Skip to main content
Log in

CAR T cells redirected against tumor-specific antigen glycoforms: can low-sugar antigens guarantee a sweet success?

  • Review
  • Published:
Frontiers of Medicine Aims and scope Submit manuscript

Abstract

Immune-based therapies have experienced a pronounced breakthrough in the past decades as they acquired multiple US Food and Drug Administration (FDA) approvals for various indications. To date, six chimeric antigen receptor T cell (CAR-T) therapies have been permitted for the treatment of certain patients with relapsed/refractory hematologic malignancies. However, several clinical trials of solid tumor CAR-T therapies were prematurely terminated, or they reported life-threatening treatment-related damages to healthy tissues. The simultaneous expression of target antigens by healthy organs and tumor cells is partly responsible for such toxicities. Alongside targeting tumor-specific antigens, targeting the aberrantly glycosylated glycoforms of tumor-associated antigens can also minimize the off-tumor effects of CAR-T therapies. Tn, T, and sialyl-Tn antigens have been reported to be involved in tumor progression and metastasis, and their expression results from the dysregulation of a series of glycosyltransferases and the endoplasmic reticulum protein chaperone, Cosmc. Moreover, these glycoforms have been associated with various types of cancers, including prostate, breast, colon, gastric, and lung cancers. Here, we discuss how underglycosylated antigens emerge and then detail the latest advances in the development of CAR-T-based immunotherapies that target some of such antigens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Safarzadeh Kozani P, Safarzadeh Kozani P, Rahbarizadeh F. Novel antigens of CAR T cell therapy: new roads; old destination. Transl Oncol 2021; 14(7): 101079

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Hashem Boroojerdi M, Rahbarizadeh F, Safarzadeh Kozani P, Kamali E, Safarzadeh Kozani P. Strategies for having a more effective and less toxic CAR T-cell therapy for acute lymphoblastic leukemia. Med Oncol 2020; 37(11): 100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mullard A. FDA approves first CAR T therapy. Nat Rev Drug Discov 2017; 16(10): 669

    PubMed  Google Scholar 

  4. No author listed. FDA approves second CAR T-cell therapy. Cancer Discov 2018; 8(1): 5–6

  5. Voelker R. CAR-T therapy is approved for mantle cell lymphoma. JAMA 2020; 324(9): 832

    PubMed  Google Scholar 

  6. Mullard A. FDA approves first BCMA-targeted CAR-T cell therapy. Nat Rev Drug Discov 2021; 20(5): 332

    PubMed  Google Scholar 

  7. Mullard A. FDA approves fourth CAR-T cell therapy. Nat Rev Drug Discov 2021; 20(3): 166

    PubMed  Google Scholar 

  8. Safarzadeh Kozani P, Safarzadeh Kozani P, Rahbarizadeh F, Khoshtinat Nikkhoi S. Strategies for dodging the obstacles in CAR T cell therapy. Front Oncol 2021; 11(924): 627549

    Article  PubMed  PubMed Central  Google Scholar 

  9. Shah NN, Fry TJ. Mechanisms of resistance to CAR T cell therapy. Nat Rev Clin Oncol 2019; 16(6): 372–385

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Safarzadeh Kozani P, Safarzadeh Kozani P, O’Connor RS. In like a lamb; out like a lion: marching CAR-T cells towards enhanced efficacy in B-ALL. Mol Cancer Ther 2021; 20(7): 1223–1233

    Article  PubMed  PubMed Central  Google Scholar 

  11. June CH, O’Connor RS, Kawalekar OU, Ghassemi S, Milone MC. CAR T cell immunotherapy for human cancer. Science 2018; 359(6382): 1361–1365

    Article  CAS  PubMed  Google Scholar 

  12. Landoni E, Fucá G, Wang J, Chirasani VR, Yao Z, Dukhovlinova E, Ferrone S, Savoldo B, Hong LK, Shou P, Musio S, Padelli F, Finocchiaro G, Droste M, Kuhlman B, Shamshiev A, Pellegatta S, Dokholyan NV, Dotti G. Modifications to the framework regions eliminate chimeric antigen receptor tonic signaling. Cancer Immunol Res 2021; 9(4): 441–453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Long AH, Haso WM, Shern JF, Wanhainen KM, Murgai M, Ingaramo M, Smith JP, Walker AJ, Kohler ME, Venkateshwara VR, Kaplan RN, Patterson GH, Fry TJ, Orentas RJ, Mackall CL. 4-1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors. Nat Med 2015; 21(6): 581–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ajina A, Maher J. Strategies to address chimeric antigen receptor tonic signaling. Mol Cancer Ther 2018; 17(9): 1795–1815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hege K. Context matters in CAR T cell tonic signaling. Nat Med 2021; 27(5): 763–764

    Article  CAS  PubMed  Google Scholar 

  16. Zhao JX, Yang L, Gu ZN, Chen HQ, Tian FW, Chen YQ, Zhang H, Chen W. Stabilization of the single-chain fragment variable by an interdomain disulfide bond and its effect on antibody affinity. Int J Mol Sci 2010; 12(1): 1–11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Rahbarizadeh F, Ahmadvand D, Moghimi SM. CAR T-cell bioengineering: single variable domain of heavy chain antibody targeted CARs. Adv Drug Deliv Rev 2019; 141: 41–46

