Skip to main content

Advertisement

Springer Nature Link
Log in
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Frontiers of Medicine
  3. Article

Neurological manifestations of patients with COVID-19: potential routes of SARS-CoV-2 neuroinvasion from the periphery to the brain

  • Review
  • Published: 04 May 2020
  • Volume 14, pages 533–541, (2020)
  • Cite this article
Download PDF
Frontiers of Medicine Aims and scope Submit manuscript
Neurological manifestations of patients with COVID-19: potential routes of SARS-CoV-2 neuroinvasion from the periphery to the brain
Download PDF
  • Zhengqian Li1 na1,
  • Taotao Liu1 na1,
  • Ning Yang1,
  • Dengyang Han1,
  • Xinning Mi1,
  • Yue Li1,
  • Kaixi Liu1,
  • Alain Vuylsteke2,
  • Hongbing Xiang3 &
  • …
  • Xiangyang Guo1 
  • 5427 Accesses

  • 46 Altmetric

  • 4 Mentions

  • Explore all metrics

Abstract

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2), has caused a global pandemic in only 3 months. In addition to major respiratory distress, characteristic neurological manifestations are also described, indicating that SARS-CoV-2 may be an underestimated opportunistic pathogen of the brain. Based on previous studies of neuroinvasive human respiratory coronaviruses, it is proposed that after physical contact with the nasal mucosa, laryngopharynx, trachea, lower respiratory tract, alveoli epithelium, or gastrointestinal mucosa, SARS-CoV-2 can induce intrinsic and innate immune responses in the host involving increased cytokine release, tissue damage, and high neurosusceptibility to COVID-19, especially in the hypoxic conditions caused by lung injury. In some immune-compromised individuals, the virus may invade the brain through multiple routes, such as the vasculature and peripheral nerves. Therefore, in addition to drug treatments, such as pharmaceuticals and traditional Chinese medicine, non-pharmaceutical precautions, including facemasks and hand hygiene, are critically important.

Article PDF

Download to read the full article text

Similar content being viewed by others

Neurological Involvements of SARS-CoV2 Infection

Article 16 October 2020

Neuroinvasion, neurotropic, and neuroinflammatory events of SARS-CoV-2: understanding the neurological manifestations in COVID-19 patients

Article 28 July 2020

Evidence of Coronavirus (CoV) Pathogenesis and Emerging Pathogen SARS-CoV-2 in the Nervous System: A Review on Neurological Impairments and Manifestations

Article 19 January 2021

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.
  • Neurological Manifestations
  • SARS-CoV-2
  • SARS Virus
  • Neurological Disorders
  • Neurodegeneration
  • COVID19
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. Sun P, Qie S, Liu Z, Ren J, Li K, Xi J. Clinical characteristics of hospitalized patients with SARS-CoV-2 infection: a single arm meta-analysis. J Med Virol 2020 Feb 28. [Epub ahead of print] doi: https://doi.org/10.1002/jmv.25735

  2. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, Wang B, Xiang H, Cheng Z, Xiong Y, Zhao Y, Li Y, Wang X, Peng Z. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA 2020 Feb 7. [Epub ahead of print] doi: https://doi.org/10.1001/jama.2020.1585

  3. National Health Commission of the People’s Republic of China. The guidelines for the diagnosis and treatment of novel coronavirus (2019-nCoV) infection (trial version 7). 2020. http://www.nhc.gov.cn/yzygj/s7653p/202003/46c9294a7dfe4cef80dc7f5912eb1989.shtml (in Chinese) (accessed March 4, 2020)

  4. Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, Qiu Y, Wang J, Liu Y, Wei Y, Xia J, Yu T, Zhang X, Zhang L. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet 2020; 395 (10223): 507–513

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Mao L, Wang MD, Chen SH, He QW, Chang J, Hong CD, Zhou YF, Wang D, Li YN, Jin HJ, Hu B. Neurological manifestations of hospitalized patients with COVID-19 in Wuhan, China: a retrospective case series study. medRxiv 2020; doi: https://doi.org/10.1101/2020.02.22.20026500

  6. Li YC, Bai WZ, Hashikawa T. The neuroinvasive potential of SARS-CoV2 may play a role in the respiratory failure of COVID-19patients. J Med Virol 2020 Feb 27. [Epub ahead of print] doi: https://doi.org/10.1002/jmv.25728

