-dependent cytotoxicity. Nat Commun 2023; 14(1): 1394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Harding JJ, Fan J, Oh DY, Choi H J, Kim JW, Chang HM, Bao L, Sun HC, Macarulla T, Xie F, Metges JP, Ying J, Bridgewater J, Lee MA, Tejani MA, Chen EY, Kim DU, Wasan H, Ducreux M, Bao Y, Boyken L, Ma J, Garfin P, Pant S; HERIZON-BTC-01 study group. Zanidatamab for HER2-amplified, unresectable, locally advanced or metastatic biliary tract cancer (HERIZON-BTC-01): a multicentre, single-arm, phase 2b study. Lancet Oncol 2023; 24(7): 772–782

    Article  CAS  PubMed  Google Scholar 

  96. De Santis R. Anti-ErbB2 immunotherapeutics: struggling to make better antibodies for cancer therapy. MAbs 2020; 12(1): 1725346

    Article  PubMed  PubMed Central  Google Scholar 

  97. Huang S, Li F, Liu H, Ye P, Fan X, Yuan X, Wu Z, Chen J, Jin C, Shen B, Feng J, Zhang B. Structural and functional characterization of MBS301, an afucosylated bispecific anti-HER2 antibody. MAbs 2018; 10(6): 864–875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Lee NK, Su Y, Bidlingmaier S, Liu B. Manipulation of cell-type selective antibody internalization by a guide-effector bispecific design. Mol Cancer Ther 2019; 18(6): 1092–1103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. de Goeij BE, Vink T, Ten Napel H, Breij EC, Satijn D, Wubbolts R, Miao D, Parren PW. Efficient payload delivery by a bispecific antibody-drug conjugate targeting HER2 and CD63. Mol Cancer Ther 2016; 15(11): 2688–2697

    Article  CAS  PubMed  Google Scholar 

  100. Pols MS, Klumperman J. Trafficking and function of the tetraspanin CD63. Exp Cell Res 2009; 315(9): 1584–1592

    Article  CAS  PubMed  Google Scholar 

  101. DeVay RM, Delaria K, Zhu G, Holz C, Foletti D, Sutton J, Bolton G, Dushin R Bee C, Pons J, Rajpal A, Liang H, Shelton D, Liu SH, Strop P. Improved lysosomal trafficking can modulate the potency of antibody drug conjugates. Bioconjug Chem 2017; 28(4): 1102–1114

    Article  CAS  PubMed  Google Scholar 

  102. Rupp U, Schoendorf-Holland E, Eichbaum M, Schuetz F, Lauschner I, Schmidt P, Staab A, Hanft G, Huober J, Sinn HP, Sohn C, Schneeweiss A. Safety and pharmacokinetics of bivatuzumab mertansine in patients with CD44v6-positive metastatic breast cancer: final results of a phase I study. Anticancer Drugs 2007; 18(4): 477–485

    Article  CAS  PubMed  Google Scholar 

  103. Rosenberg JE, O’Donnell PH, Balar AV, McGregor BA, Heath EI, Yu EY, Galsky MD, Hahn NM, Gartner EM, Pinelli JM, Liang SY, Melhem-Bertrandt A, Petrylak DP. Pivotal trial of enfortumab vedotin in urothelial carcinoma after platinum and anti-programmed death 1/programmed death ligand 1 therapy. J Qm Oncol 2019; 37(29): 2592–2600

    CAS  Google Scholar 

  104. Saleh MN, Sugarman S, Murray J, Ostroff JB, Healey D, Jones D, Daniel CR, LeBherz D, Brewer H, Onetto N, LoBuglio AF. Phase I trial of the anti-Lewis Y drug immunoconjugate BR96-doxorubicin in patients with lewis Y-expressing epithelial tumors. J Qm Oncol 2000; 18(11): 2282–2292

    CAS  Google Scholar 

  105. Dheilly E, Moine V, Broyer L, Salgado-Pires S, Johnson Z, Papaioannou A, Cons L, Calloud S, Majocchi S, Nelson R, Rousseau F, Ferlin W, Kosco-Vilbois M, Fischer N, Masternak K. Selective blockade of the ubiquitous checkpoint receptor CD47 is enabled by dual-targeting bispecific antibodies. Mol Ther 2017; 25(2): 523–533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Baruch A, Wong C, Chinn LW, Vaze A, Sonoda J, Geizleichter T, Chen S, Lewin-Koh N, Morrow L, Dheerendra S, Boismenu R, Gutierrez J, Wakshull E, Wilson ME, Arora PS. Antibody-mediated activation of the FGFR1/Klothoβ complex corrects metabolic dysfunction and alters food preference in obese humans. Proc Natl Acad Sci USA 2020; 117(46): 28992–29000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Geng L, Lam KSL, Xu A. The therapeutic potential of FGF21 in metabolic diseases: from bench to clinic. Nat Rev Endocrinol 2020; 16(11): 654–667

    Article  CAS  PubMed  Google Scholar 

  108. Liu S, Lyu W, Yin S, Lei Y, Zhuo Q, Zheng L, Sun B, Tan S, Jiang L, Zhang T, Gao B, Xu R, Huang D, Li Y, Wu Z, Wu D, Wen Y. Abstract 6307: a novel pegylated bispecific antibody-drug conjugate (P-BsADCpb-adc) targeting cancers co-expressing PD-L1 and CD47. Cancer Res 2023; 83(7 Supplement): 6307

    Article  Google Scholar 

  109. Baas JM, Krens LL, Guchelaar HJ, Ouwerkerk J, de Jong FA, Lavrijsen AP, Gelderblom H. Recommendations on management of EGFR inhibitor-induced skin toxicity: a systematic review. Cancer Treat Rev 2012; 38(5): 505–514

    Article  CAS  PubMed  Google Scholar 

  110. Lacouture ME. Mechanisms of cutaneous toxicities to EGFR inhibitors. Nat Rev Cancer 2006; 6(10): 803–812

    Article  CAS  PubMed  Google Scholar 

  111. Knuehl C, Toleikis L, Dotterweich J, Ma J, Kumar S, Ross E, Wilm C, Schmitt M, Grote HJ, Amendt C. Abstract 5284: M1231 is a bispecific anti-MUC1xEGFR antibody-drug conjugate designed to treat solid tumors with MUC1 and EGFR co-expression. Cancer Res 2022; 82(12 Supplement): 5284