    Article  CAS  PubMed  Google Scholar 

  18. Sharifzadeh Z, Rahbarizadeh F, Shokrgozar MA, Ahmadvand D, Mahboudi F, Jamnani FR, Moghimi SM. Genetically engineered T cells bearing chimeric nanoconstructed receptors harboring TAG-72-specific camelid single domain antibodies as targeting agents. Cancer Lett 2013; 334(2): 237–244

    Article  CAS  PubMed  Google Scholar 

  19. Jamnani FR, Rahbarizadeh F, Shokrgozar MA, Mahboudi F, Ahmadvand D, Sharifzadeh Z, Parhamifar L, Moghimi SM. T cells expressing VHH-directed oligoclonal chimeric HER2 antigen receptors: towards tumor-directed oligoclonal T cell therapy. Biochim Biophys Acta 2014; 1840(1): 378–386

    Article  CAS  PubMed  Google Scholar 

  20. Khaleghi S, Rahbarizadeh F, Ahmadvand D, Rasaee MJ, Pognonec P. A caspase 8-based suicide switch induces apoptosis in nanobody-directed chimeric receptor expressing T cells. Int J Hematol 2012; 95(4): 434–444

    Article  CAS  PubMed  Google Scholar 

  21. Rajabzadeh A, Rahbarizadeh F, Ahmadvand D, Kabir Salmani M, Hamidieh AA. A VHH-based anti-MUC1 chimeric antigen receptor for specific retargeting of human primary T cells to MUC1-positive cancer cells. Cell J 2021; 22(4): 502–513

    PubMed  Google Scholar 

  22. Iri-Sofla FJ, Rahbarizadeh F, Ahmadvand D, Rasaee MJ. Nanobody-based chimeric receptor gene integration in Jurkat cells mediated by φC31 integrase. Exp Cell Res 2011; 317(18): 2630–2641

    Article  CAS  PubMed  Google Scholar 

  23. Bakhtiari SH, Rahbarizadeh F, Hasannia S, Ahmadvand D, Iri-Sofla FJ, Rasaee MJ. Anti-MUC1 nanobody can redirect T-body cytotoxic effector function. Hybridoma (Larchmt) 2009; 28(2): 85–92

    Article  CAS  Google Scholar 

  24. Larson RC, Maus MV. Recent advances and discoveries in the mechanisms and functions of CAR T cells. Nat Rev Cancer 2021; 21(3): 145–161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rafiq S, Hackett CS, Brentjens RJ. Engineering strategies to overcome the current roadblocks in CAR T cell therapy. Nat Rev Clin Oncol 2020; 17(3): 147–167

    Article  PubMed  Google Scholar 

  26. Huppa JB, Axmann M, Mörtelmaier MA, Lillemeier BF, Newell EW, Brameshuber M, Klein LO, Schütz GJ, Davis MM. TCR-peptide-MHC interactions in situ show accelerated kinetics and increased affinity. Nature 2010; 463(7283): 963–967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Huang J, Brameshuber M, Zeng X, Xie J, Li QJ, Chien YH, Valitutti S, Davis MM. A single peptide-major histocompatibility complex ligand triggers digital cytokine secretion in CD4+ T cells. Immunity 2013; 39(5): 846–857

    Article  CAS  PubMed  Google Scholar 

  28. Huse M, Klein LO, Girvin AT, Faraj JM, Li QJ, Kuhns MS, Davis MM. Spatial and temporal dynamics of T cell receptor signaling with a photoactivatable agonist. Immunity 2007; 27(1): 76–88

    Article  CAS  PubMed  Google Scholar 

  29. Ramakrishna S, Highfill SL, Walsh Z, Nguyen SM, Lei H, Shern JF, Qin H, Kraft IL, Stetler-Stevenson M, Yuan CM, Hwang JD, Feng Y, Zhu Z, Dimitrov D, Shah NN, Fry TJ. Modulation of target antigen density improves CAR T-cell functionality and persistence. Clin Cancer Res 2019; 25(17): 5329–5341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Majzner RG, Rietberg SP, Sotillo E, Dong R, Vachharajani VT, Labanieh L, Myklebust JH, Kadapakkam M, Weber EW, Tousley AM, Richards RM, Heitzeneder S, Nguyen SM, Wiebking V, Theruvath J, Lynn RC, Xu P, Dunn AR, Vale RD, Mackall CL. Tuning the antigen density requirement for CAR T-cell activity. Cancer Discov 2020; 10(5): 702–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Donnadieu E, Dupré L, Pinho LG, Cotta-de-Almeida V. Surmounting the obstacles that impede effective CAR T cell trafficking to solid tumors. J Leukoc Biol 2020; 108(4): 1067–1079

    Article  CAS  PubMed  Google Scholar 

  32. Karsten U, Goletz S. What controls the expression of the core-1 (Thomsen-Friedenreich) glycotope on tumor cells? Biochemistry (Mosc) 2015; 80(7): 801–807

    Article  CAS  Google Scholar 

  33. Glinsky VV, Glinsky GV, Rittenhouse-Olson K, Huflejt ME, Glinskii OV, Deutscher SL, Quinn TP. The role of Thomsen-Friedenreich antigen in adhesion of human breast and prostate cancer cells to the endothelium. Cancer Res 2001; 61(12): 4851–4857

