Abstract
Neurobiological research on anxiety has shown that trait-anxious individuals may be characterized by weaker structural connectivity of the amygdala-prefrontal circuitry, representing a reduced capacity for efficient communication between the two brain regions. However, comparison of available studies has been inconsistent, possibly related to factors such as aging that influences both trait anxiety and structural connectivity of the brain. To help clarify the nature of brain-anxiety relationship, we applied a connectome-based predictive modeling framework on 148 diffusion-weighted imaging data from the Leipzig Study for Mind-Body Emotion Interactions dataset and identified multivariate patterns of whole-brain structural connectivity that predicted trait anxiety. Results showed that networks predictive of trait anxiety differed across age groups. Specifically, an isolated negative network, which shared overlapping features with the amygdala-prefrontal circuitry, was found in younger adults (20–30 years of age), whereas a widespread positive network highlighted by frontotemporal and frontolimbic connectivity was identified when both younger and older adults (20–80 years of age) were examined. No predictive network was observed when only older adults (30–80 years of age) were considered. Our findings highlight an important age-dependent effect on the structural connectome-based prediction of trait anxiety, supporting ongoing efforts to develop potential neural biomarkers of anxiety.



Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.Data Availability
The MPI-LEMON dataset (https://www.nitrc.org/projects/mpilmbb)(https://doi.org/10.18112/openneuro.ds000221.v1.0.0) is publicly available.
Code Availability
Neuroimaging data were analyzed using MRtrix3 (https://www.mrtrix.org/).
References
Andersson, J. L., Skare, S., & Ashburner, J. (2003). How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging. Neuroimage, 20, 870–888
Andersson, J. L., & Sotiropoulos, S. N. (2016). An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging. Neuroimage, 125, 1063–1078
Babayan, A., Erbey, M., Kumral, D., Reinelt, R. D., Reiter, A. M. F., Röbbig, J. … Villringer, A. (2019). A Mind-Brain-Body dataset of MRI, EEG, cognition, emotion, and peripheral physiology in young and old adults. Scientific Data, 6, 180308
Baur, V., Hänggi, J., Rufer, M., Delsignore, A., Jäncke, L., Herwig, U. … Brühl, A. B. (2011). White matter alterations in social anxiety disorder. Journal of Psychiatric Research, 45, 1366–1372
Bijsterbosch, J., Smith, S., Forster, S., John, O. P., & Bishop, S. J. (2014). Resting state correlates of subdimensions of anxious affect. Journal of Cognitive Neuroscience, 26, 914–926
Bishop, S. J. (2007). Neurocognitive mechanisms of anxiety: an integrative account. Trends in Cognitive Sciences, 11, 307–316
Burghy, C. A., Stodola, D. E., Ruttle, P. L., Molloy, E. K., Armstrong, J. M., Oler, J. A. … Birn, R. M. (2012). Developmental pathways to amygdala-prefrontal function and internalizing symptoms in adolescence. Nature Neuroscience, 15, 1736–1741
Calhoon, G. G., & Tye, K. M. (2015). Resolving the neural circuits of anxiety. Nature Neuroscience, 18, 1394–1404
Clewett, D., Bachman, S., & Mather, M. (2014). Age-related reduced prefrontal-amygdala structural connectivity is associated with lower trait anxiety. Neuropsychology, 28, 631–642
Coombs, G. I. I. I., Loggia, M. L., Greve, D. N., & Holt, D. J. (2014). Amygdala perfusion is predicted by its functional connectivity with the ventromedial prefrontal cortex and negative affect. PLOS One, 9, e97466
d’Arbeloff, T. C., Kim, M. J., Knodt, A. R., Radtke, S. R., Brigidi, B. D., & Hariri, A. R. (2018). Microstructural integrity of a pathway connecting the prefrontal cortex and amygdala moderates the association between cognitive reappraisal and negative emotions. Emotion, 18, 912–915