  7. Grifoni A, Sidney J, Zhang Y, Scheuermann RH, Peters B, Sette A. A sequence homology and bioinformatic approach can predict candidate targets for immune responses to SARS-CoV-2. Cell Host Microbe 2020 Mar 16. [Epub ahead of print] doi: https://doi.org/10.1016/j.chom.2020.03.002

  8. Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu NH, Nitsche A, Müller MA, Drosten C, Pöhlmann S. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020 Mar 4. [Epub ahead of print] doi: https://doi.org/10.1016/j.cell.2020.02.052

  9. Abiodun OA, Ola MS. Role of brain renin angiotensin system in neurodegeneration: an update. Saudi J Biol Sci 2020; 27(3): 905–912

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Sasannejad C, Ely EW, Lahiri S. Long-term cognitive impairment after acute respiratory distress syndrome: a review of clinical impact and pathophysiological mechanisms. Crit Care 2019; 23(1): 352

    PubMed  PubMed Central  Google Scholar 

  11. Harnisch LO, Riech S, Mueller M, Gramueller V, Quintel M, Moerer O. Longtime neurologic outcome of extracorporeal membrane oxygenation and non extracorporeal membrane oxygenation acute respiratory distress syndrome survivors. J Clin Med 2019; 8(7): E1020

    PubMed  Google Scholar 

  12. Zhang C, Shi L, Wang FS. Liver injury in COVID-19: management and challenges. Lancet Gastroenterol Hepatol 2020 Mar 4. [Epub ahead of print] doi: https://doi.org/10.1016/S2468-1253(20)30057-1

  13. Jiang F, Deng L, Zhang L, Cai Y, Cheung CW, Xia Z. Review of the clinical characteristics of coronavirus disease 2019 (COVID-19). J Gen Intern Med 2020 Mar 4. [Epub ahead of print] doi: https://doi.org/10.1007/s11606-020-05762-w

  14. Glass WG, Subbarao K, Murphy B, Murphy PM. Mechanisms of host defense following severe acute respiratory syndrome-coronavirus (SARS-CoV) pulmonary infection of mice. J Immunol 2004; 173(6): 4030–4039

    CAS  PubMed  Google Scholar 

  15. Li YC, Bai WZ, Hirano N, Hayashida T, Hashikawa T. Coronavirus infection of rat dorsal root ganglia: ultrastructural characterization of viral replication, transfer, and the early response of satellite cells. Virus Res 2012; 163(2): 628–635

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Li YC, Bai WZ, Hirano N, Hayashida T, Taniguchi T, Sugita Y, Tohyama K, Hashikawa T. Neurotropic virus tracing suggests a membranous-coating-mediated mechanism for transsynaptic communication. J Comp Neurol 2013; 521(1): 203–212

    CAS  PubMed  Google Scholar 

  17. Li K, Wohlford-Lenane C, Perlman S, Zhao J, Jewell AK, Reznikov LR, Gibson-Corley KN, Meyerholz DK, McCray PB Jr. Middle East respiratory syndrome coronavirus causes multiple organ damage and lethal disease in mice transgenic for human dipeptidyl peptidase 4. J Infect Dis 2016; 213(5): 712–722

    CAS  PubMed  Google Scholar 

  18. Dubè M, Le Coupanec A, Wong AHM, Rini JM, Desforges M, Talbot PJ. Axonal transport enables neuron-to-neuron propagation of human coronavirus OC43. J Virol 2018; 92(17): e00404–18

    PubMed  PubMed Central  Google Scholar 

  19. Netland J, Meyerholz DK, Moore S, Cassell M, Perlman S. Severe acute respiratory syndrome coronavirus infection causes neuronal death in the absence of encephalitis in mice transgenic for human ACE2. J Virol 2008; 82(15): 7264–7275

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Lochhead JJ, Kellohen KL, Ronaldson PT, Davis TP. Distribution of insulin in trigeminal nerve and brain after intranasal administration. Sci Rep 2019; 9(1): 2621

    PubMed  PubMed Central  Google Scholar 

  21. Lochhead JJ, Thorne RG. Intranasal delivery of biologics to the central nervous system. Adv Drug Deliv Rev 2012; 64(7): 614–628

