Skip to main content
Log in

NETO2 promotes melanoma progression via activation of the Ca2+/CaMKII signaling pathway

  • Research Article
  • Published:
Frontiers of Medicine Aims and scope Submit manuscript

Abstract

Melanoma is the most aggressive cutaneous tumor. Neuropilin and tolloid-like 2 (NETO2) is closely related to tumorigenesis. However, the functional significance of NETO2 in melanoma progression remains unclear. Herein, we found that NETO2 expression was augmented in melanoma clinical tissues and associated with poor prognosis in melanoma patients. Disrupting NETO2 expression markedly inhibited melanoma proliferation, malignant growth, migration, and invasion by downregulating the levels of calcium ions (Ca2+) and the expression of key genes involved in the calcium signaling pathway. By contrast, NETO2 overexpression had the opposite effects. Importantly, pharmacological inhibition of CaMKII/CREB activity with the CaMKII inhibitor KN93 suppressed NETO2-induced proliferation and melanoma metastasis. Overall, this study uncovered the crucial role of NETO2-mediated regulation in melanoma progression, indicating that targeting NETO2 may effectively improve melanoma treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berridge MJ, Bootman MD, Lipp P. Calcium—a life and death signal. Nature 1998; 395(6703): 645–648

    Article  CAS  PubMed  Google Scholar 

  2. Berridge MJ, Bootman MD, Roderick HL. Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 2003; 4(7): 517–529

    Article  CAS  PubMed  Google Scholar 

  3. Stewart TA, Yapa KT, Monteith GR. Altered calcium signaling in cancer cells. Biochim Biophys Acta 2015; 1848(10 Pt B): 2502–2511

    Article  CAS  PubMed  Google Scholar 

  4. Long T, Su J, Tang W, Luo Z, Liu S, Liu Z, Zhou H, Qi M, Zeng W, Zhang J, Chen X. A novel interaction between calcium-modulating cyclophilin ligand and basigin regulates calcium signaling and matrix metalloproteinase activities in human melanoma cells. Cancer Lett 2013; 339(1): 93–101

    Article  CAS  PubMed  Google Scholar 

  5. Lin Q, Balasubramanian K, Fan D, Kim SJ, Guo L, Wang H, Bar-Eli M, Aldape KD, Fidler IJ. Reactive astrocytes protect melanoma cells from chemotherapy by sequestering intracellular calcium through gap junction communication channels. Neoplasia 2010; 12(9): 748–754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Miller AJ, Mihm MC Jr. Melanoma N Engl J Med 2006; 355(1): 51–65

    Article  CAS  PubMed  Google Scholar 

  7. Luke JJ, Flaherty KT, Ribas A, Long GV. Targeted agents and immunotherapies: optimizing outcomes in melanoma. Nat Rev Clin Oncol 2017; 14(8): 463–482

    Article  CAS  PubMed  Google Scholar 

  8. Tomita S, Castillo PE. Neto1 and Neto2: auxiliary subunits that determine key properties of native kainate receptors. J Physiol 2012; 590(10): 2217–2223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Copits BA, Swanson GT. Dancing partners at the synapse: auxiliary subunits that shape kainate receptor function. Nat Rev Neurosci 2012; 13(10): 675–686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhang W, St-Gelais F, Grabner CP, Trinidad JC, Sumioka A, Morimoto-Tomita M, Kim KS, Straub C, Burlingame AL, Howe JR, Tomita S. A transmembrane accessory subunit that modulates kainate-type glutamate receptors. Neuron 2009; 61(3): 385–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mennesson M, Orav E, Gigliotta A, Kulesskaya N, Saarnio S, Kirjavainen A, Kesaf S, Winkel F, Llach Pou M, Umemori J, Voikar V, Risbrough V, Partanen J, Castrén E, Lauri SE, Hovatta I. Kainate receptor auxiliary subunit NETO2-related cued fear conditioning impairments associate with defects in amygdala development and excitability. eNeuro 2020; 7(4): ENEURO.0541-19.2020

    Google Scholar 

  12. Sargin D. Heightened fear in the absence of the kainate receptor auxiliary subunit NETO2: implications for PTSD. Neuropsychopharmacology 2019; 44(11): 1841–1842

    Article  PubMed  PubMed Central  Google Scholar 

  13. Xu JC, Chen TY, Liao LT, Chen T, Li QL, Xu JX, Hu JW, Zhou PH, Zhang YQ. NETO2 promotes esophageal cancer progression by inducing proliferation and metastasis via PI3K/AKT and ERK pathway. Int J Biol Sci 2021; 17(1): 259–270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang X, Bian Z, Hou C, Li M, Jiang W, Zhu L. Neuropilin and tolloid-like 2 regulates the progression of osteosarcoma. Gene 2021; 768: 145292

    Article  CAS  PubMed  Google Scholar 

  15. Liu JY, Jiang L, He T, Liu JJ, Fan JY, Xu XH, Tang B, Shi Y, Zhao YL, Qian F, Wang Y, Cui YH, Yu PW. NETO2 promotes invasion and metastasis of gastric cancer cells via activation of PI3K/Akt/NF-κB/Snail axis and predicts outcome of the patients. Cell Death Dis 2019; 10(3): 162