De Witte, N. A. J., & Mueller, S. C. (2017). White matter integrity in brain networks relevant to anxiety and depression: evidence from the human connectome project dataset. Brain Imaging and Behavior, 11, 1604–1615
Desikan, R. S., Segonne, F., Fischl, B., Quinn, B. T., Dickerson, B. C., Blacker, D. … Killiany, R. J. (2006). An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage, 31, 968–980
Dhollander, T., Tabbara, R., Rosnarho-Tornstrand, J., Tournier, J. D., Raffelt, D., & Connelly, A. (2021). Multi-tissue log-domain intensity and inhomogeneity normalisation for quantitative apparent fibre density. Proceedings of the International Society for Magnetic Resonance in Medicine, 29, 2472
Ebeling, U., & von Cramon, D. (1992). Topography of the uncinate fascicle and adjacent temporal fiber tracts. Acta Neurochirurgica (Wien), 115, 143–148
Eden, A. S., Schreiber, J., Anwander, A., Keuper, K., Laeger, I., Zwanzger, P. … Dobel, C. (2015). Emotion regulation and trait anxiety are predicted by the microstructure of fibers between amygdala and prefrontal cortex. Journal of Neuroscience, 35, 6020–6027
Feng, C., Wang, L., Li, T., & Xu, P. (2019). Connectome-based individualized prediction of loneliness. Social Cognitive and Affective Neuroscience, 14(4), 353–365
Fischl, B., van der Kouwe, A., Destrieux, C., Halgren, E., Segonne, F., Salat, D. H. … Dale, A. M. (2004). Automatically parcellating the human cerebral cortex. Cerebral Cortex, 14, 11–22
Greening, S. G., & Mitchell, D. G. (2015). A network of amygdala connections predict individual differences in trait anxiety. Human Brain Mapping, 36, 4819–4830
Hare, T. A., Tottenham, N., Galvan, A., Voss, H. U., Glover, G. H., & Casey, B. J. (2008). Biological substrates of emotional reactivity and regulation in adolescence during an emotional go-nogo task. Biological Psychiatry, 63, 927–934
Hartley, C. A., & Phelps, E. A. (2009). Changing fear: the neurocircuitry of emotion regulation. Neuropsychopharmacology : Official Publication Of The American College Of Neuropsychopharmacology, 35, 136–146
Hasan, K. M., Iftikhar, A., Kamali, A., Kramer, L. A., Ashtari, M., Cirino, P. T. … Ewing-Cobbs, L. (2009). Development and aging of the healthy human brain uncinate fasciculus across the lifespan using diffusion tensor tractography. Brain Research, 1276, 67–76
Hettema, J. M., Kettenmann, B., Ahluwalia, V., McCarthy, C., Kates, W. R., Schmitt, J. E. … Fatouros, P. (2012). Pilot multimodal twin imaging study of generalized anxiety disorder. Depression and Anxiety, 29, 202–209
Jenkinson, M., Bannister, P., Brady, J. M., & Smith, S. M. (2002). Improved Optimisation for the Robust and Accurate Linear Registration and Motion Correction of Brain Images. Neuroimage, 17, 825–841
Jeurissen, B., Tournier, J. D., Dhollander, T., Connelly, A., & Sijbers, J. (2014). Multi-tissue constrained spherical deconvolution for improved analysis of multi-shell diffusion MRI data. Neuroimage, 103, 411–426
Kim, M. J., & Whalen, P. J. (2009). The structural integrity of an amygdala-prefrontal pathway predicts trait anxiety. Journal of Neuroscience, 29, 11614–11618
Kim, M. J., Gee, D. G., Loucks, R. A., Davis, F. C., & Whalen, P. J. (2011a). Anxiety dissociates dorsal and ventral medial prefrontal cortex functional connectivity with the amygdala at rest. Cerebral Cortex, 21, 1667–1673
Kim, M. J., Loucks, R. A., Palmer, A. L., Brown, A. C., Solomon, K. M., Marchante, A. N. … Whalen, P. J. (2011b). The structural and functional connectivity of the amygdala: From normal emotion to pathological anxiety. Behavioural Brain Research, 223, 403–410
Kim, M. J., Brown, A. C., Mattek, A. M., Chavez, S. J., Taylor, J. M., Palmer, A. L. … Whalen, P. J. (2016). The inverse relationship between the microstructural variability of amygdala-prefrontal pathways and trait anxiety is moderated by sex. Frontiers in Systems Neuroscience, 10, 93
