Skip to main content
Log in

Inconsistency between cortical reorganization and functional connectivity alteration in the sensorimotor cortex following incomplete cervical spinal cord injury

  • Original Research
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

The aim of this study was to explore whether there will be any alterations in sensorimotor-related cortex and the possible causes of sensorimotor dysfunction after incomplete cervical spinal cord injury (ICSCI). Structural and resting-state functional magnetic resonance imaging (rs-fMRI) of nineteen ICSCI patients and nineteen healthy controls (HCs) was acquired. Voxel based morphometry (VBM) and tract-based spatial statistics were performed to assess differences in gray matter volume (GMV) and white matter integrity between ICSCI patients and HCs. Whole brain functional connectivity (FC) was analyzed using the results of VBM as seeds. Associations between the clinical variables and the brain changes were studied. Compared with HCs, ICSCI patients demonstrated reduced GMV in the right fusiform gyrus (FG) and left orbitofrontal cortex (OFC) but no changes in areas directly related to sensorimotor function. There were no significant differences in brain white matter. Additionally, the FC in the left primary sensorimotor cortex and cerebellum decreased when the FG and OFC, respectively, were used as seeds. Subsequent relevance analysis suggests a weak positive correlation between the left OFC’s GMV and visual analog scale (VAS) scores. In conclusion, brain structural changes following ICSCI occur mainly in certain higher cognitive regions, such as the FG and OFC, rather than in the brain areas directly related to sensation or motor control. The functional areas of the brain that are related to cognitive processing may play an important role in sensorimotor dysfunction through the decreased FC with sensorimotor areas after ICSCI. Therefore, cognition-related functional training may play an important role in rehabilitation of sensorimotor function after ICSCI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The datasets generated during the current study are available from the corresponding author on reasonable request.

Abbreviations

ICSCI:

Incomplete cervical spinal cord injury

rs-fMRI:

Resting-state functional magnetic resonance imaging

HC:

Healthy control

VBM:

Voxel-based morphometry

GM:

Gray matter

GMV:

Gray matter volume

WM:

White matter

WMV:

White matter volume

FC:

Functional connectivity

FG:

Fusiform gyrus

OFC:

Orbitofrontal cortex

VAS:

Visual analog scale

SCI:

Spinal cord injury

SMA:

Supplementary motor area

ACC:

Anterior cingulate cortex

TBSS:

Tract-based spatial statistics

ASIA:

American Spinal Injury Association

TBI:

Traumatic brain injury

CSF:

Cerebrospinal fluid

MD:

Mean diffusivity

FA:

Fractional anisotropy

ROI:

Regions of interest

VTC:

Ventral temporal cortex

PAG:

Periaqueductal gray

References

  • Anguera, J. A., Reuter-Lorenz, P. A., Willingham, D. T., & Seidler, R. D. (2010). Contributions of spatial working memory to visuomotor learning. Journal of Cognitive Neuroscience, 22(9), 1917–1930.

    PubMed  Google Scholar 

  • Anguera, J. A., Reuter-Lorenz, P. A., Willingham, D. T., & Seidler, R. D. (2011). Failure to engage spatial working memory contributes to age-related declines in visuomotor learning. Journal of Cognitive Neuroscience, 23(1), 11–25.

    PubMed  Google Scholar 

  • Barbas, H. (2007). Flow of information for emotions through temporal and orbitofrontal pathways. Journal of Anatomy, 211(2), 237–249.

    PubMed  PubMed Central  Google Scholar 

  • Bernard, J. A., Seidler, R. D., Hassevoort, K. M., Benson, B. L., Welsh, R. C., Wiggins, J. L., Jaeggi, S. M., Buschkuehl, M., Monk, C. S., Jonides, J., et al. (2012). Resting state cortico-cerebellar functional connectivity networks: A comparison of anatomical and self-organizing map approaches. Frontiers in Neuroanatomy, 6, 31.