    Article  Google Scholar 

  112. Ma Y, Huang Y, Zhao Y, Zhao S, Xue J, Yang Y, Fang W, Guo Y, Han Y, Yang K, Li Y, Yang J, Fu Z, Chen G, Chen L, Zhou N, Zhou T, Zhang Y, Zhou H, Liu Q, Zhu Y, Zhu H, Xiao S, Zhang L, Zhao H. BL-B01D1, a first-in-class EGFR-HER3 bispecific antibody-drug conjugate, in patients with locally advanced or metastatic solid tumours: a first-in-human, open-label, multicentre, phase 1 study. Lancet Oncol 2024; 29: S1470-2045(24)00159-1

  113. McGrath L, Zheng Y, Christ S, Sachs CC, Khehfa S, Windmüller C, Sweet S, Kim YJ, Sutton D, Suhkowski M, Lewis A, Inigo I, Floch N, Rosfjord E, Arnaldez F, Comer F. Abstract 5737: Evaluation of the relationship between target expression and in vivo anti-tumor efficacy of AZD9592, an EGFR/c-MET targeted bispecific antibody drug conjugate. Cancer Res 2023; 83(7 Supplement): 5737

    Article  Google Scholar 

  114. Khoury R, Saleh K, Khalife N, Saleh M, Chahrne C, Ibrahim R, Lecesne A. Mechanisms of resistance to antibody-drug conjugates. Int J Mol Sci 2023; 24(11): 9674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Díaz-Rodríguez E, Gandullo-Sánchez L, Ocaña A, Pandiella A. Novel ADCs and strategies to overcome resistance to anti-HER2 ADCs. Cancers (Basel) 2021; 14(1): 154

    Article  PubMed  Google Scholar 

  116. Ab O, Bartle LM, Lanieri L, Ponte JF, Qiu QF, Sikka S, Costoplus JA, Deats W, Yoder NC, Widdison WC, Mucciarone K, Selvitelli K, Chen Y, Kohli N, Chittenden T, Gregory R, Setiady Y, Westin EH. IMGN151-A next generation folate receptor alpha targeting antibody drug conjugate active against tumors with low, medium and high receptor expression. Cancer Res 2020; 80(16 Supplement): 2890

    Article  Google Scholar 

  117. DaSilva JO, Yang K, Perez Bay AE, Andreev J, Ngoi P, Pyles E, Franklin MC, Dudgeon D, Rafique A, Dore A, Delfino FJ, Potocky TB, Babb R, Chen G, MacDonald D, Olson WC, Thurston G, Daly C. A biparatopic antibody that modulates MET trafficking exhibits enhanced efficacy compared with parental antibodies in MET-driven tumor models. Clin Cancer Res 2020; 26(6): 1408–1419

    Article  CAS  PubMed  Google Scholar 

  118. Filho OM, Viale G, Stein S, Trippa L, Yardley DA, Mayer IA, Abramson VG, Arteaga CL, Spring LM, Waks AG, Wrabel E, DeMeo MK, Bardia A, Dell’Orto P, Russo L, King TA, Polyak K, Michor F, Winer EP, Krop IE. Impact of HER2 heterogeneity on treatment response of early-stage HER2-positive breast cancer: phase II neoadjuvant clinical trial of T-DM1 combined with pertuzumab. Cancer Discov 2021; 11(10): 2474–2487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Moore KN, Oza AM, Colombo N, Oaknin A, Scambia G, Lorusso D, Konecny GE, Banerjee S, Murphy CG, Tanyi JL, Hirte H, Konner JA, Lim PC, Prasad-Hayes M, Monk BJ, Pautier P, Wang J, Berkenblit A, Vergote I, Birrer MJ. Phase III, randomized trial of mirvetuximab soravtansine versus chemotherapy in patients with platinum-resistant ovarian cancer: primary analysis of FORWARD I. Ann Oncol 2021; 32(6): 757–765

    Article  CAS  PubMed  Google Scholar 

  120. Fan J, Zhuang X, Yang X, Xu Y, Zhou Z, Pan L, Chen S. A multivalent biparatopic EGFR-targeting nanobody drug conjugate displays potent anticancer activity in solid tumor models. Signal Transduct Target Ther 2021; 6(1): 320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Larsen MT, Kuhlmann M, Hvam ML, Howard KA. Albumin-based drug delivery: harnessing nature to cure disease. Mol Cell Ther 2016; 4(1): 3

    Article  PubMed  PubMed Central  Google Scholar 

  122. Dennis MS, Jin H, Dugger D, Yang R, McFarland L, Ogasawara A, Williams S, Cole MJ, Ross S, Schwall R. Imaging tumors with an albumin-binding Fab, a novel tumor-targeting agent. Cancer Res 2007; 67(1): 254–261

    Article  CAS  PubMed  Google Scholar 

  123. Li Q, Barrett A, Vijayakrishnan B, Tiberghien A, Beard R, Rickert KW, Allen KL, Christie RJ, Marelli M, Harper J, Howard P, Wu H, Dall’Acqua WF, Tsui P, Gao C, Borrok MJ. Improved inhibition of tumor growth by diabody-drug conjugates via half-life extension. Bioconjug Chem 2019; 30(4): 1232–1243

    Article  CAS  PubMed  Google Scholar 

  124. Han Z, Shang C, Dai W, An G, Zhang E, Lin Q, Yang Y. Abstract LB213: Identification of DM004, a first-in-class anti-5T4/MET bispecific antibody-drug conjugate. Cancer Res 2023; 83(8 Supplement): LB213

    Article  Google Scholar 

  125. Li Z, Shang C, Guan X, An G, Guo Y, Zhang E, Lin Q, Yang Y. Abstract LB215: A first-in-class anti-TROP2/EGFR bispecific antibody-drug conjugate, DM001, exhibits potent anti-tumor efficacy. Cancer Res 2023; 83(8 Supplement): LB215

    Article  Google Scholar 

  126. Li Z, Shang C, Guan X, Han Z, An G, Zhang E, Lin Q, Yang Y. Abstract LB212: BCG022: A novel bispecific antibody-drug conjugate targeting HER3 and MET. Cancer Res 2023; 83(8 Supplement): LB212