    CAS  PubMed  Google Scholar 

  34. Bian CF, Zhang Y, Sun H, Li DF, Wang DC. Structural basis for distinct binding properties of the human galectins to Thomsen-Friedenreich antigen. PLoS One 2011; 6(9): e25007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chen HD, Zhou X, Yu G, Zhao YL, Ren Y, Zhou YD, Li Q, Zhang XL. Knockdown of core 1 beta 1, 3-galactosyltransferase prolongs skin allograft survival with induction of galectin-1 secretion and suppression of CD8+ T cells: T synthase knockdown effects on galectin-1 and CD8+ T cells. J Clin Immunol 2012; 32(4): 820–836

    Article  CAS  PubMed  Google Scholar 

  36. Fu C, Zhao H, Wang Y, Cai H, Xiao Y, Zeng Y, Chen H. Tumor-associated antigens: Tn antigen, sTn antigen, and T antigen. HLA 2016; 88(6): 275–286

    Article  CAS  PubMed  Google Scholar 

  37. Ogata S, Maimonis PJ, Itzkowitz SH. Mucins bearing the cancer-associated sialosyl-Tn antigen mediate inhibition of natural killer cell cytotoxicity. Cancer Res 1992; 52(17): 4741–4746

    CAS  PubMed  Google Scholar 

  38. Takenaka Y, Fukumori T, Raz A. Galectin-3 and metastasis. Glycoconj J 2002; 19(7–9): 543–549

    Article  CAS  PubMed  Google Scholar 

  39. Beatson R, Maurstad G, Picco G, Arulappu A, Coleman J, Wandell HH, Clausen H, Mandel U, Taylor-Papadimitriou J, Sletmoen M, Burchell JM. The breast cancer-associated glycoforms of MUC1, MUC1-Tn and sialyl-Tn, are expressed in COSMC wild-type cells and bind the C-Type lectin MGL. PLoS One 2015; 10(5): e0125994

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Pinho S, Marcos NT, Ferreira B, Carvalho AS, Oliveira MJ, Santos-Silva F, Harduin-Lepers A, Reis CA. Biological significance of cancer-associated sialyl-Tn antigen: modulation of malignant phenotype in gastric carcinoma cells. Cancer Lett 2007; 249(2): 157–170

    Article  CAS  PubMed  Google Scholar 

  41. van Kooyk Y, Ilarregui JM, van Vliet SJ. Novel insights into the immunomodulatory role of the dendritic cell and macrophage-expressed C-type lectin MGL. Immunobiology 2015; 220(2): 185–192

    Article  CAS  PubMed  Google Scholar 

  42. van Vliet SJ, Vuist IM, Lenos K, Tefsen B, Kalay H, García-Vallejo JJ, van Kooyk Y. Human T cell activation results in extracellular signal-regulated kinase (ERK)-calcineurin-dependent exposure of Tn antigen on the cell surface and binding of the macrophage galactose-type lectin (MGL). J Biol Chem 2013; 288(38): 27519–27532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Springer GF, Taylor CR, Howard DR, Tegtmeyer H, Desai PR, Murthy SM, Felder B, Scanlon EF. Tn, a carcinoma-associated antigen, reacts with anti-Tn of normal human sera. Cancer 1985; 55(3): 561–569

    Article  CAS  PubMed  Google Scholar 

  44. Kjeldsen T, Clausen H, Hirohashi S, Ogawa T, Iijima H, Hakomori S. Preparation and characterization of monoclonal antibodies directed to the tumor-associated O-linked sialosyl-2–6 alpha-N-acetylgalactosaminyl (sialosyl-Tn) epitope. Cancer Res 1988; 48(8): 2214–2220

    CAS  PubMed  Google Scholar 

  45. Itzkowitz S, Kjeldsen T, Friera A, Hakomori S, Yang US, Kim YS. Expression of Tn, sialosyl Tn, and T antigens in human pancreas. Gastroenterology 1991; 100(6): 1691–1700

    Article  CAS  PubMed  Google Scholar 

  46. Itzkowitz SH, Yuan M, Montgomery CK, Kjeldsen T, Takahashi HK, Bigbee WL, Kim YS. Expression of Tn, sialosyl-Tn, and T antigens in human colon cancer. Cancer Res 1989; 49(1): 197–204

    CAS  PubMed  Google Scholar 

  47. Konska G, Guerry M, Caldefie-Chezet F, De Latour M, Guillot J. Study of the expression of Tn antigen in different types of human breast cancer cells using VVA-B4 lectin. Oncol Rep 2006; 15(2): 305–310

    CAS  PubMed  Google Scholar 

  48. Kobayashi H, Terao T, Kawashima Y. Clinical evaluation of circulating serum sialyl Tn antigen levels in patients with epithelial ovarian cancer. J Clin Oncol 1991; 9(6): 983–987

    Article  CAS  PubMed  Google Scholar 

  49. Akita K, Yoshida S, Ikehara Y, Shirakawa S, Toda M, Inoue M, Kitawaki J, Nakanishi H, Narimatsu H, Nakada H. Different levels of sialyl-Tn antigen expressed on MUC16 in patients with endometriosis and ovarian cancer. Int J Gynecol Cancer 2012; 22(4): 531–538

    Article  PubMed  Google Scholar 

  50. Ju T, Aryal RP, Kudelka MR, Wang Y, Cummings RD. The Cosmc connection to the Tn antigen in cancer. Cancer Biomark 2014; 14(1): 63–81