    PubMed  PubMed Central  Google Scholar 

  • Bose, P., Parmer, R., Reier, P. J., & Thompson, F. J. (2005). Morphological changes of the soleus motoneuron pool in chronic midthoracic contused rats. Experimental Neurology, 191(1), 13–23.

    PubMed  Google Scholar 

  • Burks, J. D., Conner, A. K., Bonney, P. A., Glenn, C. A., Baker, C. M., Boettcher, L. B., Briggs, R. G., Donoghue, D. L., Wu, D. H., & Sughrue, M. E. (2018). Anatomy and white matter connections of the orbitofrontal gyrus. Journal of Neurosurgery, 128(6), 1865–1872.

    PubMed  Google Scholar 

  • Caspers, J., Zilles, K., Amunts, K., Laird, A. R., Fox, P. T., & Eickhoff, S. B. (2014). Functional characterization and differential coactivation patterns of two cytoarchitectonic visual areas on the human posterior fusiform gyrus. Human Brain Mapping, 35(6), 2754–2767.

    PubMed  Google Scholar 

  • Cauda, F., D'Agata, F., Sacco, K., Duca, S., Geminiani, G., & Vercelli, A. (2011). Functional connectivity of the insula in the resting brain. NeuroImage, 55(1), 8–23.

    PubMed  Google Scholar 

  • Cavada, C., Company, T., Tejedor, J., Cruz-Rizzolo, R. J., & Suarez, F. R. (2000). The anatomical connections of the macaque monkey orbitofrontal cortex. A review. Cerebral Cortex, 10, 220–242.

    CAS  PubMed  Google Scholar 

  • Chen, R., Cohen, L. G., & Hallett, M. (2002). Nervous system reorganization following injury. Neuroscience, 111(4), 761–773.

    CAS  PubMed  Google Scholar 

  • Chen, Q., Zheng, W., Chen, X., Wan, L., Qin, W., Qi, Z., Chen, N., & Li, K. (2017). Brain gray matter atrophy after spinal cord injury: A voxel-based morphometry study. Frontiers in Human Neuroscience, 11, 211.

    PubMed  PubMed Central  Google Scholar 

  • Cheng, P., Wang, C., Chung, C., & Chen, C. (2004). Effects of visual feedback rhythmic weight-shift training on hemiplegic stroke patients. Clinical Rehabilitation, 18(3), 317–321.

    Google Scholar 

  • Choe, A. S., Belegu, V., Yoshida, S., Joel, S., Sadowsky, C. L., Smith, S. A., Van Zijl, P. C. M., Pekar, J. J., & McDonald, J. W. (2013). Extensive neurological recovery from a complete spinal cord injury: A case report and hypothesis on the role of cortical plasticity. Frontiers in Human Neuroscience, 7, 290.

    PubMed  PubMed Central  Google Scholar 

  • Crawley, A. P., Jurkiewicz, M. T., Yim, A., Heyn, S., Verrier, M. C., Fehlings, M. G., & Mikulis, D. J. (2004). Absence of localized grey matter volume changes in the motor cortex following spinal cord injury. Brain Research, 1028(1), 19–25.

    CAS  PubMed  Google Scholar 

  • Dault, M. C., Haart, M., Geurts, A. C. H., & Nienhuis, B. (2003). Effects of visual center of pressure feedback on postural control in young and elderly healthy adults and in stroke patients. Human Movement Science, 22(3), 221–236.

    PubMed  Google Scholar 

  • Debaere, F., Wenderoth, N., Sunaert, S., Van Hecke, P., & Swinnen, S. P. (2004). Changes in brain activation during the acquisition of a new bimanual coordination task. Neuropsychologia, 42(7), 855–867.

    CAS  PubMed  Google Scholar 

  • Deng, X., Li, F., Tang, C., Zhang, J., Zhu, L., Zhou, M., Zhang, X., Gong, H., Xiao, X., & Xu, R. (2016). The cortical surface correlates of clinical manifestations in the mid-stage sporadic Parkinson’s disease. Neuroscience Letters, 633, 125–133.