    Article  Google Scholar 

  127. Shang C, An G, Guo Y, Zhang E, Lin Q, Yang Y. Abstract 2977: A first-in-class anti-HER2/TROP2 bispecific antibody-drug conjugate (YH012) exhibits potent anti-tumor efficacy. Cancer Res 2023; 83(7 Supplement): 2977

    Article  Google Scholar 

  128. Yao S, Shang C, An G, Zhang E, Lin Q, Yang Y. Abstract LB216: Discovery of BCG033, a novel anti-PTK7 x TROP2 bispecific antibody-drug conjugate with promising efficacy against triple-negative breast cancer. Cancer Res 2023; 83(8 Supplement): LB216

    Article  Google Scholar 

  129. Zhang Y, Shang C, Wang N, An G, Zhang E, Lin Q, Yang Y. Abstract LB214: A first-in-class bispecific antibody-drug conjugate (DM002) targeting HER3 and the juxtamembrane domain of MUC1. Cancer Res 2023; 83(8 Supplement): LB214

    Article  Google Scholar 

  130. Jiménez-Labaig P, Rullan A, Hernando-Calvo A, Llop S, Bhide S, O’Leary B, Brana I, Harrington KJ. A systematic review of antibody-drug conjugates and bispecific antibodies in head and neck squamous cell carcinoma and nasopha-ryngeal carcinoma: Charting the course of future therapies. Cancer Treat Rev 2024; 128: 102772

    Article  PubMed  Google Scholar 

  131. Haikala HM, Jänne PA. Thirty years of HER3: from basic biology to therapeutic interventions. Clin Cancer Res 2021; 27(13): 3528–3539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Uliano J, Corvaja C, Curigliano G, Tarantino P. Targeting HER3 for cancer treatment: a new horizon for an old target. ESMO Open 2023; 8(1): 100790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Matsumoto K, Nakamura T. Hepatocyte growth factor and the Met system as a mediator of tumor-stromal interactions. Int J Cancer 2006; 119(3): 477–483

    Article  CAS  PubMed  Google Scholar 

  134. Matsumoto K, Umitsu M, De Silva DM, Roy A, Bottaro DP. Hepatocyte growth factor/MET in cancer progression and biomarker discovery. Cancer Sci 2017; 108(3): 296–307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Dulak AM, Gubish CT, Stabile LP, Henry C, Siegfried JM. HGF-independent potentiation of EGFR action by c-Met. Oncogene 2011; 30(33): 3625–3635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Sequist LV, Han JY, Ahn MJ, Cho BC, Yu H, Kim SW, Yang JC, Lee JS, Su WC, Kowalski D, Orlov S, Cantarini M, Verheijen RB, Mellemgaard A, Ottesen L, Frewer P, Ou X, Oxnard G. Osimertinib plus savolitinib in patients with EGFR mutation-positive, MET-amplified, non-small-cell lung cancer after progression on EGFR tyrosine kinase inhibitors: interim results from a multicentre, open-label, phase lb study. Lancet Oncol 2020; 21(3): 373–386

    Article  CAS  PubMed  Google Scholar 

  137. Ou SI, Young L, Schrock AB, Johnson A, Klempner SJ, Zhu VW, Miller VA, Ah SM. Emergence of preexisting MET Y1230C mutation as a resistance mechanism to crizotinib in NSCLC with MET exon 14 skipping. J Thorac Oncol 2017; 12(1): 137–140

    Article  PubMed  Google Scholar 

  138. Lai GGY, Lim TH, Lim J, Liew PJR, Kwang XL, Nahar R Aung ZW, Takano A, Lee YY, Lau DPX, Tan GS, Tan SH, Tan WL, Ang MK, Toh CK, Tan BS, Devanand A, Too CW, Gogna A, Ong BH, Koh TPT, Kanesvaran R, Ng QS, Jain A, Rajasekaran T, Yuan J, Lim TKH, Lim AST, Hillmer AM, Lim WT, Iyer NG, Tarn WL, Zhai W, Tan EH, Tan DSW. Clonal MET amplification as a determinant of tyrosine kinase inhibitor resistance in epidermal growth factor receptor-mutant non-small-cell lung cancer. J Clin Oncol 2019; 37(11): 876–884

    Article  CAS  PubMed  Google Scholar 

  139. Baldacci S, Kherrouche Z, Cockenpot V, Stoven L, Copin MC, Werkmeister E, Marchand N, Kyheng M, Tulasne D, Cortot AB. MET amplification increases the metastatic spread of EGFR-mutated NSCLC. Lung Cancer 2018; 125: 57–67

    Article  PubMed  Google Scholar 

  140. Oh SY, Lee YW, Lee EJ, Kim JH, Park Y, Heo SG, Yu MR, Hong MH, DaSilva J, Daly C, Cho BC, Lim SM, Yun MR. Preclinical study of a biparatopic METxMET antibody-drug conjugate, REGN5093-M114, overcomes MET-driven acquired resistance to EGFR TKIs in EGFR-mutant NSCLC. Clin Cancer Res 2023; 29(1): 221–232

    Article  CAS  PubMed  Google Scholar 

  141. DaSilva JO, Yang K, Surriga O, Nittoli T, Kunz A, Franklin MC, Delfino FJ, Mao S, Zhao F, Giurleo JT, Kelly MP, Makonnen S, Hickey C, Kiueger P, Foster R, Chen Z, Retter MW, Slim R, Young TM, Olson WC, Thurston G, Daly C. A biparatopic antibody-drug conjugate to treat MET-expressing cancers, including those that are unresponsive to MET pathway blockade. Mol Cancer Ther 2021; 20(10): 1966–1976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Perez Bay AE, Faulkner D, DaSilva JO, Young TM, Yang K, Giurleo JT, Ma D, Delfino FJ, Olson WC, Thurston G, Daly C, Andreev J. A bispecific METxMET antibody-drug conjugate with cleavable linker is processed in recycling and late endosomes. Mol Cancer Ther 2023; 22(3): 357–370

    Article  PubMed  PubMed Central  Google Scholar 

  143. Li JY, Perry SR, Muniz-Medina V, Wang X, Wetzel LK, Rebelatto MC, Hinrichs MJ, Bezabeh BZ, Fleming RL, Dimasi N, Feng H, Toader D, Yuan AQ, Xu L, Lin J, Gao C, Wu H, Dixit R, Osbourn JK, Coats SR. A biparatopic HER2-targeting antibody-drug conjugate induces tumor regression in primary models refractory to or ineligible for HER2-targeted therapy. Cancer Cell 2016; 29(1): 117–129

