Abstract
The neuroimaging literature in moral cognition has rapidly developed in the last decade with more than 200 publications on the topic. Neuroimaging based models generally agree that limbic regions work with medial prefrontal and temporal regions during moral processing to integrate emotional, social, and cognitive elements into decision-making. However, no quantitative work has been done examining neural response across types of moral cognition tasks. This paper uses Multilevel Kernel Density Analysis (MKDA) to conduct neuroimaging meta-analyses of the moral cognitive literature. MKDA replicated previous findings of the neural correlates of moral cognition: the left amygdala, medial prefrontal cortex, bilateral temporoparietal junction, and posterior cingulate. Random forest algorithms classified neural features as belonging to simple/utilitarian moral dilemmas, explicit/implicit moral tasks, and word/picture moral stimuli tasks; in combination with univariate contrast analyses, these results indicated a distinct pattern of processing for each of the members of these paradigm pairs. Overall, the results emphasize that the task selected for use in a moral cognition neuroimaging study is vital for the elicitation and interpretation of results. It also replicates and re-establishes the neural basis for moral processing, especially important in light of implementation errors in previous meta-analysis.




Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.Notes
Moral emotions typically include shame and guilt, and positive emotions like gratitude. Although theory and literature support emotional processes as constituting an element of moral processing, the coordination between those and cognitive/social systems are an essential part of moral cognition that is not captured by tasks of component parts only (e.g., facial emotion processing, working memory, economic decision making). We have chosen to treat moral emotions in the absence of specific moral cognitive tasks as a separate (albeit related) construct, much like theory of mind and empathy processes. In previous meta-analysis, those (TOM and empathy) corresponded to engagement that was both distinct and overlapping with regions of the brain found associated with moral cognition (Bzdok et al. 2012), suggesting the need to treat such constructs separately.
All foci are converted to MNI within the analysis.
It is important to note that many of the reviews comparing ALE and MDKA and finding significant differences therein discuss the pre-2009 ALE (i.e., Kober and Wager 2010); the revisions to the algorithms by Eickhoff largely address the concerns of these reviews and as a result, both techniques are considered similarly useful in conducting imaging meta-analyses (Nichols, Neuroimaging Meta-Analysis Educational Session, OHBM 2015).
References
Baez, S., Couto, B., Torralva, T., Sposato, L. A., Huepe, D., Montanes, P., et al. (2014). Comparing moral judgments of patients with frontotemporal dementia and frontal stroke. JAMA Neurology, 71(9), 1172–1176. https://doi.org/10.1001/jamaneurol.2014.347.
Bezalel, V., Paz, R., & Tal, A. (2019). Inhibitory and excitatory mechanisms in the human cingulate-cortex support reinforcement learning: A functional proton magnetic resonance spectroscopy study. NeuroImage, 184, 25–35. https://doi.org/10.1016/j.neuroimage.2018.09.016.
Braver, T. S., & Bongiolatti, S. R. (2002). The role of frontopolar cortex in subgoal processing during working memory. NeuroImage, 15(3), 523–536.
Bush, G., Vogt, B. A., Holmes, J., Dale, A. M., Greve, D., Jenike, M. A., & Rosen, B. R. (2002). Dorsal anterior cingulate cortex: A role in reward-based decision making. Proceedings of the National Academy of Sciences, 99(1), 523–528. https://doi.org/10.1073/pnas.012470999.
Button, K. S., Ioannidis, J. P., Mokrysz, C., Nosek, B. A., Flint, J., Robinson, E. S., & Munafò, M. R. (2013). Power failure: Why small sample size undermines the reliability of neuroscience. Nature Reviews Neuroscience, 14(5), 365–376.
Bzdok, D., Schilbach, L., Vogeley, K., Schneider, K., Laird, A. R., Langner, R., & Eickhoff, S. B. (2012). Parsing the neural correlates of moral cognition: ALE meta-analysis on morality, theory of mind, and empathy. Brain Structure and Function, 217(4), 783–796.
Bzdok, D., Groß, D., & Eickhoff, S. B. (2015). The neurobiology of moral cognition: Relation to theory of mind, empathy, and mind-wandering Handbook of Neuroethics (pp. 127–148). Berlin: Springer.