    CAS  PubMed  Google Scholar 

  • Freund, P., Weiskopf, N., Ward, N. S., Hutton, C., Gall, A., Ciccarelli, O., Craggs, M., Friston, K., & Thompson, A. J. (2011). Disability, atrophy and cortical reorganization following spinal cord injury. Brain, 134(6), 1610–1622.

    PubMed  PubMed Central  Google Scholar 

  • Freund, P., Weiskopf, N., Ashburner, J., Wolf, K., Sutter, R., Altmann, D. R., Friston, K., Thompson, A., & Curt, A. (2013). MRI investigation of the sensorimotor cortex and the corticospinal tract after acute spinal cord injury: A prospective longitudinal study. The Lancet Neurology, 12(9), 873–881.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ghosh, A., Haiss, F., Sydekum, E., Schneider, R., Gullo, M., Wyss, M. T., Mueggler, T., Baltes, C., Rudin, M., Weber, B., et al. (2010). Rewiring of hindlimb corticospinal neurons after spinal cord injury. Nature Neuroscience, 13, 97–106.

    CAS  PubMed  Google Scholar 

  • Gustin, S. M., Wrigley, P. J., Siddall, P. J., & Henderson, L. A. (2010). Brain anatomy changes associated with persistent neuropathic pain following spinal cord injury. Cerebral Cortex, 20, 1409–1419.

    CAS  PubMed  Google Scholar 

  • Henderson, L. A., Gustin, S. M., Macey, P. M., Wrigley, P. J., & Siddall, P. J. (2011). Functional reorganization of the brain in humans following spinal cord injury: Evidence for underlying changes in cortical anatomy. Journal of Neuroscience, 31(7), 2630–2637.

    CAS  PubMed  Google Scholar 

  • Heuer, H., & Hegele, M. (2015). Explicit and implicit components of visuo-motor adaptation: An analysis of individual differences. Consciousness and Cognition, 33, 156–169.

    PubMed  Google Scholar 

  • Höller, Y., Tadzic, A., Thomschewski, A. C., Höller, P., Leis, S., Tomasi, S. O., Hofer, C., Bathke, A., Nardone, R., & Trinka, E. (2017). Factors affecting volume changes of the somatosensory cortex in patients with spinal cord injury: To be considered for future neuroprosthetic design. Frontiers in Neurology, 8, 662.

    PubMed  PubMed Central  Google Scholar 

  • Hoover, W. B., & Vertes, R. P. (2011). Projections of the medial orbital and ventral orbital cortex in the rat. The Journal of Comparative Neurology, 519(18), 3766–3801.

    PubMed  Google Scholar 

  • Hou, J. M., Sun, T. S., Xiang, Z. M., Zhang, J. Z., Zhang, Z. C., Zhao, M., Zhong, J. F., Liu, J., Zhang, H., Liu, H. L., et al. (2014a). Alterations of resting-state regional and network-level neural function after acute spinal cord injury. Neuroscience, 277, 446–454.

    CAS  PubMed  Google Scholar 

  • Hou, J. M., Yan, R. B., Xiang, Z. M., Zhang, H., Liu, J., Wu, Y. T., Zhao, M., Pan, Q. Y., Song, L. H., Zhang, W., et al. (2014b). Brain sensorimotor system atrophy during the early stage of spinal cord injury in humans. Neuroscience, 266, 208–215.

    CAS  PubMed  Google Scholar 

  • Hou, J., Xiang, Z., Yan, R., Zhao, M., Wu, Y., Zhong, J., Guo, L., Li, H., Wang, J., Wu, J., et al. (2016). Motor recovery at 6 months after admission is related to structural and functional reorganization of the spine and brain in patients with spinal cord injury. Human Brain Mapping, 37(6), 2195–2209.

    PubMed  PubMed Central  Google Scholar 

  • Jenkins, I. H., Brooks, D. J., Nixon, P. D., Frackowiak, R. S., & Passingham, R. E. (1994). Motor sequence learning: A study with positron emission tomography. Journal of Neuroscience, 14(6), 3775–3790.

