Skip to main content

Advertisement

Log in

Structural imaging of mild traumatic brain injury may not be enough: overview of functional and metabolic imaging of mild traumatic brain injury

  • Review Article
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

A majority of patients with traumatic brain injury (TBI) present as mild injury with no findings on conventional clinical imaging methods. Due to this difficulty of imaging assessment on mild TBI patients, there has been much emphasis on the development of diffusion imaging modalities such as diffusion tensor imaging (DTI). However, basic science research in TBI shows that many of the functional and metabolic abnormalities in TBI may be present even in the absence of structural damage. Moreover, structural damage may be present at a microscopic and molecular level that is not detectable by structural imaging modality. The use of functional and metabolic imaging modalities can provide information on pathological changes in mild TBI patients that may not be detected by structural imaging. Although there are various differences in protocols of positron emission tomography (PET), single photon emission computed tomography (SPECT), functional magnetic resonance imaging (fMRI), electroencephalography (EEG), and magnetoencephalography (MEG) methods, these may be important modalities to be used in conjunction with structural imaging in the future in order to detect and understand the pathophysiology of mild TBI. In this review, studies of mild TBI patients using these modalities that detect functional and metabolic state of the brain are discussed. Each modality’s advantages and disadvantages are compared, and potential future applications of using combined modalities are explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abbas, K., Shenk, T. E., Poole, V. N., Breedlove, E. L., Leverenz, L. J., Nauman, E. A., et al. (2015). Alteration of default mode network in high school football athletes due to repetitive subconcussive mild traumatic brain injury: a resting-state functional magnetic resonance imaging study. Brain Connectivity, 5(2), 91–101.

    Article  PubMed  Google Scholar 

  • Abdel-Dayem, H. M., Abu-Judeh, H., Kumar, M., Atay, S., Naddaf, S., El-Zeftawy, H., et al. (1998). SPECT brain perfusion abnormalities in mild or moderate traumatic brain injury. Clinical Nuclear Medicine, 23(5), 309–317.

    Article  CAS  PubMed  Google Scholar 

  • Abend, N. S., Dlugos, D. J., Hahn, C. D., Hirsch, L. J., & Herman, S. T. (2010). Use of EEG monitoring and management of non-convulsive seizures in critically ill patients: a survey of neurologists. Neurocritical Care, 12(3), 382–389.

    Article  PubMed  PubMed Central  Google Scholar 

  • Abu-Judeh, H. H., Singh, M., Masdeu, J. C., & Abdel-Dayem, H. M. (1998). Discordance between FDG uptake and technetium-99 m-HMPAO brain perfusion in acute traumatic brain injury. Journal of Nuclear Medicine, 39(8), 1357–1359.

    CAS  PubMed  Google Scholar 

  • Agrawal, D., Gowda, N. K., Bal, C. S., Pant, M., & Mahapatra, A. K. (2005). Is medial temporal injury responsible for pediatric postconcussion syndrome? A prospective controlled study with single-photon emission computerized tomography. Journal of Neurosurgery, 102(2 Suppl), 167–171.

    Article  PubMed  Google Scholar 

  • Alexander, A. L., Lee, J. E., Lazar, M., & Field, A. S. (2007). Diffusion tensor imaging of the brain. Neurotherapeutics, 4(3), 316–329.

    Article  PubMed  PubMed Central  Google Scholar 

  • Alway, Y., McKay, A., Gould, K. R., Johnston, L., & Ponsford, J. (2016). Factors associated with posttraumatic stress disorder following moderate to severe traumatic brain injury: a prospective study. Depression and Anxiety, 33(1), 19–26.

    Article  PubMed  Google Scholar 

  • Amen, D. G., Raji, C. A., Willeumier, K., Taylor, D., Tarzwell, R., Newberg, A., et al. (2015). Functional neuroimaging distinguishes posttraumatic stress disorder from traumatic brain injury in focused and large community datasets. PloS One, 10(7), e0129659.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Andersen, A. R. (1989). 99mTc-D,L-hexamethylene-propyleneamine oxime (99mTc-HMPAO): basic kinetic studies of a tracer of cerebral blood flow. Cerebrovascular and Brain Metabolism Reviews, 1(4), 288–318.

    CAS  PubMed  Google Scholar 

  • Aoki, Y., Inokuchi, R., Gunshin, M., Yahagi, N., & Suwa, H. (2012). Diffusion tensor imaging studies of mild traumatic brain injury: a meta-analysis. Journal of Neurology, Neurosurgery, and Psychiatry, 83(9), 870–876.

    Article  PubMed  PubMed Central  Google Scholar 

  • Arciniegas, D. B. (2011). Clinical electrophysiologic assessments and mild traumatic brain injury: state-of-the-science and implications for clinical practice. International Journal of Psychophysiology, 82(1), 41–52.