Knowles, K. A., & Olatunji, B. O. (2020). Specificity of trait anxiety in anxiety and depression: Meta-analysis of the State-Trait Anxiety Inventory. Clinical Psychology Review, 82, 101928
Kochunov, P., Glahn, D. C., Lancaster, J., Thompson, P. M., Kochunov, V., Rogers, B. … Williamson, D. E. (2011). Fractional anisotropy of cerebral white matter and thickness of cortical gray matter across the lifespan. Neuroimage, 58, 41–49
Laux, L., Glanzmann, P., Schaffner, P., & Spielberger, C. D. (1981). Das State-Trait-Angstinventar. Weinheim: Beltz Test GmbH
Lebel, C., Walker, L., Leemans, A., Phillips, L., & Beaulieu, C. (2008). Microstructural maturation of the human brain from childhood to adulthood. NeuroImage 40, 1044–1055
Melhem, E. R., Itoh, R., Jones, L., & Barker, P. B. (2000). Diffusion tensor MR imaging of the brain: effect of diffusion weighting on trace and anisotropy measurements. American Journal of Neuroradiology, 21, 1813–1820
Milad, M. R., & Quirk, G. J. (2012). Fear extinction as a model for translational neuroscience: ten years of progress. Annual Review of Psychology, 63, 129–151
Modi, S., Trivedi, R., Singh, K., Kumar, P., Rathore, R. K. S., Tripathi, R. P. … Khushu, S. (2013). Individual differences in trait anxiety are associated with white matter tract integrity in fornix and uncinate fasciculus: preliminary evidence from a DTI based tractography study. Behavoural Brain Research, 238, 188–192
Montag, C., Reuter, M., Weber, B., Markett, S., & Schoene-Bake, J. C. (2012). Individual differences in trait anxiety are associated with white matter tract integrity in the left temporal lobe in healthy males but not females. Neuroscience, 217, 77–83
Pedersen, W. S., Dean, D. C., Adluru, N., Gresham, L. K., Lee, S. D., Kelly, M. P. … Schaefer, S. M. (2022). Individual variation in white matter microstructure is related to better recovery from negative stimuli. Emotion, 22, 244–257
Phan, K. L., Orlichenko, A., Boyd, E., Angstadt, M., Coccaro, E. F., Liberzon, I., & Konstantinos, A. (2009). Preliminary evidence of white matter abnormality in the uncinate fasciculus in generalized social anxiety disorder. Biological Psychiatry, 66, 691–694
Pines, A. R., Sacchet, M. D., Kullar, M., Ma, J., & Williams, L. M. (2018). Multi-unit regions among neural, self-report, and behavioral correlates of emotion regulation in comorbid depression and obesity. Scientific Reports, 8, 1–11
Raffelt, D. A., Tournier, J. D., Smith, R. E., Vaughan, D. N., Jackson, G., Ridgway, G. R. … Connelly, A. (2017). Investigating white matter fibre density and morphology using fixel-based analysis. Neuroimage, 144, 58–73
Saviola, F., Pappaianni, E., Monti, A., Grecucci, A., Jovicich, J., & De Pisapia, N. (2020). Trait and state anxiety are mapped differently in the human brain. Scientific Reports, 10, 11112
Shen, X., Finn, E. S., Scheinost, D., Rosenberg, M., Chun, M. M., Papademetris, X. … Constable, R. T. (2017). Using connectome-based predictive modeling to predict individual behavior from brain connectivity. Nature Protocols, 12, 506–518
Smith, S. M., Jenkinson, M., Woolrich, M. W., Beckmann, C. F., Behrens, T. E., Johansen-Berg, H. … Matthews, P. M. (2004). Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage, 23 Suppl 1, S208-219
Smith, R. E., Tournier, J. D., Calamante, F., & Connelly, A. (2012). Anatomically-constrained tractography: Improved diffusion MRI streamlines tractography through effective use of anatomical information. Neuroimage, 62, 1924–1938
Smith, R. E., Tournier, J. D., Calamante, F., & Connelly, A. (2015). The effects of SIFT on the reproducibility and biological accuracy of the structural connectome. Neuroimage, 104, 253–265
Spielberger, C. D., Gorsuch, R. L., & Lushene, R. E. (1970). STAI: Manual for the State-Trait Anxiety Inventory. Palo Alto, CA: Consulting Psychologists Press