    CAS  PubMed  Google Scholar 

  • Jurkiewicz, M. T., Crawley, A. P., Verrier, M. C., Fehlings, M. G., & Mikulis, D. J. (2006). Somatosensory cortical atrophy after spinal cord injury: A voxel-based morphometry study. Neurology, 66, 762–764.

    CAS  PubMed  Google Scholar 

  • Jutzeler, C. R., Huber, E., Callaghan, M. F., Luechinger, R., Curt, A., Kramer, J. L. K., & Freund, P. (2016). Association of pain and CNS structural changes after spinal cord injury. Scientific Reports, 6, 18534.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kannan, L., Vora, J., Bhatt, T., & Hughes, S. L. (2019). Cognitive-motor exergaming for reducing fall risk in people with chronic stroke: A randomized controlled trial. NeuroRehabilitation, 44(4), 493–510.

    PubMed  Google Scholar 

  • Kawashima, R., Roland, P. E., & O’Sullivan, B. T. (1994). Fields in human motor areas involved in preparation for reaching, actual reaching, and visuomotor learning: a positron emission tomography study. The Journal of Neuroscience, 14(6), 3462–3474.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, B. G., Dai, H. N., Mcatee, M., Vicini, S., & Bregman, B. S. (2006). Remodeling of synaptic structures in the motor cortex following spinal cord injury. Experimental Neurology, 198, 401–415.

    PubMed  Google Scholar 

  • Koziol, L. F., Budding, D., Andreasen, N., D’Arrigo, S., Bulgheroni, S., Imamizu, H., Ito, M., Manto, M., Marvel, C., Parker, K., et al. (2014). Consensus paper: The Cerebellum's role in movement and cognition. The Cerebellum, 13(1), 151–177.

    PubMed  Google Scholar 

  • Kringelbach, M. L. (2005). The human orbitofrontal cortex: Linking reward to hedonic experience. Nature Reviews Neuroscience, 6(9), 691–702.

    CAS  PubMed  Google Scholar 

  • Liu, F., Wang, Y., Li, M., Wang, W., Li, R., Zhang, Z., Lu, G., & Chen, H. (2017). Dynamic functional network connectivity in idiopathic generalized epilepsy with generalized tonic-clonic seizure. Human Brain Mapping 38, 957–973.

  • Min, Y., Park, J. W., Jin, S. U., Jang, K. E., Nam, H. U., Lee, Y., Jung, T., & Chang, Y. (2015). Alteration of resting-state brain sensorimotor connectivity following spinal cord injury: A resting-state functional magnetic resonance imaging study. Journal of Neurotrauma, 32(18), 1422–1427.

    PubMed  Google Scholar 

  • Mina Taati, E. T. (2018). Ventrolateral orbital cortex oxytocin attenuates neuropathic pain through periaqueductal gray opioid receptor. Pharmacological Reports, 70(3), 577–583.

    PubMed  Google Scholar 

  • Mole, T. B., MacIver, K., Sluming, V., Ridgway, G. R., & Nurmikko, T. J. (2014). Specific brain morphometric changes in spinal cord injury with and without neuropathic pain. NeuroImage: Clinical, 5, 28–35.

    Google Scholar 

  • Nardone, R., Holler, Y., Sebastianelli, L., Versace, V., Saltuari, L., Brigo, F., & Lochner, P. E. T. (2017). Cortical morphometric changes after spinal cord injury. Brain Research Bulletin, 137, 107–119.

    PubMed  Google Scholar 

  • Nestor, P. G., Nakamura, M., Niznikiewicz, M., Thompson, E., Levitt, J. J., Choate, V., Shenton, M. E., & McCarley, R. W. (2013). In search of the functional neuroanatomy of sociality: MRI subdivisions of orbital frontal cortex and social cognition. Social Cognitive and Affective Neuroscience, 8(4), 460–467.