    Article  CAS  PubMed  Google Scholar 

  144. Hamblett K, Barnscher S, Davies R, Hammond P, Hernandez A, Wickman G, Fung V, Ding T, Garnett G, Galey A, Zwierzchowski P, Clavette B, Winters G, Rich J, Rowse G, Babcook J and Hausman D. Abstract P6-17-13: ZW49, a HER2 targeted biparatopic antibody drug conjugate for the treatment of HER2 expressing cancers. Cancer Res 2019; 79(4_Supplement): P6-17–13

    Article  Google Scholar 

  145. Pegram MD, Hamilton EP, Tan AR, Storniolo AM, Balic K, Rosenbaum AI, Liang M, He P, Marshall S, Scheuber A, Das M, Patel MR. First-in-human, phase 1 dose-escalation study of biparatopic anti-HER2 antibody-drug conjugate MEDI4276 in patients with HER2-positive advanced breast or gastric cancer. Mol Cancer Ther 2021; 20(8): 1442–1453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Jhaveri K, Han H, Dotan E, Oh DY, Ferrario C, Tolcher A, Lee KW, Liao CY, Kang YK, Kim YH, Hamilton E, Spira A, Patel N, Karapetis C, Rha SY, Boyken L, Woolery J, Bedard P. Preliminary results from a phase I study using the bispecific, human epidermal growth factor 2 (HER2)-targeting antibody-drug conjugate (ADC) zanidatamab zovodotin (ZW49) in solid cancers. Ann Oncol 2022; 33(7): S749–S750

    Article  Google Scholar 

  147. Hinrichs MJ, Dixit R. Antibody drug conjugates: nonclinical safety considerations. AAPS J 2015; 17(5): 1055–1064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Gu Y, Wang Z, Wang Y. Bispecific antibody drug conjugates: Making 1+1 > 2. Acta Pharm Sin B. 2024; 14(5): 1965–1986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Wang P, Guo K, Peng J, Sun J, Xu T. JSKN003, a novel biparatopic anti-HER2 antibody-drug conjugate, exhibits potent antitumor efficacy. Antib Ther 2023; 6: tbad014.009

    PubMed Central  Google Scholar 

  150. Kharbanda A, Rajabi H, Jin C, Tchaicha J, Kikuchi E, Wong KK, Kufe D. Targeting the oncogenic MUC1-C protein inhibits mutant EGFR-mediated signaling and survival in non-small cell lung cancer cells. Clin Cancer Res 2014; 20(21): 5423–5434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Piyush T, Chacko AR, Sindrewicz P, Hilkens J, Rhodes JM, Yu LG. Interaction of galectin-3 with MUC1 on cell surface promotes EGFR dimerization and activation in human epithelial cancer cells. Cell Death Differ 2017; 24(11): 1937–1947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Davis JH, Aperlo C, Li Y, Kurosawa E, Lan Y, Lo KM, Huston JS. SEEDbodies: fusion proteins based on strand-exchange engineered domain (SEED) CH3 heterodimers in an Fc analogue platform for asymmetric binders or immunofusions and bispecific antibodies. Protein Eng Des Sel 2010; 23(4): 195–202

    Article  CAS  PubMed  Google Scholar 

  153. Zhang Y, Shang C, Wang A, Zhang J, Lm Y, Li H, Li X, An G, Hui L, An F, Yang Y. Abstract 6325: A novel EGFR x MUC1 bispecific antibody-drug conjugate, BSA01, targets MUC1 transmembrane cleavage products and improves tumor selectivity. Cancer Res 2023; 83(7 Supplement): 6325

    Article  Google Scholar 

  154. Dong Q, Du Y, Li H, Lm C, Wei Y, Chen MK, Zhao X, Chu YY, Qiu Y, Qin L, Yamaguchi H, Hung MC. EGFR and c-MET cooperate to enhance resistance to PARP inhibitors in hepatocellular carcinoma. Cancer Res 2019; 79(4): 819–829

    Article  CAS  PubMed  Google Scholar 

  155. Wu YL, Soo RA, Locatelli G, Stammberger U, Scagliotti G, Park K. Does c-Met remain a rational target for therapy in patients with EGFR TKI-resistant non-small cell lung cancer? Cancer Treat Rev 2017; 61: 70–81

    Article  CAS  PubMed  Google Scholar 

  156. Huang L, Fu L. Mechanisms of resistance to EGFR tyrosine kinase inhibitors. Acta Pharm Sin B 2015; 5(5): 390–401

    Article  PubMed  PubMed Central  Google Scholar 

  157. Moores SL, Chiu ML, Bushey BS, Chevalier K, Luistro L, Dorn K, Brezski RJ, Haytko P, Kelly T, Wu SJ, Martin PL, Neijssen J, Parren PW, Schuurman J, Attar RM, Laquerre S, Lorenzi MV, Anderson GM. A novel bispecific antibody targeting EGFR and cMet is effective against EGFR inhibitor-resistant lung tumors. Cancer Res 2016; 76(13): 3942–3953

    Article  CAS  PubMed  Google Scholar 

  158. Wu DW, Chen TC, Huang HS, Lee H. TC-N19, a novel dual inhibitor of EGFR and cMET, efficiently overcomes EGFR-TKI resistance in non-small-cell lung cancer cells. Cell Death Dis 2016; 7(6): e2290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Wu YL, Zhang L, Kim DW, Liu X, Lee DH, Yang JC, Ahn MJ, Vansteenkiste JF, Su WC, Felip E, Chia V, Glaser S, Pultar P, Zhao S, Peng B, Akimov M, Tan DSW. Phase Ib/II study of capmatinib (INC280) plus gefltinib after failure of epidermal growth factor receptor (EGFR) inhibitor therapy in patients with EGFR-mutated, MET factor-dysregulated non-small-cell lung cancer. J Clin Oncol 2018; 36(31): 3101–3109

    Article  CAS  PubMed  Google Scholar 

  160. Scaranti M, Cojocaru E, Banerjee S, Banerji U. Exploiting the folate receptor α in oncology. Nat Rev Clin Oncol 2020; 17(6): 349–359