    Article  PubMed  PubMed Central  Google Scholar 

  16. Li Y, Zhang Y, Liu J. NETO2 promotes pancreatic cancer cell proliferation, invasion and migration via activation of the STAT3 signaling pathway. Cancer Manag Res 2019; 11: 5147–5156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ma H, Groth RD, Cohen SM, Emery JF, Li B, Hoedt E, Zhang G, Neubert TA, Tsien RW. γCaMKII shuttles Ca2+/CaM to the nucleus to trigger CREB phosphorylation and gene expression. Cell 2014; 159(2): 281–294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Xiao C, Yang BF, Song JH, Schulman H, Li L, Hao C. Inhibition of CaMKII-mediated c-FLIP expression sensitizes malignant melanoma cells to TRAIL-induced apoptosis. Exp Cell Res 2005; 304(1): 244–255

    Article  CAS  PubMed  Google Scholar 

  19. Chen W, Chen Y, Su J, Kang J, Ding Y, Ai W, Zhang J, Luo H, An P. CaMKII mediates TGFβ1-induced fibroblasts activation and its cross talk with colon cancer cells. Dig Dis Sci 2022; 67(1): 134–145

    Article  CAS  PubMed  Google Scholar 

  20. Chen SP, Sun J, Zhou YQ, Cao F, Braun C, Luo F, Ye DW, Tian YK. Sinomenine attenuates cancer-induced bone pain via suppressing microglial JAK2/STAT3 and neuronal CAMKII/CREB cascades in rat models. Mol Pain 2018; 14: 1744806918793232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hsu WC, Le HN, Lin YJ, Chen MC, Wang TF, Li CC, Kuo WW, Mahalakshmi B, Singh CH, Chen MC, Huang CY. Calmodulin/CaMKII-γ mediates prosurvival capability in apicidin-persistent hepatocellular carcinoma cells via ERK1/2/CREB/c-fos signaling pathway. J Cell Biochem 2021; 122(6): 612–625

    Article  CAS  PubMed  Google Scholar 

  22. Li B, Rex E, Wang H, Qian Y, Ogden AM, Bleakman D, Johnson KW. Pharmacological modulation of GluK1 and GluK2 by NETO1, NETO2, and PSD95. Assay Drug Dev Technol 2016; 14(2): 131–143

    Article  CAS  PubMed  Google Scholar 

  23. Lian C, Cao S, Zeng W, Li Y, Su J, Li J, Zhao S, Wu L, Tao J, Zhou J, Chen X, Peng C. RJT-101, a novel camptothecin derivative, is highly effective in the treatment of melanoma through DNA damage by targeting topoisomerase 1. Biochem Pharmacol 2020; 171: 113716

    Article  CAS  PubMed  Google Scholar 

  24. Zhang X, Huang Z, Guo Y, Xiao T, Tang L, Zhao S, Wu L, Su J, Zeng W, Huang H, Li Z, Tao J, Zhou J, Chen X, Peng C. The phosphorylation of CD147 by Fyn plays a critical role for melanoma cells growth and metastasis. Oncogene 2020; 39(21): 4183–4197

    Article  CAS  PubMed  Google Scholar 

  25. Guney E, Arruda AP, Parlakgul G, Cagampan E, Min N, Lee GY, Greene L, Tsaousidou E, Inouye K, Han MS, Davis RJ, Hotamisligil GS. Aberrant Ca2+ signaling by IP3Rs in adipocytes links inflammation to metabolic dysregulation in obesity. Sci Signal 2021; 14(713): eabf2059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gu F, Krüger A, Roggenkamp HG, Alpers R, Lodygin D, Jaquet V, Möckl F, Hernandez C LC, Winterberg K, Bauche A, Rosche A, Grasberger H, Kao JY, Schetelig D, Werner R, Schröder K, Carty M, Bowie AG, Huber S, Meier C, Mittrücker HW, Heeren J, Krause KH, Flügel A, Diercks BP, Guse AH. Dual NADPH oxidases DUOX1 and DUOX2 synthesize NAADP and are necessary for Ca2+ signaling during T cell activation. Sci Signal 2021; 14(709): eabe3800

    Article  CAS  PubMed  Google Scholar 

  27. Tan Y, Mui D, Toan S, Zhu P, Li R, Zhou H. SERCA overexpression improves mitochondrial quality control and attenuates cardiac microvascular ischemia-reperfusion injury. Mol Ther Nucleic Acids 2020; 22: 696–707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Monteith GR, Davis FM, Roberts-Thomson SJ. Calcium channels and pumps in cancer: changes and consequences. J Biol Chem 2012; 287(38): 31666–31673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mookerjee-Basu J, Hooper R, Gross S, Schultz B, Go CK, Samakai E, Ladner J, Nicolas E, Tian Y, Zhou B, Zaidi MR, Tourtellotte W, He S, Zhang Y, Kappes DJ, Soboloff J. Suppression of Ca2+ signals by EGR4 controls Th1 differentiation and anti-cancer immunity in vivo. EMBO Rep 2020; 21(5): e48904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jia Q, Hu S, Jiao D, Li X, Qi S, Fan R. Synaptotagmin-4 promotes dendrite extension and melanogenesis in alpaca melanocytes by regulating Ca2+ influx via TRPM1 channels. Cell Biochem Funct 2020; 38(3): 275–282