    PubMed  Google Scholar 

  • Nissen, M. J., & Bullermer, P. (1987). Attentional requirements of learning: Evidence from performance measures. Cognitive Psychology, 19, 1–32.

  • Oni-Orisan, A., Kaushal, M., Li, W., Leschke, J., Ward, B. D., Vedantam, A., Kalinosky, B., Budde, M. D., Schmit, B. D., Li, S., et al. (2016). Alterations in cortical sensorimotor connectivity following complete cervical spinal cord injury: A prospective resting-state fMRI study. PLoS One, 11(3), e0150351.

    PubMed  PubMed Central  Google Scholar 

  • O'Reilly, J. X., Beckmann, C. F., Tomassini, V., Ramnani, N., & Johansen-Berg, H. (2010). Distinct and overlapping functional zones in the cerebellum defined by resting state functional connectivity. Cerebral Cortex, 20(4), 953–965.

    PubMed  Google Scholar 

  • Pallini, R., Fernandez, E., & Sbriccoli, A. (1988). Retrograde degeneration of corticospinal axons following transection of the spinal cord in rats. Journal of Neurosurgery, 68, 124–128.

    CAS  PubMed  Google Scholar 

  • Ramachandran, V. S., & Altschuler, E. L. (2009). The use of visual feedback, in particular mirror visual feedback, in restoring brain function. Brain, 132(7), 1693–1710.

    CAS  PubMed  Google Scholar 

  • Rao, J. S., Liu, Z., Zhao, C., Wei, R. H., Zhao, W., Yang, Z. Y., & Li, X. G. (2016). Longitudinal evaluation of functional connectivity variation in the monkey sensorimotor network induced by spinal cord injury. Acta Physiologica (Oxford, England), 217, 164–173.

    CAS  Google Scholar 

  • Raya, J. G., Horng, A., Dietrich, O., Krasnokutsky, S., Beltran, L. S., Storey, P., Reiser, M. F., Recht, M. P., Sodickson, D. K., & Glaser, C. (2012). Articular cartilage: In vivo diffusion-tensor imaging. Radiology, 262, 550–559.

    PubMed  Google Scholar 

  • Rolls, E. T. (2004). The functions of the orbitofrontal cortex. Brain and Cognition, 55(1), 11–29.

    PubMed  Google Scholar 

  • Sayenko, D., Alekhina, M., Masani, K., Vette, A., Obata, H., Popovic, M., & Nakazawa, K. (2010). Positive effect of balance training with visual feedback on standing balance abilities in people with incomplete spinal cord injury. Spinal Cord, 48, 886–893.

    CAS  PubMed  Google Scholar 

  • Seidler, R. D., & Carson, R. G. (2017). Sensorimotor learning: Neurocognitive mechanisms and individual differences. Journal of Neuroengineering and Rehabilitation, 14(1), 74.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Seif, M., Curt, A., Thompson, A. J., Grabher, P., Weiskopf, N., & Freund, P. (2018). Quantitative MRI of rostral spinal cord and brain regions is predictive of functional recovery in acute spinal cord injury. NeuroImage: Clinical, 20, 556–563.

    Google Scholar 

  • Seitz, R. J., Knorr, U., Azari, N. P., Herzog, H., & Freund, H. (1999). Visual network activation in recovery from sensorimotor stroke. Restorative Neurology and Neuroscience, 14(1), 25–33.

    PubMed  Google Scholar 

  • Shin, J., & Chung, Y. (2017). Influence of visual feedback and rhythmic auditory cue on walking of chronic stroke patient induced by treadmill walking in real-time basis. NeuroRehabilitation, 41(2), 445–452.

    PubMed  Google Scholar 

  • Smith, M. A., Ghazizadeh, A., & Shadmehr, R. (2006). Interacting adaptive processes with different timescales underlie short-term motor learning. PLoS Biology, 4(6), e179.

    PubMed  PubMed Central  Google Scholar 

  • Stoodley, C. J. (2012). The cerebellum and cognition: Evidence from functional imaging studies. The Cerebellum, 11(2), 352–365.