    Article  PubMed  Google Scholar 

  161. Cheung A, Bax HJ, Josephs DH, Ilieva KM, Pellizzari G, Opzoomer J, Bloomfield J, Fittall M, Grigoriadis A, Figini M, Canevari S, Spicer JF, Tutt AN, Karagiannis SN. Targeting folate receptor alpha for cancer treatment. Oncotarget 2016; 7(32): 52553–52574

    Article  PubMed  PubMed Central  Google Scholar 

  162. Ab O, Whiteman KR, Bartle LM, Sun X, Singh R, Tavares D, LaBelle A, Payne G, Lutz RJ, Pinkas J, Goldmacher VS, Chittenden T, Lambert JM. IMGN853, a folate receptor-α (FRα)-targeting antibody-drug conjugate, exhibits potent targeted antitumor activity against FRα-expressing tumors. Mol Cancer Ther 2015; 14(7): 1605–1613

    Article  CAS  PubMed  Google Scholar 

  163. Romero D. Mhretuximab soravtansine has activity in platinum-sensitive epithelial ovarian cancer. Nat Rev Clin Oncol 2024; 21(6): 402

    Article  CAS  PubMed  Google Scholar 

  164. Matulonis UA, Lorusso D, Oaknin A, Pignata S, Dean A, Denys H, Colombo N, Van Gorp T, Konner JA, Marin MR, Harter P, Murphy CG, Wang J, Noble E, Esteves B, Method M, Coleman RL. Efficacy and safety of miiretuximab soravtansine in patients with platinum-resistant ovarian cancer with high folate receptor alpha expression: results from the SORAYA study. J Clin Oncol 2023; 41(13): 2436–2445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Moore KN, Gorp TV, Wang J, Esteves B, Zweidler-McKay PA. MIRASOL (GOG 3045/ENGOT OV-55): a randomized, open-label, phase III study of mirvetuximab soravtansine versus investigator’s choice of chemotherapy in advanced high-grade epithelial ovarian, primary peritoneal, or fallopian tube cancers with high folate-alpha (FRα) expression. J Clin Oncol 2020; 38(15 suppl): TPS6103

    Article  Google Scholar 

  166. Gong J, Hu X, Zhang J, Du Y, Huang R, Teng Y, Tan W, Shen L. Phase 1a study of CBP-1008, a bi-specific ligand drug conjugate targeting FRα and TRPV6, in patients with advanced solid tumors. J Clin Oncol 2021; 39(15 suppl): 3077

    Article  Google Scholar 

  167. Esapa B, Jiang J, Cheung A, Chenoweth A, Thurston DE, Karagiannis SN. Target antigen attributes and their contributions to clinically approved antibody-drug conjugates (ADCs) in haematopoietic and solid cancers. Cancers (Basel) 2023; 15(6): 1845

    Article  CAS  PubMed  Google Scholar 

  168. Joubert N, Beck A, Dumontet C, Denevault-Sabourin C. Antibody-drug conjugates: the last decade. Pharmaceuticals (Basel) 2020; 13(9): 245

    Article  CAS  PubMed  Google Scholar 

  169. Sun Y, Yu X, Wang X, Yuan K, Wang G, Hu L, Zhang G, Pei W, Wang L, Sun C, Yang P. Bispecific antibodies in cancer therapy: target selection and regulatory requirements. Acta Pharm Sin B 2023; 13(9): 3583–3597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Jiang T, Shi T, Zhang H, Hu J, Song Y, Wei J, Ren S, Zhou C. Tumor neoantigens: from basic research to clinical applications. J Hematol Oncol 2019; 12(1): 93

    Article  PubMed  PubMed Central  Google Scholar 

  171. Gupta RG, Li F, Roszik J, Lizée G. Exploiting tumor neoantigens to target cancer evolution: current challenges and promising therapeutic approaches. Cancer Discov 2021; 11(5): 1024–1039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Yarchoan M, Johnson BA 3rd, Lutz ER, Laheru DA, Jaffee EM. Targeting neoantigens to augment antitumour immunity. Nat Rev Cancer 2017; 17(4): 209–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Zhang Z, Rohweder PJ, Ongpipattanakul C, Basu K, Bohn MF, Dugan EJ, Steri V, Hann B, Shokat KM, Craik CS. A covalent inhibitor of K-Ras(G12C) induces MHC class I presentation of haptenated peptide neoepitopes targetable by immunotherapy. Cancer Cell 2022; 40(9): 1060–1069.e7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Williams DB, Vassilakos A, Suh WK. Peptide presentation by MHC class I molecules. Trends Cell Biol 1996; 6(7): 267–273

    Article  CAS  PubMed  Google Scholar 

  175. Hattori T, Maso L, Araki KY, Koide A, Hayman J, Akkapeddi P, Bang I, Neel BG, Koide S. Creating MHC-restricted neoantigens with covalent inhibitors that can be targeted by immune therapy. Cancer Discov 2023; 13(1): 132–145

    Article  CAS  PubMed  Google Scholar 

  176. Douglass J, Hsiue EH, Mog BJ, Hwang MS, DiNapoli SR, Pearlman AH, Miller MS, Wright KM, Azurmendi PA, Wang Q, Paul S, Schaefer A, Skora AD, Mohn MD, Konig MF, Liu Q, Watson E, Li Y, Murphy MB, Pardoll DM, Bettegowda C, Papadopoulos N, Gabeiii SB, Kinzler KW, Vogelstein B, Zhou S. Bispecific antibodies targeting mutant RAS neoantigens. Sci Immunol 2021; 6(57): eabd5515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Hsiue EHC, Wright KM, Douglass J, Hwang MS, Mog BJ, Pearlman AH, Paul S, DiNapoli SR, Konig MF, Wang Q, Schaefer A, Miller MS, Skora AD, Azurmendi PA, Murphy MB, Liu Q, Watson E, Li Y, Pardoll DM, Bettegowda C, Papadopoulos N, Kinzler KW, Vogelstein B, Gabelli SB, Zhou S. Targeting a neoantigen derived from a common TP53 mutation. Science 2021; 371(6533): eabc8697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Shen Y, Wei X, Jin S, Wu Y, Zhao W, Xu Y, Pan L, Zhou Z, Chen S. TCR-mimic antibody-drug conjugates targeting intracellular tumor-specific mutant antigen KRAS G12V mutation. Asian J Pharm Sci 2020; 15(6): 777–785