Caldwell, B. M., Harenski, C. L., Harenski, K. A., Fede, S. J., Steele, V. R., Koenigs, M. R., & Kiehl, K. A. (2015). Abnormal frontostriatal activity in recently abstinent cocaine users during implicit moral processing. Frontiers in Human Neuroscience, 9, 565.
Chang, L. J., Yarkoni, T., Khaw, M. W., & Sanfey, A. G. (2012). Decoding the role of the insula in human cognition: Functional Parcellation and large-scale reverse inference. Cerebral Cortex, 23, 739–749. https://doi.org/10.1093/cercor/bhs065.
Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: Synthetic minority over-sampling technique. Journal of Artificial Intelligence Research, 16, 321–357.
Chee, M. W., Weekes, B., Lee, K. M., Soon, C. S., Schreiber, A., Hoon, J. J., & Chee, M. (2000). Overlap and dissociation of semantic processing of Chinese characters, English words, and pictures: Evidence from fMRI. NeuroImage, 12(4), 392–403.
Christoff, K., & Gabrieli, J. D. (2000). The frontopolar cortex and human cognition: Evidence for a rostrocaudal hierarchical organization within the human prefrontal cortex. Psychobiology, 28(2), 168–186.
Ciaramelli, E., Muccioli, M., Ladavas, E., & di Pellegrino, G. (2007). Selective deficit in personal moral judgment following damage to ventromedial prefrontal cortex. Social Cognitive and Affective Neuroscience, 2(2), 84–92. https://doi.org/10.1093/scan/nsm001.
de Oliveira-Souza, R., & Moll, J. (2009). The neural bases of normal and deviant moral cognition and behavior. Topics in Magnetic Resonance Imaging, 20(5), 261–270. https://doi.org/10.1097/RMR.0b013e3181f22f69.
Eickhoff, S. B., Laird, A. R., Grefkes, C., Wang, L. E., Zilles, K., & Fox, P. T. (2009). Coordinate-based activation likelihood estimation meta-analysis of neuroimaging data: A random-effects approach based on empirical estimates of spatial uncertainty. Human Brain Mapping, 30(9), 2907–2926.
Eickhoff, S. B., Laird, A. R., Fox, P. M., Lancaster, J. L., & Fox, P. T. (2017). Implementation errors in the GingerALE software: Description and recommendations. Human Brain Mapping, 38(1), 7–11. https://doi.org/10.1002/hbm.23342.
Fede, S. J., Borg, J. S., Nyalakanti, P. K., Harenski, C. L., Cope, L. M., Sinnott-Armstrong, W., Koenigs, M., Calhoun, V.D., & Kiehl, K.A. (2016). Distinct neuronal patterns of positive and negative moral processing in psychopathy. Cognitive, Affective, & Behavioral Neuroscience, 16(6), 1074–1085. https://doi.org/10.3758/s13415-016-0454-z
Feldmanhall, O., Mobbs, D., & Dalgleish, T. (2014). Deconstructing the brain's moral network: Dissociable functionality between the temporoparietal junction and ventro-medial prefrontal cortex. Social Cognitive and Affective Neuroscience, 9(3), 297–306. https://doi.org/10.1093/scan/nss139.
Feng, C. L., Yan, X. Y., Huang, W. H., Han, S. H., & Ma, Y. N. (2018). Neural representations of the multidimensional self in the cortical midline structures. NeuroImage, 183, 291–299. https://doi.org/10.1016/j.neuroimage.2018.08.018.
Finger, E. C., Marsh, A. A., Kamel, N., Mitchell, D. G., & Blair, J. R. (2006). Caught in the act: The impact of audience on the neural response to morally and socially inappropriate behavior. NeuroImage, 33(1), 414–421. https://doi.org/10.1016/j.neuroimage.2006.06.011.
Glenn, A. L., Raine, A., Schug, R. A., Young, L., & Hauser, M. (2009). Increased DLPFC activity during moral decision-making in psychopathy. Molecular Psychiatry, 14(10), 909–911. https://doi.org/10.1038/Mp.2009.76.
Greene, J. D., Sommerville, R. B., Nystrom, L. E., Darley, J. M., & Cohen, J. D. (2001). An fMRI investigation of emotional engagement in moral judgment. Science, 293(5537), 2105–2108. https://doi.org/10.1126/science.1062872.