Tournier, J. D., Calamante, F., & Connelly, A. (2010). Improved probabilistic streamlines tractography by 2nd order integration over fibre orientation distributions. Proceedings of the International Society for Magnetic Resonance in Medicine, 1670
Tournier, J. D., Smith, R., Raffelt, D., Tabbara, R., Dhollander, T., Pietsch, M. … Connelly, A. (2019). MRtrix3: A fast, flexible and open software framework for medical image processing and visualization. Neuroimage, 202, 116137
Tromp, D. P., Grupe, D. W., Oathes, D. J., McFarlin, D. R., Hernandez, P. J., Kral, T. R. … Nitschke, J. B. (2012). Reduced structural connectivity of a major frontolimbic pathway in generalized anxiety disorder. JAMA Psychiatry, 69, 925–934
Tustison, N. J., Avants, B. B., Cook, P. A., Zheng, Y., Egan, A., Yushkevich, P. A. … Gee, J. C. (2010). N4ITK: Improved N3 bias correction. IEEE Transactions on Medical Imaging, 29, 1310–1320
Vanderlind, W. M., Everaert, J., Caballero, C., Cohodes, E. M., & Gee, D. G. (2021). Emotion and emotion preferences in daily life: The role of anxiety. Clinical Psychological Science, 10, 109–126
Von Heide, D., Skipper, R. J., Klobusicky, L. M., E., & Olson, I. R. (2013). Dissecting the uncinate fasciculus: disorders, controversies and a hypothesis. Brain, 136, 1692–1707
Wakana, S., Caprihan, A., Panzenboeck, M. M., Fallon, J. H., Perry, M., Gollub, R. L. … Mori, S. (2007). Reproducibility of quantitative tractography methods applied to cerebral white matter. Neuroimage, 36, 630–644
Wang, Z., Goerlich, K., Ai, H., Aleman, A., Luo, Y., & Xu, P. (2021). Connectome-based predictive modeling of individual anxiety. Cerebral Cortex, 31, 3006–3020
Westlye, L. T., Bjornebekk, A., Grydeland, H., Fjell, A. M., & Walhovd, K. B. (2011). Linking an anxiety-related personality trait to brain white matter microstructure: Diffusion tensor imaging and harm avoidance. Archives Of General Psychiatry, 68, 369–377
Yoo, K., Rosenberg, M. D., Hsu, W., Zhang, S., Li, C. R., Scheinost, D. … Chun, M. M. (2018). Connectome-based predictive modeling of attention: Comparing different functional connectivity features and prediction methods across datasets. Neuroimage, 167(15), 11–22
Zuurbier, L. A., Nikolova, Y. S., Åhs, F., & Hariri, A. R. (2013). Uncinate fasciculus fractional anisotropy correlates with typical use of reappraisal in women but not men. Emotion, 13, 385–390
Acknowledgements
We thank the original authors of the MPI-LEMON dataset for their generosity in making it available for use.
Funding
This research was supported by the National Research Foundation of Korea (NRF-2021R1F1A1045988 and NRF-2021S1A5A2A03070229) (Kim).
Author information
Authors and Affiliations
Contributions
CY – Data analysis, interpretation, manuscript writing, editing. SP – Data analysis, interpretation, manuscript writing, editing. MJK – Study design, data interpretation, funding, manuscript writing, editing.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no conflict of interests.
Ethics approval
The LEMON study was in accordance with the World Medical Association Declaration of Helsinki and was approved by the Ethics Committee of the University of Leipzig (reference number 154/13-ff).
Consent to participate
Participants who were included in the LEMON study provided written informed consent prior to any data acquisition (including agreement to their data being shared anonymously).
Consent to publish
All investigators have provided consent to publish this work.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Chaebin Yoo and Sujin Park contributed equally and are sharing first authorship.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Yoo, C., Park, S. & Kim, M.J. Structural connectome-based prediction of trait anxiety. Brain Imaging and Behavior 16, 2467–2476 (2022). https://doi.org/10.1007/s11682-022-00700-2
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11682-022-00700-2