    CAS  PubMed  Google Scholar 

  22. Ding Y, He L, Zhang Q, Huang Z, Che X, Hou J, Wang H, Shen H, Qiu L, Li Z, Geng J, Cai J, Han H, Li X, Kang W, Weng D, Liang P, Jiang S. Organ distribution of severe acute respiratory syndrome (SARS) associated coronavirus (SARS-CoV) in SARS patients: implications for pathogenesis and virus transmission pathways. J Pathol 2004; 203(2): 622–630

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Gu J, Gong E, Zhang B, Zheng J, Gao Z, Zhong Y, Zou W, Zhan J, Wang S, Xie Z, Zhuang H, Wu B, Zhong H, Shao H, Fang W, Gao D, Pei F, Li X, He Z, Xu D, Shi X, Anderson VM, Leong AS. Multiple organ infection and the pathogenesis of SARS. J Exp Med 2005; 202(3): 415–424

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Xu J, Zhong S, Liu J, Li L, Li Y, Wu X, Li Z, Deng P, Zhang J, Zhong N, Ding Y, Jiang Y. Detection of severe acute respiratory syndrome coronavirus in the brain: potential role of the chemokine Mig in pathogenesis. Clin Infect Dis 2005; 41(8): 1089–1096

    CAS  PubMed  Google Scholar 

  25. Sun XF, Zhang X, Chen XH, Chen LW, Deng CH, Zou XJ, Liu WY, Yu HM. The infection evidence of SARS-COV-2 in ocular surface: a single-center cross-sectional study. medRxiv 2020; doi: https://doi.org/10.1101/2020.02.26.20027938

  26. Baig AM, Khaleeq A, Ali U, Syeda H. Evidence of the COVID-19 virus targeting the CNS: tissue distribution, host-virus interaction, and proposed neurotropic mechanisms. ACS Chem Neurosci 2020; 11(7): 995–998

    CAS  PubMed  Google Scholar 

  27. Arvin AM. Varicella-zoster virus. Clin Microbiol Rev 1996; 9(3): 361–381

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Cohen JI. Varicella-zoster virus. The virus. Infect Dis Clin North Am 1996; 10(3): 457–468

    CAS  PubMed  Google Scholar 

  29. Raj VS, Mou H, Smits SL, Dekkers DH, Müller MA, Dijkman R, Muth D, Demmers JA, Zaki A, Fouchier RA, Thiel V, Drosten C, Rottier PJ, Osterhaus AD, Bosch BJ, Haagmans BL. Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature 2013; 495(7440): 251–254

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Qi F, Qian S, Zhang S, Zhang Z. Single cell RNA sequencing of 13 human tissues identify cell types and receptors of human coronaviruses. Biochem Biophys Res Commun 2020 Mar 19. [Epub ahead of print] doi: https://doi.org/10.1016/j.bbrc.2020.03.044

  31. Li F. Structure, function, and evolution of coronavirus spike proteins. Annu Rev Virol 2016; 3(1): 237–261

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Simmons G, Zmora P, Gierer S, Heurich A, Pöhlmann S. Proteolytic activation of the SARS-coronavirus spike protein: cutting enzymes at the cutting edge of antiviral research. Antiviral Res 2013; 100(3): 605–614

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh CL, Abiona O, Graham BS, McLellan JS. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 2020; 367(6483): 1260–1263

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Imai Y, Kuba K, Penninger JM. The discovery of angiotensin-converting enzyme 2 and its role in acute lung injury in mice. Exp Physiol 2008; 93(5): 543–548

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Li Z, Wu M, Yao JW, Guo J, Liao X, Song SJ, Li JL, Duan GJ, Zhou YX, Wu XJ, Zhou ZS, Wang TJ, Hu M, Chen XX, Fu Y, Lei C, Dong HL, Xu CO, Hu YH, Han M, Zhou Y, Jia HB, Chen XW, Yan JA. Caution on kidney dysfunctions of COVID-19 patients. medRxiv 2020; doi: https://doi.org/10.1101/2020.02.08.20021212

  36. Xu H, Hou K, Xu H, Li Z, Chen H, Zhang N, Xu R, Fu H, Sun R, Wen L, Xie L, Liu H, Zhang K, Selvanayagam JB, Fu C, Zhao S, Yang Z, Yang M, Guo Y. Acute myocardial injury of patients with coronavirus disease 2019. medRxiv 2020; doi:https://doi.org/10.1101/2020.03.05.20031591