    Article  PubMed  Google Scholar 

  • Attwell, D., Buchan, A. M., Charpak, S., Lauritzen, M., Macvicar, B. A., & Newman, E. A. (2010). Glial and neuronal control of brain blood flow. Nature, 468(7321), 232–243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bailes, J. E., Petraglia, A. L., Omalu, B. I., Nauman, E., & Talavage, T. (2013). Role of subconcussion in repetitive mild traumatic brain injury. Journal of Neurosurgery, 119(5), 1235–1245.

    Article  PubMed  Google Scholar 

  • Barbeau, E. B., Lewis, J. D., Doyon, J., Benali, H., Zeffiro, T. A., & Mottron, L. (2015). A greater involvement of posterior brain areas in interhemispheric transfer in autism: fMRI, DWI and behavioral evidences. Neuroimage Clin, 8, 267–280.

    Article  PubMed  PubMed Central  Google Scholar 

  • Barr, W. B., Prichep, L. S., Chabot, R., Powell, M. R., & McCrea, M. (2012). Measuring brain electrical activity to track recovery from sport-related concussion. Brain Injury, 26(1), 58–66.

    Article  PubMed  Google Scholar 

  • Barrio, J. R., Small, G. W., Wong, K. P., Huang, S. C., Liu, J., Merrill, D. A., et al. (2015). In vivo characterization of chronic traumatic encephalopathy using [F-18]FDDNP PET brain imaging. Proceedings of the National Academy of Sciences of the United States of America, 112(16), E2039–E2047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bergsneider, M., Hovda, D. A., Shalmon, E., Kelly, D. F., Vespa, P. M., Martin, N. A., et al. (1997). Cerebral hyperglycolysis following severe traumatic brain injury in humans: a positron emission tomography study. Journal of Neurosurgery, 86(2), 241–251.

    Article  CAS  PubMed  Google Scholar 

  • Bigler, E. D., & Maxwell, W. L. (2012). Neuropathology of mild traumatic brain injury: relationship to neuroimaging findings. Brain Imaging and Behavior, 6(2), 108–136.

    Article  PubMed  Google Scholar 

  • Bluhm, R. L., Clark, C. R., McFarlane, A. C., Moores, K. A., Shaw, M. E., & Lanius, R. A. (2011). Default network connectivity during a working memory task. Human Brain Mapping, 32(7), 1029–1035.

    Article  PubMed  Google Scholar 

  • Blumbergs, P. C., Scott, G., Manavis, J., Wainwright, H., Simpson, D. A., & McLean, A. J. (1994). Staining of amyloid precursor protein to study axonal damage in mild head injury. Lancet, 344(8929), 1055–1056.

    Article  CAS  PubMed  Google Scholar 

  • Blumbergs, P. C., Scott, G., Manavis, J., Wainwright, H., Simpson, D. A., & McLean, A. J. (1995). Topography of axonal injury as defined by amyloid precursor protein and the sector scoring method in mild and severe closed head injury. Journal of Neurotrauma, 12(4), 565–572.

    Article  CAS  PubMed  Google Scholar 

  • Boly, M., Phillips, C., Tshibanda, L., Vanhaudenhuyse, A., Schabus, M., Dang-Vu, T. T., et al. (2008). Intrinsic brain activity in altered states of consciousness: how conscious is the default mode of brain function? Annals of the New York Academy of Sciences, 1129, 119–129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boly, M., Tshibanda, L., Vanhaudenhuyse, A., Noirhomme, Q., Schnakers, C., Ledoux, D., et al. (2009). Functional connectivity in the default network during resting state is preserved in a vegetative but not in a brain dead patient. Human Brain Mapping, 30(8), 2393–2400.

    Article  CAS  PubMed  Google Scholar 

  • Bonne, O., Gilboa, A., Louzoun, Y., Kempf-Sherf, O., Katz, M., Fishman, Y., et al. (2003). Cerebral blood flow in chronic symptomatic mild traumatic brain injury. Psychiatry Research, 124(3), 141–152.

    Article  PubMed  Google Scholar 

  • Bonnelle, V., Ham, T. E., Leech, R., Kinnunen, K. M., Mehta, M. A., Greenwood, R. J., et al. (2012). Salience network integrity predicts default mode network function after traumatic brain injury. Proceedings of the National Academy of Sciences of the United States of America, 109(12), 4690–4695.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bramlett, H. M., & Dietrich, W. D. (2015). Long-term consequences of traumatic brain injury: current status of potential mechanisms of injury and neurological outcomes. Journal of Neurotrauma, 32(23), 1834–1848.

    Article  PubMed  PubMed Central  Google Scholar 

  • Breton, F., Pincemaille, Y., Tarriere, C., & Renault, B. (1991). Event-related potential assessment of attention and the orienting reaction in boxers before and after a fight. Biological Psychology, 31(1), 57–71.