Harenski, C. L., Antonenko, O., Shane, M. S., & Kiehl, K. A. (2008). Gender differences in neural mechanisms underlying moral sensitivity. Social Cognitive and Affective Neuroscience, 3(4), 313–321. https://doi.org/10.1093/scan/nsn026.
Harenski, C. L., Harenski, K. A., Shane, M. S., & Kiehl, K. A. (2010). Aberrant neural processing of moral violations in criminal psychopaths. Journal of Abnormal Psychology, 119(4), 863–874. https://doi.org/10.1037/a0020979
Hiraishi, H., Hashimoto, T., Mori, K., Ito, H., & Harada, M. (2007). A preliminary fMRI study of moral judgment task in high functioning autistic children. No to Hattatsu, 39(5), 360–365.
Johnson, M. K., Raye, C. L., Mitchell, K. J., Touryan, S. R., Greene, E. J., & Nolen-Hoeksema, S. (2006). Dissociating medial frontal and posterior cingulate activity during self-reflection. Social Cognitive and Affective Neuroscience, 1(1), 56–64. https://doi.org/10.1093/scan/nsl004.
Kahane, G., Wiech, K., Shackel, N., Farias, M., Savulescu, J., & Tracey, I. (2012). The neural basis of intuitive and counterintuitive moral judgment. Social Cognitive and Affective Neuroscience, 7(4), 393–402. https://doi.org/10.1093/scan/nsr005.
Kerr, K. F. (2009). Comments on the analysis of unbalanced microarray data. Bioinformatics, 25(16), 2035–2041.
Kiehl, K. A. (2006). A cognitive neuroscience perspective on psychopathy: Evidence for paralimbic system dysfunction. Psychiatry Research, 142(2–3), 107–128. https://doi.org/10.1016/j.psychres.2005.09.013.
Kober, H., & Wager, T. D. (2010). Meta-analysis of neuroimaging data. Wiley Interdisciplinary Reviews: Cognitive Science, 1(2), 293–300.
Koenigs, M., Young, L., Adolphs, R., Tranel, D., Cushman, F., Hauser, M., & Damasio, A. (2007). Damage to the prefrontal cortex increases utilitarian moral judgements. Nature, 446(7138), 908–911. https://doi.org/10.1038/Nature05631.
Koster-Hale, J., Saxe, R., Dungan, J., & Young, L. L. (2013). Decoding moral judgments from neural representations of intentions. Proceedings of the National Academy of Sciences of the United States of America, 110(14), 5648–5653. https://doi.org/10.1073/pnas.1207992110.
Kuhn, M. (2017). caret: Classification and Regression Training (Version 6.0–77). Retrieved from https://CRAN.R-project.org/package=caret
Lin, L. C., Qu, Y., & Telzer, E. H. (2018). Intergroup social influence on emotion processing in the brain. Proceedings of the National Academy of Sciences of the United States of America, 115(42), 10630–10635. https://doi.org/10.1073/pnas.1802111115.
Lisofsky, N., Kazzer, P., Heekeren, H. R., & Prehn, K. (2014). Investigating socio-cognitive processes in deception: A quantitative meta-analysis of neuroimaging studies. Neuropsychologia, 61, 113–122. https://doi.org/10.1016/j.neuropsychologia.2014.06.001.
Miller, M. B., Sinnott-Armstrong, W., Young, L., King, D., Paggi, A., Fabri, M., et al. (2010). Abnormal moral reasoning in complete and partial callosotomy patients. Neuropsychologia, 48(7), 2215–2220. https://doi.org/10.1016/j.neuropsychologia.2010.02.021.
Moll, J., de Oliveira-Souza, R., Eslinger, P. J., Bramati, I. E., Mourao-Miranda, J., Andreiuolo, P. A., & Pessoa, L. (2002). The neural correlates of moral sensitivity: a functional magnetic resonance imaging investigation of basic and moral emotions. Journal of Neuroscience, 22(7), 2730–2736.
Moll, J., Zahn, R., de Oliveira-Souza, R., Krueger, F., & Grafman, J. (2005). The neural basis of human moral cognition. Nature Reviews Neuroscience, 6(10), 799–809.
Murray, E. A., Moylan, E. J., Saleem, K. S., Basile, B. M., & Turchi, J. (2015). Specialized areas for value updating and goal selection in the primate orbitofrontal cortex. Elife, 4. https://doi.org/10.7554/eLife.11695.