  37. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, Cheng Z, Yu T, Xia J, Wei Y, Wu W, Xie X, Yin W, Li H, Liu M, Xiao Y, Gao H, Guo L, Xie J, Wang G, Jiang R, Gao Z, Jin Q, Wang J, Cao B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395(10223): 497–506

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Hamming I, Timens W, Bulthuis ML, Lely AT, Navis G, van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol 2004; 203(2): 631–637

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Henry C, Zaizafoun M, Stock E, Ghamande S, Arroliga AC, White HD. Impact of angiotensin-converting enzyme inhibitors and statins on viral pneumonia. Proc Bayl Univ Med Cent 2018; 31(4): 419–423

    PubMed  PubMed Central  Google Scholar 

  40. Moore MJ, Dorfman T, Li W, Wong SK, Li Y, Kuhn JH, Coderre J, Vasilieva N, Han Z, Greenough TC, Farzan M, Choe H. Retroviruses pseudotyped with the severe acute respiratory syndrome coronavirus spike protein efficiently infect cells expressing angiotensin-converting enzyme 2. J Virol 2004; 78(19): 10628–10635

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Tan WSD, Liao W, Zhou S, Mei D, Wong WF. Targeting the reninangiotensin system as novel therapeutic strategy for pulmonary diseases. Curr Opin Pharmacol 2018; 40: 9–17

    CAS  PubMed  Google Scholar 

  42. Chen H, Guo J, Wang C, Luo F, Yu X, Zhang W, Li J, Zhao D, Xu D, Gong Q, Liao J, Yang H, Hou W, Zhang Y. Clinical characteristics and intrauterine vertical transmission potential of COVID-19 infection in nine pregnant women: a retrospective review of medical records. Lancet 2020; 395(10226): 809–815

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Guan W, Ni Z, Hu Y, Liang W, Ou C, He J, Liu L, Shan H, Lei C, Hui D SC, Du B, Li L, Zeng G, Yuen KY, Chen R, Tang C, Wang T, Chen P, Xiang J, Li S, Wang J, Liang Z, Peng Y, Wei L, Liu Y, Hu Y, Peng P, Wang J, Liu J, Chen Z, Li G, Zheng Z, Qiu S, Luo J, Ye C, Zhu S, Zhong N. Clinical characteristics of 2019 novel coronavirus infection in China. medRxiv 2020; doi: https://doi.org/10.1101/2020.02.06.20020974

  44. Holshue ML, DeBolt C, Lindquist S, Lofy KH, Wiesman J, Bruce H, Spitters C, Ericson K, Wilkerson S, Tural A, Diaz G, Cohn A, Fox L, Patel A, Gerber SI, Kim L, Tong S, Lu X, Lindstrom S, Pallansch MA, Weldon WC, Biggs HM, Uyeki TM, Pillai SK; Washington State 2019-nCoV Case Investigation Team. First case of 2019 novel coronavirus in the United States. N Engl J Med 2020; 382(10): 929–936

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Xiao F, Tang M, Zheng X, Li C, He J, Hong Z, Huang S, Zhang Z, Lin X, Fang Z, Lai R, Chen S, Liu J, Huang J, Xia J, Li Z, Jiang G, Liu Y, Li X, Shan H. Evidence for gastrointestinal infection of SARS-CoV-2. medRxiv 2020; doi: https://doi.org/10.1101/2020.02.17.20023721

  46. Chen H, Xuan B, Yan Y, Zhu X, Shen C, Zhao G, Ji L, Xu D, Xiong H, Yu TC, Li X, Liu Q, Chen Y, Cui Y, Hong J, Fang JY. Profiling ACE2 expression in colon tissue of healthy adults and colorectal cancer patients by single-cell transcriptome analysis. medRxiv 2020; doi: https://doi.org/10.1101/2020.02.15.20023457

  47. Li H, Wu C, Yang Y, Liu Y, Zhang P, Wang Y, Wang Q, Xu Y, Li M, Zheng M, Chen L. Furin, a potential therapeutic target for COVID-19. chinaXiv 2020; http://chinaxiv.org/abs/202002.00062

  48. Li W, Zhu Y, Li Y, Shu M, Wen Y, Gao X, Wan C. The gut microbiota of hand, foot and mouth disease patients demonstrates down-regulated butyrate-producing bacteria and up-regulated inflammation-inducing bacteria. Acta Paediatr 2019; 108(6): 1133–1139