    Article  PubMed  PubMed Central  Google Scholar 

  179. Marshall DJ, Harried SS, Murphy JL, Hall CA, Shekhani MS, Pain C, Lyons CA, Chiliemi A, Malavasi F, Pearce HL, Thorson JS, Prudent JR. Extracellular antibody drug conjugates exploiting the proximity of two proteins. Mol Ther 2016; 24(10): 1760–1770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Poison AG, Calemine-Fenaux J, Chan P, Chang W, Christensen E, Clark S, de Sauvage FJ, Eaton D, Elkins K, Elliott JM, Frantz G, Fuji RN, Gray A, Harden K, Ingle GS, Kljavin NM, Koeppen H, Nelson C, Prabhu S, Raab H, Ross S, Slaga DS, Stephan JP, Scales SJ, Spencer SD, Vandlen R Wranik B, Yu SF, Zheng B, Ebens A. Antibody-drug conjugates for the treatment of non-Hodgkin’s lymphoma: target and linker-drug selection. Cancer Res 2009; 69(6): 2358–2364

    Article  Google Scholar 

  181. Govindan SV, Cardillo TM, Moon SJ, Hansen HJ, Goldenberg DM. CEACAM5-targeted therapy of human colonic and pancreatic cancer xenografts with potent labetuzumab-SN-38 immunoconjugates. Clin Cancer Res 2009; 15(19): 6052–6061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Javaid F, Pilotti C, Camilli C, Kallenberg D, Bahou C, Blackburn J, Baker JR Greenwood J, Moss SE, Chudasama V. Leucine-rich alpha-2-glycoprotein 1 (LRG1) as a novel ADC target. RSC Chem Biol 2021; 2(4): 1206–1220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Sau S, Petrovici A, Alsaab HO, Bhise K, Iyer AK. PDL-1 antibody drug conjugate for selective chemo-guided immune modulation of cancer. Cancers (Basel) 2019; 11(2): 232

    Article  CAS  PubMed  Google Scholar 

  184. Giansanti F, Capone E, Ponziani S, Piccolo E, Gentile R, Lamolinara A, Di Campli A, Sallese M, Iacobelli V, Cimini A, De Laurenzi V, Lattanzio R Piantelli M, Ippoliti R Sala G, Iacobelli S. Secreted Gal-3BP is a novel promising target for non-internalizing antibody-drug conjugates. J Control Release 2019; 294: 176–184

    Article  CAS  PubMed  Google Scholar 

  185. Awasthi N, Mikels-Vigdal AJ, Stefanutti E, Schwarz MA, Monahan S, Smith V, Schwarz RE. Therapeutic efficacy of anti-MMP9 antibody in combination with nab-paclitaxel-based chemotherapy in pre-clinical models of pancreatic cancer. J Cell Mol Med 2019; 23(6): 3878–3887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Yap ML, McFadyen JD, Wang X, Ziegler M, Chen YC, Willcox A, Nowell CJ, Scott AM, Sloan EK, Hogarth PM, Pietersz GA, Peter K. Activated platelets in the tumor microenvironment for targeting of antibody-drug conjugates to tumors and metastases. Theranostics 2019; 9(4): 1154–1169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Bernardes GJ, Casi G, Trussel S, Hartmann I, Schwager K, Scheuermann J, Neri D. A traceless vascular-targeting antibody-drug conjugate for cancer therapy. Angew Chem Int Ed Engl 2012; 51(4): 941–944

    Article  CAS  PubMed  Google Scholar 

  188. Polu KR Lowman HB. Probody therapeutics for targeting antibodies to diseased tissue. Expert Opin Biol Ther 2014; 14(8): 1049–1053

    Article  CAS  PubMed  Google Scholar 

  189. Desnoyers LR, Vasiljeva O, Richardson JH, Yang A, Menendez EE, Liang TW, Wong C, Bessette PH, Kamath K, Moore SJ, Sagert JG, Hostetter DR, Han F, Gee J, Flandez J, Markham K, Nguyen M, Krimm M, Wong KR Liu S, Daugherty PS, West JW, Lowman HB. Tumor-specific activation of an EGFR-targeting probody enhances therapeutic index. Sci Transi Med 2013; 5(207): 207ral44

    Google Scholar 

  190. Autio KA, Boni V, Humphrey RW, Naing A. Probody therapeutics: an emerging class of therapies designed to enhance on-target effects with reduced off-tumor toxicity for use in immuno-oncology. Clin Cancer Res 2020; 26(5): 984–989

    Article  CAS  PubMed  Google Scholar 

  191. Chomet M, Schreurs M, Nguyen M, Howng B, Villanueva R, Krimm M, Vasiljeva O, van Dongen GAMS, Vugts DJ. The tumor targeting performance of anti-CD 166 probody drug conjugate CX-2009 and its parental derivatives as monitored by 89Zr-immuno-PET in xenograft bearing mice. Theranostics 2020; 10(13): 5815–5828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Singh S, Seiwer L, DuPage A, Elkins K, Chauhan N, Ravn M, Buchanan F, Wang L, Krimm M, Wong K, Sagert J, Tipton K, Moore SJ, Huang Y, Jang A, Ureno E, Miller A, Patrick S, Duvur S, Liu S, Vasiljeva O, Li Y, Henriques T, Badagnani I, Jeffries S, Schleyer S, Leanna R, Krebber C, Viswanathan S, Desnoyers L, Terrett J, Belvin M, Morgan-Lappe S, Kavanaugh WM, Richardson J. Nonclinical efficacy and safety of CX-2029, an anti-CD71 probody-drug conjugate. Mol Cancer Ther 2022; 21(8): 1326–1336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Johnson M, El-Khoueiry A, Hafez N, Lakhani N, Mamdani H, Rodon J, Sanborn RE, Garcia-Corbacho J, Boni V, Stroh M, Hannah AL, Wang S, Castro H, Spira A. Phase I, first-in-human study of the probody therapeutic CX-2029 in adults with advanced solid tumor malignancies. Clin Cancer Res 2021; 27(16): 4521–4530