Nakao, T., Ohira, H., & Northoff, G. (2012). Distinction between externally vs. internally guided decision-making: Operational differences, meta-analytical comparisons and their theoretical implications. Frontiers in Neuroscience, 6. https://doi.org/10.3389/fnins.2012.00031.
Papageorgiou, G. K., Sallet, J., Wittmann, M. K., Chau, B. K., Schüffelgen, U., Buckley, M. J., & Rushworth, M. F. (2017). Inverted activity patterns in ventromedial prefrontal cortex during value-guided decision-making in a less-is-more task. Nature Communications, 8(1), 1886.
Parkinson, C., Sinnott-Armstrong, W., Koralus, P. E., Mendelovici, A., McGeer, V., & Wheatley, T. (2011). Is morality unified? Evidence that distinct neural systems underlie moral judgments of harm, dishonesty, and disgust. Journal of Cognitive Neuroscience, 23(10), 3162–3180. https://doi.org/10.1162/jocn_a_00017.
Perner, J., Aichhorn, M., Kronbichler, M., Staffen, W., & Ladurner, G. (2006). Thinking of mental and other representations: The roles of left and right temporo-parietal junction. Social Neuroscience, 1(3–4), 245–258.
Poldrack, R. A., Baker, C. I., Durnez, J., Gorgolewski, K. J., Matthews, P. M., Munafò, M. R., et al. (2017). Scanning the horizon: Towards transparent and reproducible neuroimaging research. Nature Reviews Neuroscience, 18(2), 115–126.
Prehn, K., Wartenburger, I., Meriau, K., Scheibe, C., Goodenough, O. R., Villringer, A., et al. (2008). Individual differences in moral judgment competence influence neural correlates of socio-normative judgments. Social Cognitive and Affective Neuroscience, 3(1), 33–46. https://doi.org/10.1093/scan/nsm037.
Salimi-Khorshidi, G., Smith, S. M., Keltner, J. R., Wager, T. D., & Nichols, T. E. (2009). Meta-analysis of neuroimaging data: A comparison of image-based and coordinate-based pooling of studies. NeuroImage, 45(3), 810–823.
Schaich Borg, J., Hynes, C., Van Horn, J., Grafton, S., & Sinnott-Armstrong, W. (2006). Consequences, action, and intention as factors in moral judgments: An FMRI investigation. Journal of Cognitive Neuroscience, 18(5), 803–817. https://doi.org/10.1162/jocn.2006.18.5.803.
Scheuerecker, J., Frodl, T., Koutsouleris, N., Zetzsche, T., Wiesmann, M., Kleemann, A., et al. (2007). Cerebral differences in explicit and implicit emotional processing–an fMRI study. Neuropsychobiology, 56(1), 32–39.
Schneider, K., Pauly, K. D., Gossen, A., Mevissen, L., Michel, T. M., Gur, R. C., et al. (2012). Neural correlates of moral reasoning in autism spectrum disorder. Social Cognitive and Affective Neuroscience, 8(6), 702-710. https://doi.org/10.1093/scan/nss051
Shenhav, A., & Greene, J. D. (2010). Moral judgments recruit domain-general valuation mechanisms to integrate representations of probability and magnitude. Neuron, 67(4), 667–677. https://doi.org/10.1016/j.neuron.2010.07.020.
Shenhav, A., & Greene, J. D. (2014). Integrative moral judgment: Dissociating the roles of the amygdala and ventromedial prefrontal cortex. Journal of Neuroscience, 34(13), 4741–4749. https://doi.org/10.1523/jneurosci.3390-13.2014.
Takahashi, H., Kato, M., Matsuura, M., Koeda, M., Yahata, N., Suhara, T., & Okubo, Y. (2008). Neural correlates of human virtue judgment. Cerebral Cortex, 18(8), 1886–1891. https://doi.org/10.1093/cercor/bhm214
Tangney, J. P., Stuewig, J., & Mashek, D. J. (2007). Moral emotions and moral behavior. Annual Review of Psychology, 58, 345–372. https://doi.org/10.1146/annurev.psych.56.091103.070145.