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Lira-Navarrete E, de Las Rivas M, Compañón I, Pallarés MC, Kong Y, Iglesias-Fernández J, Bernardes GJ, Peregrina JM, Rovira C, Bernadó P, Bruscolini P, Clausen H, Lostao A, Corzana F, Hurtado-Guerrero R. Dynamic interplay between catalytic and lectin domains of GalNAc-transferases modulates protein O-glycosylation. Nat Commun 2015; 6(1): 6937

    Article  CAS  PubMed  Google Scholar 

  52. Tamura F, Sato Y, Hirakawa M, Yoshida M, Ono M, Osuga T, Okagawa Y, Uemura N, Arihara Y, Murase K, Kawano Y, Iyama S, Takada K, Hayashi T, Sato T, Miyanishi K, Kobune M, Takimoto R, Kato J. RNAi-mediated gene silencing of ST6GalNAc I suppresses the metastatic potential in gastric cancer cells. Gastric Cancer 2016; 19(1): 85–97

    Article  CAS  PubMed  Google Scholar 

  53. Ju T, Lanneau GS, Gautam T, Wang Y, Xia B, Stowell SR, Willard MT, Wang W, Xia JY, Zuna RE, Laszik Z, Benbrook DM, Hanigan MH, Cummings RD. Human tumor antigens Tn and sialyl Tn arise from mutations in Cosmc. Cancer Res 2008; 68(6): 1636–1646

    Article  CAS  PubMed  Google Scholar 

  54. Yamada K, Kobayashi N, Ikeda T, Suzuki Y, Tsuge T, Horikoshi S, Emancipator SN, Tomino Y. Down-regulation of core 1 β1,3-galactosyltransferase and Cosmc by Th2 cytokine alters O-glycosylation of IgA1. Nephrol Dial Transplant 2010; 25(12): 3890–3897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Thurnher M, Rusconi S, Berger EG. Persistent repression of a functional allele can be responsible for galactosyltransferase deficiency in Tn syndrome. J Clin Invest 1993; 91(5): 2103–2110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Gill DJ, Chia J, Senewiratne J, Bard F. Regulation of O-glycosylation through Golgi-to-ER relocation of initiation enzymes. J Cell Biol 2010; 189(5): 843–858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Rivinoja A, Hassinen A, Kokkonen N, Kauppila A, Kellokumpu S. Elevated Golgi pH impairs terminal N-glycosylation by inducing mislocalization of Golgi glycosyltransferases. J Cell Physiol 2009; 220(1): 144–154

    Article  CAS  PubMed  Google Scholar 

  58. Julien S, Adriaenssens E, Ottenberg K, Furlan A, Courtand G, Vercoutter-Edouart AS, Hanisch FG, Delannoy P, Le Bourhis X. ST6GalNAc I expression in MDA-MB-231 breast cancer cells greatly modifies their O-glycosylation pattern and enhances their tumourigenicity. Glycobiology 2006; 16(1): 54–64

    Article  CAS  PubMed  Google Scholar 

  59. Kabuß R, Ashikov A, Oelmann S, Gerardy-Schahn R, Bakker H. Endoplasmic reticulum retention of the large splice variant of the UDP-galactose transporter is caused by a dilysine motif. Glycobiology 2005; 15(10): 905–911

    Article  PubMed  CAS  Google Scholar 

  60. Hassinen A, Rivinoja A, Kauppila A, Kellokumpu S. Golgi N-glycosyltransferases form both homo- and heterodimeric enzyme complexes in live cells. J Biol Chem 2010; 285(23): 17771–17777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Steentoft C, Fuhrmann M, Battisti F, Van Coillie J, Madsen TD, Campos D, Halim A, Vakhrushev SY, Joshi HJ, Schreiber H, Mandel U, Narimatsu Y. A strategy for generating cancer-specific monoclonal antibodies to aberrant O-glycoproteins: identification of a novel dysadherin-Tn antibody. Glycobiology 2019; 29(4): 307–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ino Y, Gotoh M, Sakamoto M, Tsukagoshi K, Hirohashi S. Dysadherin, a cancer-associated cell membrane glycoprotein, down-regulates E-cadherin and promotes metastasis. Proc Natl Acad Sci USA 2002; 99(1): 365–370

    Article  CAS  PubMed  Google Scholar 

  63. Huang X, Wang B, Yang D, Shi X, Hong J, Wang S, Dai X, Zhou X, Geng YJ. Reduced expression of FXYD domain containing ion transport regulator 5 in association with hypertension. Int J Mol Med 2012; 29(2): 231–238

    CAS  PubMed  Google Scholar 

  64. Thistlethwaite FC, Gilham DE, Guest RD, Rothwell DG, Pillai M, Burt DJ, Byatte AJ, Kirillova N, Valle JW, Sharma SK, Chester KA, Westwood NB, Halford SER, Nabarro S, Wan S, Austin E, Hawkins RE. The clinical efficacy of first-generation carcinoembryonic antigen (CEACAM5)-specific CAR T cells is limited by poor persistence and transient pre-conditioning-dependent respiratory toxicity. Cancer Immunol Immunother 2017; 66(11): 1425–1436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zheng C, Feng J, Lu D, Wang P, Xing S, Coll JL, Yang D, Yan X. A novel anti-CEACAM5 monoclonal antibody, CC4, suppresses colorectal tumor growth and enhances NK cells-mediated tumor immunity. PLoS One 2011; 6(6): e21146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ordoñez C, Screaton RA, Ilantzis C, Stanners CP. Human carcinoembryonic antigen functions as a general inhibitor of anoikis. Cancer Res 2000; 60(13): 3419–3424