    CAS  PubMed  Google Scholar 

  49. Chen L, Li L, Han Y, Lv B, Zou S, Yu Q. Tong-fu-li-fei decoction exerts a protective effect on intestinal barrier of sepsis in rats through upregulating ZO-1/occludin/claudin-1 expression. J Pharmacol Sci 2020 Feb 28. [Epub ahead of print] doi: https://doi.org/10.1016/j.jphs.2020.02.009

  50. Fernández-Blanco JA, Estévez J, Shea-Donohue T, Martínez V, Vergara P. Changes in epithelial barrier function in response to parasitic infection: implications for IBD pathogenesis. J Crohn’s Colitis 2015; 9(6): 463–476

    Google Scholar 

  51. Romani L, Del Chierico F, Chiriaco M, Foligno S, Reddel S, Salvatori G, Cifaldi C, Faraci S, Finocchi A, Rossi P, Bagolan P, D’Argenio P, Putignani L, Fusaro F. Gut mucosal and fecal microbiota profiling combined to intestinal immune system in neonates affected by intestinal ischemic injuries. Front Cell Infect Microbiol 2020; 10: 59

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Khoury-Hanold W, Yordy B, Kong P, Kong Y, Ge W, Szigeti-Buck K, Ralevski A, Horvath TL, Iwasaki A. Viral spread to enteric neurons links genital HSV-1 infection to toxic megacolon and lethality. Cell Host Microbe 2016; 19(6): 788–799

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Matsuda K, Park CH, Sunden Y, Kimura T, Ochiai K, Kida H, Umemura T. The vagus nerve is one route of transneural invasion for intranasally inoculated influenza a virus in mice. Vet Pathol 2004; 41(2): 101–107

    CAS  PubMed  Google Scholar 

  54. Hosseini S, Wilk E, Michaelsen-Preusse K, Gerhauser I, Baumgärtner W, Geffers R, Schughart K, Korte M. Long-term neuroinflammation induced by influenza A virus infection and the impact on hippocampal neuron morphology and function. J Neurosci 2018; 38 (12): 3060–3080

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhao JM, Zhou GD, Sun YL, Wang SS, Yang JF, Meng EH, Pan D, Li WS, Zhou XS, Wang YD, Lu JY, Li N, Wang DW, Zhou BC, Zhang TH. Clinical pathology and pathogenesis of severe acute respiratory syndrome. Chin J Exp Clin Virol (Zhonghua Shi Yan He Lin Chuang Bing Du Xue Za Zhi) 2003; 17(3): 217–221 (in Chinese)

    Google Scholar 

  56. Xiao Y, Meng Q, Yin X, Guan Y, Liu Y, Li C, Wang M, Liu G, Tong T, Wang LF, Kong X, Wu D. Pathological changes in masked palm civets experimentally infected by severe acute respiratory syndrome (SARS) coronavirus. J Comp Pathol 2008; 138(4): 171–179

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Yucel Y, Gupta N. Lymphatic drainage from the eye: a new target for therapy. Prog Brain Res 2015; 220: 185–198

    PubMed  Google Scholar 

  58. Zhang Z, Helman JI, Li LJ. Lymphangiogenesis, lymphatic endothelial cells and lymphatic metastasis in head and neck cancer—a review of mechanisms. Int J Oral Sci 2010; 2(1): 5–14

    PubMed  PubMed Central  Google Scholar 

  59. Nedumpun T, Sirisereewan C, Thanmuan C, Techapongtada P, Puntarotairung R, Naraprasertkul S, Thanawongnuwech R, Suradhat S. Induction of porcine reproductive and respiratory syndrome virus (PRRSV)-specific regulatory T lymphocytes (Treg) in the lungs and tracheobronchial lymph nodes of PRRSV-infected pigs. Vet Microbiol 2018; 216: 13–19

    CAS  PubMed  Google Scholar 

  60. Khomich OA, Kochetkov SN, Bartosch B, Ivanov AV. Redox biology of respiratory viral infections. Viruses 2018; 10(8): E392

    PubMed  Google Scholar 

  61. McCray PB Jr, Pewe L, Wohlford-Lenane C, Hickey M, Manzel L, Shi L, Netland J, Jia HP, Halabi C, Sigmund CD, Meyerholz DK, Kirby P, Look DC, Perlman S. Lethal infection of K18-hACE2 mice infected with severe acute respiratory syndrome coronavirus. J Virol 2007; 81(2): 813–821