    Article  CAS  PubMed  Google Scholar 

  194. Li Y, Liu J, Chen W, Wang W, Yang F, Liu X, Sheng Y, Du K, He M, Lyu X, Li H, Zhao L, Wei Z, Wang F, Zheng S, Sui J. A pH-dependent anti-CD47 antibody that selectively targets solid tumors and improves therapeutic efficacy and safety. J Hematol Oncol 2023; 16(1): 2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Kamata-Sakurai M, Narita Y, Hori Y, Nemoto T, Uchikawa R, Honda M, Hironiwa N, Taniguchi K, Shida-Kawazoe M, Metsugi S, Miyazaki T, Wada NA, Ohte Y, Shimizu S, Mikami H, Tachibana T, Ono N, Adachi K, Sakiyama T, Matsushita T, Kadono S, Komatsu SI, Sakamoto A, Horikawa S, Hirako A, Hamada K, Naoi S, Savory N, Satoh Y, Sato M, Noguchi Y, Shinozuka J, Kuroi H, Ito A, Wakabayashi T, Kamimura M, Isomura F, Tomii Y, Sawada N, Kato A, Ueda O, Nakanishi Y, Endo M, Jishage KI, Kawabe Y, Kitazawa T, Igawa T. Antibody to CD137 activated by extracellular adenosine triphosphate is tumor selective and broadly effective in vivo without systemic immune activation. Cancer Discov 2021; 11(1): 158–175

    Article  CAS  PubMed  Google Scholar 

  196. Sulea T, Rohani N, Baardsnes J, Corbeil CR, Deprez C, Cepero-Donates Y, Robert A, Schräg JD, Parat M, Duchesne M, Jaramillo ML, Purisima EO, Zwaagstra JC. Structure-based engineering of pH-dependent antibody binding for selective targeting of solid-tumor microenvironment. MAbs 2020; 12(1): 1682866

    Article  PubMed  Google Scholar 

  197. Han S, Lim KS, Blackburn BJ, Yun J, Putnam CW, Bull DA, Won YW. The potential of topoisomerase inhibitor-based antibody-drug conjugates. Pharmaceutics 2022; 14(8): 1707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Doronina SO, Bovee TD, Meyer DW, Miyamoto JB, Anderson ME, Morris-Tilden CA, Senter PD. Novel peptide linkers for highly potent antibody-auristatin conjugate. Bioconjug Chem 2008; 19(10): 1960–1963

    Article  CAS  PubMed  Google Scholar 

  199. Lyon RP, Bovee TD, Doronina SO, Burke PJ, Hunter JH, Neff-LaFord HD, Jonas M, Anderson ME, Setter JR, Senter PD. Reducing hydrophobicity of homogeneous antibody-drug conjugates improves pharmacokinetics and therapeutic index. Nat Biotechnol 2015; 33(7): 733–735

    Article  CAS  PubMed  Google Scholar 

  200. Iwata TN, Ishii C, Ishida S, Ogitani Y, Wada T, Agatsuma T. A HER2-targeting antibody-drug conjugate, trastuzumab deruxtecan (DS-8201a), enhances antitumor immunity in a mouse model. Mol Cancer Ther 2018; 17(7): 1494–1503

    Article  CAS  PubMed  Google Scholar 

  201. Ogitani Y, Aida T, Hagihara K, Yamaguchi J, Ishii C, Harada N, Soma M, Okamoto H, Oitate M, Arakawa S, Hirai T, Atsumi R, Nakada T, Hayakawa I, Abe Y, Agatsuma T. DS-8201a, a novel HER2-targeting ADC with a novel DNA topoisomerase I inhibitor, demonstrates a promising antitumor efficacy with differentiation from T-DM1. Clin Cancer Res 2016; 22(20): 5097–5108

    Article  CAS  PubMed  Google Scholar 

  202. Matsuda Y, Mendelsohn BA. An overview of process development for antibody-drug conjugates produced by chemical conjugation technology. Expert Opin Biol Ther 2021; 21(7): 963–975

    Article  CAS  PubMed  Google Scholar 

  203. Sheyi R, de la Torre BG, Albericio F. Linkers: an assurance for controlled delivery of antibody-drug conjugate. Pharmaceutics 2022; 14(2): 396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Xu Y, Jiang G, Tran C, Li X, Heibeck TH, Masikat MR, Cai Q, Sterner AR, Sato AK, Hallam TJ, Yin G. RP-HPLC DAR characterization of site-specific antibody drug conjugates produced in a cell-free expression system. Org Process Res Dev 2016; 20(6): 1034–1043

    Article  CAS  Google Scholar 

  205. Barnscher S, Babcook J, Rich J, Winters G, Garnett G, Hernandez A, Fung V, Yin K, Hamblett K, Davies R. Abstract 61: Zymelink drug conjugate platform: redefining the therapeutic window for ADCs. Cancer Res 2017; 77(13 Supplement): 61

    Article  Google Scholar 

  206. Mazor Y, Sachsenmeier KF, Yang C, Hansen A, Filderman J, Mulgrew K, Wu H, Dall’Acqua WF. Enhanced tumor-targeting selectivity by modulating bispecific antibody binding affinity and format valence. Sci Rep 2017; 7(1): 40098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Seilmann C, Doerner A, Knuehl C, Rasche N, Sood V, Krah S, Rhiel L, Messemer A, Wesolowski J, Schuette M, Becker S, Toleikis L, Kolmar H, Hock B. Balancing selectivity and efficacy of bispecific epidermal growth factor receptor (EGFR) × c-MET antibodies and antibody-drug conjugates. J Biol Chem 2016; 291(48): 25106–25119

    Article  Google Scholar 

  208. Andreev J, Thambi N, Perez Bay AE, Delfino F, Martin J, Kelly MP, Kirshner JR, Rafique A, Kunz A, Nittoli T, MacDonald D, Daly C, Olson W, Thurston G. Bispecific antibodies and antibody-drug conjugates (ADCs) bridging HER2 and prolactin receptor improve efficacy of HER2 ADCs. Mol Cancer Ther 2017; 16(4): 681–693

    Article  CAS  PubMed  Google Scholar 

  209. Hu S, Fu W, Xu W, Yang Y, Cruz M, Berezov SD, Jonssen D, Takeda H, Zhu W. Four-in-one antibodies have superior cancer inhibitory activity against EGFR, HER2, HER3, and VEGF through disruption of HER/MET crosstalk. Cancer Res 2015; 75(1): 159–170