    Article  CAS  PubMed  Google Scholar 

  31. Schwab A, Loeck T, Najder-Nalepa K. STIM2: redox-sensor and effector of the (tumor) microenvironment. Cell Calcium 2021; 94: 102335

    Article  CAS  PubMed  Google Scholar 

  32. Kondratskyi A, Yassine M, Kondratska K, Skryma R, Slomianny C, Prevarskaya N. Calcium-permeable ion channels in control of autophagy and cancer. Front Physiol 2013; 4: 272

    Article  PubMed  PubMed Central  Google Scholar 

  33. Li YJ, Duan GF, Sun JH, Wu D, Ye C, Zang YY, Chen GQ, Shi YY, Wang J, Zhang W, Shi YS. Neto proteins regulate gating of the kainate-type glutamate receptor GluK2 through two binding sites. J Biol Chem 2019; 294(47): 17889–17902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Falcón-Moya R, Losada-Ruiz P, Sihra TS, Rodríguez-Moreno A. Cerebellar kainate receptor-mediated facilitation of glutamate release requires Ca2+-calmodulin and PKA. Front Mol Neurosci 2018; 11: 195

    Article  PubMed  PubMed Central  Google Scholar 

  35. Hansen MR, Bok J, Devaiah AK, Zha XM, Green SH. Ca2+/calmodulin-dependent protein kinases II and IV both promote survival but differ in their effects on axon growth in spiral ganglion neurons. J Neurosci Res 2003; 72(2): 169–184

    Article  CAS  PubMed  Google Scholar 

  36. Pan K, Xie Y. LncRNA FOXC2-AS1 enhances FOXC2 mRNA stability to promote colorectal cancer progression via activation of Ca2+-FAK signal pathway. Cell Death Dis 2020; 11(6): 434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Shi C, Cai Y, Li Y, Li Y, Hu N, Ma S, Hu S, Zhu P, Wang W, Zhou H. Yap promotes hepatocellular carcinoma metastasis and mobilization via governing cofilin/F-actin/lamellipodium axis by regulation of JNK/Bnip3/SERCA/CaMKII pathways. Redox Biol 2018; 14: 59–71

    Article  CAS  PubMed  Google Scholar 

  38. Lomash RM, Sheng N, Li Y, Nicoll RA, Roche KW. Phosphorylation of the kainate receptor (KAR) auxiliary subunit Neto2 at serine 409 regulates synaptic targeting of the KAR subunit GluK1. J Biol Chem 2017; 292(37): 15369–15377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wen AY, Sakamoto KM, Miller LS. The role of the transcription factor CREB in immune function. J Immunol 2010; 185(11): 6413–6419

    Article  CAS  PubMed  Google Scholar 

  40. Zhou YQ, Liu DQ, Chen SP, Sun J, Zhou XR, Luo F, Tian YK, Ye DW. Cellular and molecular mechanisms of calcium/calmodulin-dependent protein kinase II in chronic pain. J Pharmacol Exp Ther 2017; 363(2): 176–183

    Article  CAS  PubMed  Google Scholar 

  41. Jie Z, Xie Z, Zhao X, Sun X, Yu H, Pan X, Shen S, Qin A, Fang X, Fan S. Glabridin inhibits osteosarcoma migration and invasion via blocking the p38- and JNK-mediated CREB-AP1 complexes formation. J Cell Physiol 2019; 234(4): 4167–4178

    Article  CAS  PubMed  Google Scholar 

  42. Li H, Qiu Z, Li F, Wang C. The relationship between MMP-2 and MMP-9 expression levels with breast cancer incidence and prognosis. Oncol Lett 2017; 14(5): 5865–5870

    PubMed  PubMed Central  Google Scholar 

  43. Brabletz T, Kalluri R, Nieto MA, Weinberg RA. EMT in cancer. Nat Rev Cancer 2018; 18(2): 128–134

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (Nos. 82073458, 82173424, 81773341, 81772917, and 81830096). This research also was supported by the Science and Technology Innovation Program of Hunan Province (No. 2021RC4013) and the Program of Introducing Talents of Discipline to Universities (111 Project, No. B20017)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiang Chen or Cong Peng.

Ethics declarations

Susi Zhu, Xu Zhang, Yeye Guo, Ling Tang, Zhe Zhou, Xiang Chen, and Cong Peng declare that they have no competing interests. All institutional and national guidelines for the care and use of laboratory animals were followed.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, S., Zhang, X., Guo, Y. et al. NETO2 promotes melanoma progression via activation of the Ca2+/CaMKII signaling pathway. Front. Med. 17, 263–274 (2023). https://doi.org/10.1007/s11684-022-0935-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11684-022-0935-0

Keywords

Navigation