    CAS  PubMed  Google Scholar 

  62. Louveau A, Smirnov I, Keyes TJ, Eccles JD, Rouhani SJ, Peske JD, Derecki NC, Castle D, Mandell JW, Lee KS, Harris TH, Kipnis J. Structural and functional features of central nervous system lymphatic vessels. Nature 2015; 523(7560): 337–341

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Cheng Y, Haorah J. How does the brain remove its waste metabolites from within? Int J Physiol Pathophysiol Pharmacol 2019; 11(6): 238–249

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Cashion MF, Banks WA, Bost KL, Kastin AJ. Transmission routes of HIV-1 gp120 from brain to lymphoid tissues. Brain Res 1999; 822(1–2): 26–33

    CAS  PubMed  Google Scholar 

  65. Dhuria SV, Hanson LR, Frey WH 2nd. Intranasal delivery to the central nervous system: mechanisms and experimental considerations. J Pharm Sci 2010; 99(4): 1654–1673

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is funded by the National Natural Science Foundation of China (Nos. 81873726, 81971012, and 81901095), Peking University “Clinical Medicine plus X” Youth Project (No. PKU2020LCXQ016) and Key Clinical Projects of Peking University Third Hospital (No. BYSYZD2019027). We acknowledge all healthcare workers involved in the diagnosis and treatment of COVID-19 patients all around China. We acknowledge Edanz Group for the linguistic editing and proofreading during the preparation of this manuscript.

Author information

Author notes
  1. Zhengqian Li and Taotao Liu contributed equally to this article and should be considered co-first authors.

Authors and Affiliations

  1. Department of Anesthesiology, Peking University Third Hospital, Beijing, 100191, China

    Zhengqian Li, Taotao Liu, Ning Yang, Dengyang Han, Xinning Mi, Yue Li, Kaixi Liu & Xiangyang Guo

  2. Department of Anaesthesia and Intensive Care, Royal Papworth Hospital NHS Foundation Trust, Cambridge, UK

    Alain Vuylsteke

  3. Department of Anesthesiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China

    Hongbing Xiang

Authors
  1. Zhengqian Li
    View author publications

    You can also search for this author inPubMed Google Scholar

  2. Taotao Liu
    View author publications

    You can also search for this author inPubMed Google Scholar

  3. Ning Yang
    View author publications

    You can also search for this author inPubMed Google Scholar

  4. Dengyang Han
    View author publications

    You can also search for this author inPubMed Google Scholar

  5. Xinning Mi
    View author publications

    You can also search for this author inPubMed Google Scholar

  6. Yue Li
    View author publications

    You can also search for this author inPubMed Google Scholar

  7. Kaixi Liu
    View author publications

    You can also search for this author inPubMed Google Scholar

  8. Alain Vuylsteke
    View author publications

    You can also search for this author inPubMed Google Scholar

  9. Hongbing Xiang
    View author publications

    You can also search for this author inPubMed Google Scholar

  10. Xiangyang Guo
    View author publications

    You can also search for this author inPubMed Google Scholar

Corresponding authors

Correspondence to Hongbing Xiang or Xiangyang Guo.

Ethics declarations

Zhengqian Li, Taotao Liu, Ning Yang, Dengyang Han, Xinning Mi, Yue Li, Kaixi Liu, Alain Vuylsteke, Hongbing Xiang, and Xiangyang Guo declare no conflicts of interest. This manuscript is a review and does not involve a research protocol requiring approval by the relevant institutional review board or ethics committee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Liu, T., Yang, N. et al. Neurological manifestations of patients with COVID-19: potential routes of SARS-CoV-2 neuroinvasion from the periphery to the brain. Front. Med. 14, 533–541 (2020). https://doi.org/10.1007/s11684-020-0786-5

Download citation

  • Received: 25 March 2020

  • Accepted: 03 April 2020

  • Published: 04 May 2020

  • Issue Date: October 2020

  • DOI: https://doi.org/10.1007/s11684-020-0786-5

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • coronavirus disease 2019 (COVID-19)
  • SARS-CoV-2
  • neurological manifestations
  • neuroinvasion
  • brain
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

3.143.143.202

Not affiliated

Springer Nature

© 2025 Springer Nature