    PubMed  Google Scholar 

  • Tang, J., Qu, C., & Huo, F. (2009). The thalamic nucleus submedius and ventrolateral orbital cortex are involved in nociceptive modulation: A novel pain modulation pathway. Progress in Neurobiology, 89(4), 383–389.

    PubMed  Google Scholar 

  • Taylor, J. A., Krakauer, J. W., & Ivry, R. B. (2014). Explicit and implicit contributions to learning in a sensorimotor adaptation task. Journal of Neuroscience, 34(8), 3023–3032.

    CAS  PubMed  Google Scholar 

  • Villiger, M., Grabher, P., Hepp-Reymond, M., Kiper, D., Curt, A., Bolliger, M., Hotz-Boendermaker, S., Kollias, S., Eng, K., & Freund, P. (2015). Relationship between structural brainstem and brain plasticity and lower-limb training in spinal cord injury: A longitudinal pilot study. Frontiers in Human Neuroscience, 9, 254.

    PubMed  PubMed Central  Google Scholar 

  • Visavadiya, N. P., & Springer, J. E. (2016). Altered cerebellar circuitry following Thoracic Spinal Cord Injury in Adult Rats. Neural Plasticity, 8181393.

  • Walker, C., Brouwer, B. J., & Culham, E. G. (2000). Use of visual feedback in retraining balance following acute stroke. Physical Therapy, 80(9), 886.

    CAS  PubMed  Google Scholar 

  • Wei, C. W., Tharmakulasingam, J., Crawley, A., Kideckel, D. M., Mikulis, D. J., Bradbury, C. L., & Green, R. E. (2008). Use of diffusion-tensor imaging in traumatic spinal cord injury to identify concomitant traumatic brain injury. Archives of Physical Medicine and Rehabilitation, 12(89), S85–S91.

    Google Scholar 

  • Weiner, K. S., & Zilles, K. (2016). The anatomical and functional specialization of the fusiform gyrus. Neuropsychologia, 83, 48–62.

    PubMed  Google Scholar 

  • Weiner, K. S., Golarai, G., Caspers, J., Chuapoco, M. R., Mohlberg, H., Zilles, K., Amunts, K., & Grill-Spector, K. (2014). The mid-fusiform sulcus: A landmark identifying both cytoarchitectonic and functional divisions of human ventral temporal cortex. NeuroImage, 84, 453–465.

    PubMed  Google Scholar 

  • Wrigley, P. J., Gustin, S. M., Macey, P. M., Nash, P. G., Gandevia, S. C., Macefield, V. G., Siddall, P. J., & Henderson, L. A. (2009). Anatomical changes in human motor cortex and motor pathways following complete thoracic spinal cord injury. Cerebral Cortex, 19(1), 224–232.

    CAS  PubMed  Google Scholar 

  • Yoon, E. J., Kim, Y. K., Shin, H. I., Lee, Y., & Kim, S. E. (2013). Cortical and white matter alterations in patients with neuropathic pain after spinal cord injury. Brain Research, 1540, 64–73.

    CAS  PubMed  Google Scholar 

  • Zheng, W., Chen, Q., Chen, X., Wan, L., Qin, W., Qi, Z., Chen, N., & Li, K. (2017). Brain white matter impairment in patients with spinal cord injury. Neural Plasticity, 4671607.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nan Chen.

Ethics declarations

Conflict of interest

Authors declare no conflicts of interest.

Ethical approval

All procedures performed in this study involving human participants were in accordance with the ethical standards of the institutional research committee and with the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards.

This article does not contain any studies with animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Chen, Q., Zheng, W. et al. Inconsistency between cortical reorganization and functional connectivity alteration in the sensorimotor cortex following incomplete cervical spinal cord injury. Brain Imaging and Behavior 14, 2367–2377 (2020). https://doi.org/10.1007/s11682-019-00190-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-019-00190-9

Keywords

Navigation