    PubMed  Google Scholar 

  67. Sato Y, Tateno H, Adachi J, Okuyama H, Endo H, Tomonaga T, Inoue M. Generation of a monoclonal antibody recognizing the CEACAM glycan structure and inhibiting adhesion using cancer tissue-originated spheroid as an antigen. Sci Rep 2016; 6(1): 24823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Maezawa Y, Cina D, Quaggin SE. Glomerular cell biology. In: Alpern RJ, Moe OW, Caplan M. Seldin and Giebisch’s The Kidney. 5th ed. Cambridge, USA: Academic Press, 2013. 721–755

    Chapter  Google Scholar 

  69. Lin CW, Sun MS, Wu HC. Podocalyxin-like 1 is associated with tumor aggressiveness and metastatic gene expression in human oral squamous cell carcinoma. Int J Oncol 2014; 45(2): 710–718

    Article  CAS  PubMed  Google Scholar 

  70. Hayatsu N, Kaneko MK, Mishima K, Nishikawa R, Matsutani M, Price JE, Kato Y. Podocalyxin expression in malignant astrocytic tumors. Biochem Biophys Res Commun 2008; 374(2): 394–398

    Article  CAS  PubMed  Google Scholar 

  71. Larsson A, Johansson ME, Wangefjord S, Gaber A, Nodin B, Kucharzewska P, Welinder C, Belting M, Eberhard J, Johnsson A, Uhlén M, Jirström K. Overexpression of podocalyxin-like protein is an independent factor of poor prognosis in colorectal cancer. Br J Cancer 2011; 105(5): 666–672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Flores-Téllez TN, Lopez TV, Vásquez Garzón VR, Villa-Treviño S. Co-expression of Ezrin-CLIC5-podocalyxin is associated with migration and invasiveness in hepatocellular carcinoma. PLoS One 2015; 10(7): e0131605

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Snyder KA, Hughes MR, Hedberg B, Brandon J, Hernaez DC, Bergqvist P, Cruz F, Po K, Graves ML, Turvey ME, Nielsen JS, Wilkins JA, McColl SR, Babcook JS, Roskelley CD, McNagny KM. Podocalyxin enhances breast tumor growth and metastasis and is a target for monoclonal antibody therapy. Breast Cancer Res 2015; 17(1): 46

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Kaneko MK, Ohishi T, Kawada M, Kato Y. A cancer-specific anti-podocalyxin monoclonal antibody (60−mG2a−f) exerts antitumor effects in mouse xenograft models of pancreatic carcinoma. Biochem Biophys Rep 2020; 24: 100826

    PubMed  PubMed Central  Google Scholar 

  75. Yamada S, Itai S, Kaneko MK, Kato Y. Anti-podocalyxin monoclonal antibody 47−mG2a detects lung cancers by immunohistochemistry. Monoclon Antib Immunodiagn Immunother 2018; 37(2): 91–94

    Article  CAS  PubMed  Google Scholar 

  76. Schacht V, Dadras SS, Johnson LA, Jackson DG, Hong YK, Detmar M. Up-regulation of the lymphatic marker podoplanin, a mucin-type transmembrane glycoprotein, in human squamous cell carcinomas and germ cell tumors. Am J Pathol 2005; 166(3): 913–921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Shiina S, Ohno M, Ohka F, Kuramitsu S, Yamamichi A, Kato A, Motomura K, Tanahashi K, Yamamoto T, Watanabe R, Ito I, Senga T, Hamaguchi M, Wakabayashi T, Kaneko MK, Kato Y, Chandramohan V, Bigner DD, Natsume A. CAR T cells targeting podoplanin reduce orthotopic glioblastomas in mouse brains. Cancer Immunol Res 2016; 4(3): 259–268

    Article  CAS  PubMed  Google Scholar 

  78. Mishima K, Kato Y, Kaneko MK, Nishikawa R, Hirose T, Matsutani M. Increased expression of podoplanin in malignant astrocytic tumors as a novel molecular marker of malignant progression. Acta Neuropathol 2006; 111(5): 483–488

    Article  CAS  PubMed  Google Scholar 

  79. Abe S, Kaneko MK, Tsuchihashi Y, Izumi T, Ogasawara S, Okada N, Sato C, Tobiume M, Otsuka K, Miyamoto L, Tsuchiya K, Kawazoe K, Kato Y, Nishioka Y. Antitumor effect of novel anti-podoplanin antibody NZ-12 against malignant pleural mesothelioma in an orthotopic xenograft model. Cancer Sci 2016; 107(9): 1198–1205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. He Y, Schreiber K, Wolf SP, Wen F, Steentoft C, Zerweck J, Steiner M, Sharma P, Shepard HM, Posey A, June CH, Mandel U, Clausen H, Leisegang M, Meredith SC, Kranz DM, Schreiber H. Multiple cancer-specific antigens are targeted by a chimeric antigen receptor on a single cancer cell. JCI Insight 2019; 4(23): e135306