Timmers, I., Park, A. L., Fischer, M. D., Kronman, C. A., Heathcote, L. C., Hernandez, J. M., & Simons, L. E. (2018). Is empathy for pain unique in its neural correlates? A meta-analysis of neuroimaging studies of empathy. Frontiers in Behavioral Neuroscience, 12. https://doi.org/10.3389/fnbeh.2018.00289.
Torgo, L. (2016). Data mining with R: Learning with case studies. Boca Raton: Chapman and Hall/CRC.
van Elk, M., Duizer, M., Sligte, I., & van Schie, H. (2017). Transcranial direct current stimulation of the right temporoparietal junction impairs third-person perspective taking. Cognitive, Affective, & Behavioral Neuroscience, 17(1), 9–23. https://doi.org/10.3758/s13415-016-0462-z.
Verdejo-Garcia, A., Contreras-Rodríguez, O., Fonseca, F., Cuenca, A., Soriano-Mas, C., Rodriguez, J., et al. (2014). Functional alteration in frontolimbic systems relevant to moral judgment in cocaine-dependent subjects. Addiction Biology, 19(2), 272–281. https://doi.org/10.1111/j.1369-1600.2012.00472.x.
Wager, T. D., & Smith, E. E. (2003). Neuroimaging studies of working memory: A meta-analysis. Cognitive, Affective, & Behavioral Neuroscience, 3(4), 255–274. https://doi.org/10.3758/cabn.3.4.255.
Wager, T. D., Lindquist, M., & Kaplan, L. (2007). Meta-analysis of functional neuroimaging data: Current and future directions. Social Cognitive and Affective Neuroscience, 2(2), 150–158.
Wager, T. D., Lindquist, M. A., Nichols, T. E., Kober, H., & Van Snellenberg, J. X. (2009). Evaluating the consistency and specificity of neuroimaging data using meta-analysis. NeuroImage, 45(1), S210–S221.
Wang, H.-T., Poerio, G., Murphy, C., Bzdok, D., Jefferies, E., & Smallwood, J. (2017). Dimensions of experience: Exploring the heterogeneity of the wandering mind. Psychological Science. https://doi.org/10.1177/0956797617728727.
Wellcome Department of Cognitive Neurology. (2005). SPM 5. London, UK. Retrieved from http://www.fil.ion.ucl.ac.uk/spm
Wurm, M. F., & Schubotz, R. I. (2018). The role of the temporoparietal junction (TPJ) in action observation: Agent detection rather than visuospatial transformation. NeuroImage, 165, 48–55.
Young, L., & Saxe, R. (2009). An FMRI investigation of spontaneous mental state inference for moral judgment. Journal of Cognitive Neuroscience, 21(7), 1396–1405. https://doi.org/10.1162/jocn.2009.21137.
Young, L., Cushman, F., Hauser, M., & Saxe, R. (2007). The neural basis of the interaction between theory of mind and moral judgment. Proceedings of the National Academy of Sciences, 104(20), 8235–8240.
Young, L., Camprodon, J. A., Hauser, M., Pascual-Leone, A., & Saxe, R. (2010). Disruption of the right temporoparietal junction with transcranial magnetic stimulation reduces the role of beliefs in moral judgments. Proceedings of the National Academy of Sciences of the United States of America, 107(15), 6753–6758. https://doi.org/10.1073/pnas.0914826107.
Zahn, R., Moll, J., Krueger, F., Huey, E. D., Garrido, G., & Grafman, J. (2007). Social concepts are represented in the superior anterior temporal cortex. Proceedings of the National Academy of Sciences, 104(15), 6430–6435. https://doi.org/10.1073/pnas.0607061104.
Acknowledgements
Drs. Carla Harenski, Jim Cavanaugh, Vince Clark, and Vince Calhoun provided feedback on the direction of this project and the early version of this manuscript. Portions of these results were presented at the 2016 Society for Neuroscience annual meeting.
Funding
The authors of this manuscript are partially supported by NIH research funding, although the work done here was not directly grant supported.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Informed consent
This research did not involve humans or animals.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Electronic supplementary material
ESM 1
(DOCX 28.0 kb)
Rights and permissions
About this article
Cite this article
Fede, S.J., Kiehl, K.A. Meta-analysis of the moral brain: patterns of neural engagement assessed using multilevel kernel density analysis. Brain Imaging and Behavior 14, 534–547 (2020). https://doi.org/10.1007/s11682-019-00035-5
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11682-019-00035-5