    Article  CAS  PubMed  Google Scholar 

  210. Nessler I, Khera E, Vance S, Kopp A, Qiu Q, Keating TA, Abu-Yousif AO, Sandal T, Legg J, Thompson L, Goodwin N, Thurber GM. Increased tumor penetration of single-domain antibody-drug conjugates improves in vivo efficacy in prostate cancer models. Cancer Res 2020; 80(6): 1268–1278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Deonarain MP, Xue Q. Tackling solid tumour therapy with small-format drug conjugates. Antib Ther 2020; 3(4): 237–245

    CAS  PubMed  PubMed Central  Google Scholar 

  212. Kholodenko RV, Kalinovsky DV, Doronin II, Ponomarev ED, Kholodenko IV. Antibody fragments as potential biopharmaceuticals for cancer therapy: success and limitations. Curr Med Chem 2019; 26(3): 396–426

    Article  CAS  PubMed  Google Scholar 

  213. Deonarain MP, Yahioglu G, Stamati I, Pomowski A, Clarke J, Edwards BM, Diez-Posada S, Stewart AC. Small-format drug conjugates: a viable alternative to ADCs for solid tumours? Antibodies (Basel) 2018; 7(2): 16

    Article  CAS  PubMed  Google Scholar 

  214. Wu Y, Li Q, Kong Y, Wang Z, Lei C, Li J, Dmg L, Wang C, Cheng Y, Wei Y, Song Y, Yang Z, Tu C, Dmg Y, Ying T. A highly stable human single-domain antibody-drug conjugate exhibits superior penetration and treatment of solid tumors. Mol Ther 2022; 30(8): 2785–2799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Huang H, Wu T, Shi H, Wu Y, Yang H, Zhong K, Wang Y, Liu Y. Modular design of nanobody-drug conjugates for targeted-delivery of platinum anticancer drugs with an MRI contrast agent. Chem Commun(Camb) 2019; 55(35): 5175–5178

    Article  CAS  PubMed  Google Scholar 

  216. Vallera DA, Chen H, Sicheneder AR, Panoskaltsis-Mortari A, Taras EP. Genetic alteration of a bispecific ligand-directed toxin targeting human CD19 and CD22 receptors resulting in improved efficacy against systemic B cell malignancy. Leuk Res 2009; 33(9): 1233–1242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Waldron NN, Barsky SH, Dougherty PR, Vallera DA. A bispecific EpCAM/CD133-targeted toxin is effective against carcinoma. Target Oncol 2014; 9(3): 239–249

    Article  PubMed  Google Scholar 

  218. Porebska N, Ciura K, Chorazewska A, Zakrzewska M, Otlewski J, Opaliński Ł. Multivalent protein-drug conjugates—an emerging strategy for the upgraded precision and efficiency of drug delivery to cancer cells. Biotechnol Adv 2023; 67: 108213

    Article  CAS  PubMed  Google Scholar 

  219. Zhou L, Yang F, Bai Z, Zhou X, Zhang Z, Li Z, Gong J, Yu J, Pan L, Cao C, Chou JJ. Self-assembled L-DNA linkers for rapid construction of multi-specific antibody-drug conjugates library. Angew Chem Int Ed Engl 2023; 62(27): e202302805

    Article  CAS  PubMed  Google Scholar 

  220. Kim YE, Kim YN, Kim JA, Kim HM, Jung Y. Green fluorescent protein nanopolygons as monodisperse supramolecular assemblies of functional proteins with defined valency. Nat Commun 2015; 6(1): 7134

    Article  CAS  PubMed  Google Scholar 

  221. Porębska N, Knapik A, Poźniak M, Krzyścik MA, Zakrzewska M, Otlewski J, Opaliński Ł. Intrinsically fluorescent oligomeric cytotoxic conjugates toxic for FGFR1-overproducing cancers. Biomacromolecules 2021; 22(12): 5349–5362

    Article  PubMed  PubMed Central  Google Scholar 

  222. Dundas CM, Démonte D, Park S. Streptavidin-biotin technology: improvements and innovations in chemical and biological applications. Appl Microbiol Biotechnol 2013; 97(21): 9343–9353

    Article  CAS  PubMed  Google Scholar 

  223. Le Q, Nguyen V, Park S. Recent advances in the engineering and application of streptavidin-like molecules. Appl Microbiol Biotechnol 2019; 103(18): 7355–7365

    Article  CAS  PubMed  Google Scholar 

  224. Tremante E, Sibilio L, Centola F, Knutti N, Holzapfel G, Manni I, Allegretti M, Lombardi P, Salvo G, Cecchetelli L, Friedrich K, Bertram J, Giacomini P. TOOLBOX: Strep-Tagged nanoassemblies of antibody-drug-conjugates (ADC) for modular and conditional cancer drugging. Oncol Rep 2021; 45(5): 77

    Article  CAS  PubMed  Google Scholar 

  225. Lázaro-Gorines R, Ruiz-de-la-Herrán J, Navarro R, Sanz L, Álvarez-Vallina L, Martínez-Del-Pozo A, Gavilanes JG, Lacadena J. A novel carcinoembryonic antigen (CEA)-targeted trimeric immunotoxin shows significantly enhanced antitumor activity in human colorectal cancer xenografts. Sci Rep 2019; 9(1): 11680

    Article  PubMed  PubMed Central  Google Scholar 

  226. Yamaguchi A, Anami Y, Ha SYY, Roeder TJ, Xiong W, Lee J, Ueno NT, Zhang N, An Z, Tsuchikama K. Chemical generation of small molecule-based bispecific antibody-drug conjugates for broadening the target scope. Bioorg Med Chem 2021; 32: 116013

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 32070940 and 81991491), China Postdoctoral Science Foundation (No. 2021M700115), Postdoctoral Innovation Talents Support Program (No. BX20220189), CAMS Innovation Fund for Medical Sciences (No. 2019RU022), and Fundamental Research Funds for the Central Universities (No. 20720220006).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xue Liu or Wenxin Luo.

Ethics declarations

Conflicts of interest Hongye Zeng, Wenjing Ning, Xue Liu, Wenxin Luo, and Ningshao Xia declare no potential conflicts of interest.

This manuscript is a review article and does not involve a research protocol requiring approval by an institutional review board or ethics committee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, H., Ning, W., Liu, X. et al. Unlocking the potential of bispecific ADCs for targeted cancer therapy. Front. Med. 18, 597–621 (2024). https://doi.org/10.1007/s11684-024-1072-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11684-024-1072-8

Keywords