    Article  PubMed Central  Google Scholar 

  81. Kato Y, Kaneko MK. A cancer-specific monoclonal antibody recognizes the aberrantly glycosylated podoplanin. Sci Rep 2014; 4: 5924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Nath S, Mukherjee P. MUC1: a multifaceted oncoprotein with a key role in cancer progression. Trends Mol Med 2014; 20(6): 332–342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Mei Z, Zhang K, Lam AK, Huang J, Qiu F, Qiao B, Zhang Y. MUC1 as a target for CAR-T therapy in head and neck squamous cell carinoma. Cancer Med 2020; 9(2): 640–652

    Article  CAS  PubMed  Google Scholar 

  84. Zhou R, Yazdanifar M, Roy LD, Whilding LM, Gavrill A, Maher J, Mukherjee P. CAR T cells targeting the tumor MUC1 glycoprotein reduce triple-negative breast cancer growth. Front Immunol 2019; 10: 1149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Rahbarizadeh F, Rasaee MJ, Forouzandeh Moghadam M, Allameh AA, Sadroddiny E. Production of novel recombinant single-domain antibodies against tandem repeat region of MUC1 mucin. Hybrid Hybridomics 2004; 23(3): 151–159

    Article  CAS  PubMed  Google Scholar 

  86. Rahbarizadeh F, Rasaee MJ, Forouzandeh M, Allameh A, Sarrami R, Nasiry H, Sadeghizadeh M. The production and characterization of novel heavy-chain antibodies against the tandem repeat region of MUC1 mucin. Immunol Invest 2005; 34(4): 431–452

    Article  CAS  PubMed  Google Scholar 

  87. Wilkie S, Picco G, Foster J, Davies DM, Julien S, Cooper L, Arif S, Mather SJ, Taylor-Papadimitriou J, Burchell JM, Maher J. Retargeting of human T cells to tumor-associated MUC1: the evolution of a chimeric antigen receptor. J Immunol 2008; 180(7): 4901–4909

    Article  CAS  PubMed  Google Scholar 

  88. You F, Jiang L, Zhang B, Lu Q, Zhou Q, Liao X, Wu H, Du K, Zhu Y, Meng H, Gong Z, Zong Y, Huang L, Lu M, Tang J, Li Y, Zhai X, Wang X, Ye S, Chen D, Yuan L, Qi L, Yang L. Phase 1 clinical trial demonstrated that MUC1 positive metastatic seminal vesicle cancer can be effectively eradicated by modified anti-MUC1 chimeric antigen receptor transduced T cells. Sci China Life Sci 2016; 59(4): 386–397

    Article  CAS  PubMed  Google Scholar 

  89. Zhou R, Yazdanifar M, Roy LD, Whilding LM, Gavrill A, Maher J, Mukherjee P. Corrigendum: CAR T cells targeting the tumor MUC1 glycoprotein reduce triple-negative breast cancer growth. Front Immunol 2020; 11: 628776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Posey ADJr, Schwab RD, Boesteanu AC, Steentoft C, Mandel U, Engels B, Stone JD, Madsen TD, Schreiber K, Haines KM, Cogdill AP, Chen TJ, Song D, Scholler J, Kranz DM, Feldman MD, Young R, Keith B, Schreiber H, Clausen H, Johnson LA, June CH. Engineered CAR T cells targeting the cancer-associated Tn-glycoform of the membrane mucin MUC1 control adenocarcinoma. Immunity 2016; 44(6): 1444–1454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Maher J, Wilkie S, Davies DM, Arif S, Picco G, Julien S, Foster J, Burchell J, Taylor-Papadimitriou J. Targeting of tumor-associated glycoforms of MUC1 with CAR T cells. Immunity 2016; 45(5): 945–946

    Article  CAS  PubMed  Google Scholar 

  92. Berry N, Jones DB, Smallwood J, Taylor I, Kirkham N, Taylor-Papadimitriou J. The prognostic value of the monoclonal antibodies HMFG1 and HMFG2 in breast cancer. Br J Cancer 1985; 51(2): 179–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Athanassiou A, Pectasides D, Pateniotis K, Tzimis L, Natsis P, Lafi A, Arapantoni P, Koutsiouba P, Taylor-Papadimitriou J, Epenetos A. Immunoscintigraphy with 131I-labelled HMFG2 and HMFG2 F(ab′)2 in the pre-operative detection of clinical and subclinical lymph node metastases in breast cancer patients. Int J Cancer 1988; 41(S3): 89–95

    Article  Google Scholar 

  94. Bamias A, Bowles MJ, Krausz T, Williams G, Epenetos AA. Intravesical administration of indium-111-labelled HMFG2 monoclonal antibody in superficial bladder carcinomas. Int J Cancer 1993; 54(6): 899–903

    Article  CAS  PubMed  Google Scholar 

  95. Bose M, Mukherjee P. Abstract 2052: A novel antibody blocks anti-apoptotic activity of MUC1 in pancreatic cancer cell lines. Cancer Res 2019; 79(13 Supplement): 2052

    Article  Google Scholar 

  96. Curry JM, Thompson KJ, Rao SG, Besmer DM, Murphy AM, Grdzelishvili VZ, Ahrens WA, McKillop IH, Sindram D, Iannitti DA, Martinie JB, Mukherjee P. The use of a novel MUC1 antibody to identify cancer stem cells and circulating MUC1 in mice and patients with pancreatic cancer. J Surg Oncol 2013; 107(7): 713–722

    Article  CAS  PubMed  Google Scholar 

  97. Wu ST, Williams CD, Grover PA, Moore LJ, Mukherjee P. Early detection of pancreatic cancer in mouse models using a novel antibody, TAB004. PLoS One 2018; 13(2): e0193260

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Moore LJ, Roy LD, Zhou R, Grover P, Wu ST, Curry JM, Dillon LM, Puri PM, Yazdanifar M, Puri R, Mukherjee P, Dréau D. Antibody-guided in vivo imaging for early detection of mammary gland tumors. Transl Oncol 2016; 9(4): 295–305

    Article  PubMed  PubMed Central  Google Scholar 

  99. Roy LD, Dillon LM, Zhou R, Moore LJ, Livasy C, El-Khoury JM, Puri R, Mukherjee P. A tumor specific antibody to aid breast cancer screening in women with dense breast tissue. Genes Cancer 2017; 8(3–4): 536–549

    Article  PubMed  PubMed Central  Google Scholar 

  100. Lavrsen K, Madsen CB, Rasch MG, Woetmann A, Ødum N, Mandel U, Clausen H, Pedersen AE, Wandall HH. Aberrantly glycosylated MUC1 is expressed on the surface of breast cancer cells and a target for antibody-dependent cell-mediated cytotoxicity. Glycoconj J 2013; 30(3): 227–236

    Article  CAS  PubMed  Google Scholar 

  101. Hombach A, Heuser C, Sircar R, Tillmann T, Diehl V, Kruis W, Pohl C, Abken H. T cell targeting of TAG72+ tumor cells by a chimeric receptor with antibody-like specificity for a carbohydrate epitope. Gastroenterology 1997; 113(4): 1163–1170

    Article  CAS  PubMed  Google Scholar 

  102. Qi Y, Moyana T, Bresalier R, Xiang J. Antibody-targeted lymphokine-activated killer cells inhibit liver micrometastases in severe combined immunodeficient mice. Gastroenterology 1995; 109(6): 1950–1957

    Article  CAS  PubMed  Google Scholar 

  103. Metcalf KS, Selby PJ, Trejdosiewicz LK, Southgate J. Culture of ascitic ovarian cancer cells as a clinically-relevant ex vivo model for the assessment of biological therapies. Eur J Gynaecol Oncol 1998; 19(2): 113–119

    CAS  PubMed  Google Scholar 

  104. Myriokefalitaki E, Vorgias G, Vlahos G, Rodolakis A. Prognostic value of preoperative Ca125 and Tag72 serum levels and their correlation to disease relapse and survival in endometrial cancer. Arch Gynecol Obstet 2015; 292(3): 647–654

    Article  CAS  PubMed  Google Scholar 

  105. Hombach A, Sircar R, Heuser C, Tillmann T, Diehl V, Kruis W, Pohl C, Abken H. Chimeric anti-TAG72 receptors with immunoglobulin constant Fc domains and gamma or zeta signalling chains. Int J Mol Med 1998; 2(1): 99–103

    CAS  PubMed  Google Scholar 

  106. Hege KM, Bergsland EK, Fisher GA, Nemunaitis JJ, Warren RS, McArthur JG, Lin AA, Schlom J, June CH, Sherwin SA. Safety, tumor trafficking and immunogenicity of chimeric antigen receptor (CAR)-T cells specific for TAG-72 in colorectal cancer. J Immunother Cancer 2017; 5(1): 22

    Article  PubMed  PubMed Central  Google Scholar 

  107. Murad JP, Kozlowska AK, Lee HJ, Ramamurthy M, Chang WC, Yazaki P, Colcher D, Shively J, Cristea M, Forman SJ, Priceman SJ. Effective targeting of TAG72+ peritoneal ovarian tumors via regional delivery of CAR-engineered T cells. Front Immunol 2018; 9: 2268

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Reis CA, Sørensen T, Mandel U, David L, Mirgorodskaya E, Roepstorff P, Kihlberg J, Hansen JE, Clausen H. Development and characterization of an antibody directed to an α-N-acetyl-D-galactosamine glycosylated MUC2 peptide. Glycoconj J 1998; 15(1): 51–62

    Article  CAS  PubMed  Google Scholar 

  109. Pedersen JW, Blixt O, Bennett EP, Tarp MA, Dar I, Mandel U, Poulsen SS, Pedersen AE, Rasmussen S, Jess P, Clausen H, Wandall HH. Seromic profiling of colorectal cancer patients with novel glycopeptide microarray. Int J Cancer 2011; 128(8): 1860–1871

    Article  CAS  PubMed  Google Scholar 

  110. Tassone P, Bond H, Bonelli P, Tuccillo F, Valerio G, Petrella A, Lamberti A, Cecco L, Turco MC, Cerra M, Montagnani S, Morrone G, Venuta S. UN1, a murine monoclonal antibody recognizing a novel human thymic antigen. Tissue Antigens 1994; 44(2): 73–82

    Article  CAS  PubMed  Google Scholar 

  111. de Laurentiis A, Gaspari M, Palmieri C, Falcone C, Iaccino E, Fiume G, Massa O, Masullo M, Tuccillo FM, Roveda L, Prati U, Fierro O, Cozzolino I, Troncone G, Tassone P, Scala G, Quinto I. Mass spectrometry-based identification of the tumor antigen UN1 as the transmembrane CD43 sialoglycoprotein. Mol Cell Proteomics 2011; 10(5): M111.007898

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Matsuura H, Hakomori S. The oncofetal domain of fibronectin defined by monoclonal antibody FDC-6: its presence in fibronectins from fetal and tumor tissues and its absence in those from normal adult tissues and plasma. Proc Natl Acad Sci USA 1985; 82(19): 6517–6521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. He Y, Schreiber K, Wolf SP, Wen F, Steentoft C, Zerweck J, Steiner M, Sharma P, Shepard HM, Posey A, June CH, Mandel U, Clausen H, Leisegang M, Meredith SC, Kranz DM, Schreiber H. Multiple cancer-specific antigens are targeted by a chimeric antigen receptor on a single cancer cell. JCI Insight 2019; 4(23): e135306

    Article  PubMed Central  Google Scholar 

  114. Schietinger A, Philip M, Yoshida BA, Azadi P, Liu H, Meredith SC, Schreiber H. A mutant chaperone converts a wild-type protein into a tumor-specific antigen. Science 2006; 314(5797): 304–308

    Article  CAS  PubMed  Google Scholar 

  115. Burchell J, Gendler S, Taylor-Papadimitriou J, Girling A, Lewis A, Millis R, Lamport D. Development and characterization of breast cancer reactive monoclonal antibodies directed to the core protein of the human milk mucin. Cancer Res 1987; 47(20): 5476–5482

    CAS  PubMed  Google Scholar 

  116. Danielczyk A, Stahn R, Faulstich D, Löffler A, Märten A, Karsten U, Goletz S. PankoMab: a potent new generation antitumour MUC1 antibody. Cancer Immunol Immunother 2006; 55(11): 1337–1347

    Article  CAS  PubMed  Google Scholar 

  117. Tarp MA, Sørensen AL, Mandel U, Paulsen H, Burchell J, Taylor-Papadimitriou J, Clausen H. Identification of a novel cancer-specific immunodominant glycopeptide epitope in the MUC1 tandem repeat. Glycobiology 2007; 17(2): 197–209

    Article  CAS  PubMed  Google Scholar 

  118. Yamamoto M, Bhavanandan VP, Nakamori S, Irimura T. A novel monoclonal antibody specific for sialylated MUC1 mucin. Jpn J Cancer Res 1996; 87(5): 488–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Takeuchi H, Kato K, Denda-Nagai K, Hanisch FG, Clausen H, Irimura T. The epitope recognized by the unique anti-MUC1 monoclonal antibody MY.1E12 involves sialylα2-3galactosylβ1-3N-acetylgalactosaminide linked to a distinct threonine residue in the MUC1 tandem repeat. J Immunol Methods 2002; 270(2): 199–209

    Article  CAS  PubMed  Google Scholar 

  120. Ryuko K, Schol DJ, Snijdewint FG, von Mensdorff-Pouilly S, Poort-Keesom RJ, Karuntu-Wanamarta YA, Verstraeten RA, Miyazaki K, Kenemans P, Hilgers J. Characterization of a new MUC1 monoclonal antibody (VU-2-G7) directed to the glycosylated PDTR sequence of MUC1. Tumour Biol 2000; 21(4): 197–210

    Article  CAS  PubMed  Google Scholar 

  121. Sørensen AL, Reis CA, Tarp MA, Mandel U, Ramachandran K, Sankaranarayanan V, Schwientek T, Graham R, Taylor-Papadimitriou J, Hollingsworth MA, Burchell J, Clausen H. Chemoenzymatically synthesized multimeric Tn/STn MUC1 glycopeptides elicit cancer-specific anti-MUC1 antibody responses and override tolerance. Glycobiology 2006; 16(2): 96–107

    Article  PubMed  CAS  Google Scholar 

  122. Nicolet CM, Siegel DH, Surfus JE, Sondel PM. TAG-72-reactive antibody CC49 recognizes molecules expressed by hematopoietic cell lines. Tumour Biol 1997; 18(6): 356–366

    Article  CAS  PubMed  Google Scholar 

  123. Dai H, Wu Z, Jia H, Tong C, Guo Y, Ti D, Han X, Liu Y, Zhang W, Wang C, Zhang Y, Chen M, Yang Q, Wang Y, Han W. Bispecific CAR-T cells targeting both CD19 and CD22 for therapy of adults with relapsed or refractory B cell acute lymphoblastic leukemia. J Hematol Oncol 2020; 13(1): 30

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatemeh Rahbarizadeh.

Additional information

Compliance with ethics guidelines

Pooria Safarzadeh Kozani, Pouya Safarzadeh Kozani, and Fatemeh Rahbarizadeh declare that they have no conflict of interest. This manuscript is a review article and does not involve a research protocol that requires the approval of the relevant institutional review board or ethics committee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safarzadeh Kozani, P., Safarzadeh Kozani, P. & Rahbarizadeh, F. CAR T cells redirected against tumor-specific antigen glycoforms: can low-sugar antigens guarantee a sweet success?. Front. Med. 16, 322–338 (2022). https://doi.org/10.1007/s11684-021-0901-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11684-021-0901-2

Keywords

Navigation