    Article  CAS  PubMed  Google Scholar 

  • Buckner, R. L., Andrews-Hanna, J. R., & Schacter, D. L. (2008). The brain's default network: anatomy, function, and relevance to disease. Annals of the New York Academy of Sciences, 1124, 1–38.

    Article  PubMed  Google Scholar 

  • Buki, A., Okonkwo, D. O., & Povlishock, J. T. (1999). Postinjury cyclosporin a administration limits axonal damage and disconnection in traumatic brain injury. Journal of Neurotrauma, 16(6), 511–521.

    Article  CAS  PubMed  Google Scholar 

  • Buxton, R. B., Wong, E. C., & Frank, L. R. (1998). Dynamics of blood flow and oxygenation changes during brain activation: the balloon model. Magnetic Resonance in Medicine, 39(6), 855–864.

    Article  CAS  PubMed  Google Scholar 

  • Buxton, R. B., Uludag, K., Dubowitz, D. J., & Liu, T. T. (2004). Modeling the hemodynamic response to brain activation. NeuroImage, 23(Suppl 1), S220–S233.

    Article  PubMed  Google Scholar 

  • Caeyenberghs, K., Leemans, A., Leunissen, I., Michiels, K., & Swinnen, S. P. (2013). Topological correlations of structural and functional networks in patients with traumatic brain injury. Frontiers in Human Neuroscience, 7, 726.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen, S. H., Kareken, D. A., Fastenau, P. S., Trexler, L. E., & Hutchins, G. D. (2003). A study of persistent post-concussion symptoms in mild head trauma using positron emission tomography. Journal of Neurology, Neurosurgery, and Psychiatry, 74(3), 326–332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coburn, K. L., Lauterbach, E. C., Boutros, N. N., Black, K. J., Arciniegas, D. B., & Coffey, C. E. (2006). The value of quantitative electroencephalography in clinical psychiatry: a report by the committee on research of the American neuropsychiatric association. The Journal of Neuropsychiatry and Clinical Neurosciences, 18(4), 460–500.

    Article  PubMed  Google Scholar 

  • Coughlin, J. M., Wang, Y., Munro, C. A., Ma, S., Yue, C., Chen, S., et al. (2015). Neuroinflammation and brain atrophy in former NFL players: an in vivo multimodal imaging pilot study. Neurobiology of Disease, 74, 58–65.

    Article  PubMed  Google Scholar 

  • Courtney, A., & Courtney, M. (2015). The complexity of biomechanics causing primary blast-induced traumatic brain injury: a review of potential mechanisms. Frontiers in Neurology, 6, 221.

    Article  PubMed  PubMed Central  Google Scholar 

  • Coutin-Churchman, P., Anez, Y., Uzcategui, M., Alvarez, L., Vergara, F., Mendez, L., et al. (2003). Quantitative spectral analysis of EEG in psychiatry revisited: drawing signs out of numbers in a clinical setting. Clinical Neurophysiology, 114(12), 2294–2306.

    Article  CAS  PubMed  Google Scholar 

  • Crane, P. D., Pardridge, W. M., Braun, L. D., Nyerges, A. M., & Oldendorf, W. H. (1981). The interaction of transport and metabolism on brain glucose utilization: a reevaluation of the lumped constant. Journal of Neurochemistry, 36(4), 1601–1604.

    Article  CAS  PubMed  Google Scholar 

  • Cubon, V. A., Putukian, M., Boyer, C., & Dettwiler, A. (2011). A diffusion tensor imaging study on the white matter skeleton in individuals with sports-related concussion. Journal of Neurotrauma, 28(2), 189–201.

    Article  PubMed  PubMed Central  Google Scholar 

  • Davenport, N. D., Lamberty, G. J., Nelson, N. W., Lim, K. O., Armstrong, M. T., & Sponheim, S. R. (2016). PTSD confounds detection of compromised cerebral white matter integrity in military veterans reporting a history of mild traumatic brain injury. Brain Injury, 30(12), 1491–1500.

    Article  PubMed  Google Scholar 

  • Delouche, A., Attye, A., Heck, O., Grand, S., Kastler, A., Lamalle, L., et al. (2016). Diffusion MRI: pitfalls, literature review and future directions of research in mild traumatic brain injury. European Journal of Radiology, 85(1), 25–30.

    Article  PubMed  Google Scholar 

  • Dusick, J. R., Glenn, T. C., Lee, W. N., Vespa, P. M., Kelly, D. F., Lee, S. M., et al. (2007). Increased pentose phosphate pathway flux after clinical traumatic brain injury: a [1,2-13C2]glucose labeling study in humans. Journal of Cerebral Blood Flow and Metabolism, 27(9), 1593–1602.

    Article  CAS  PubMed  Google Scholar 

  • Fenton, G. W. (1996). The postconcussional syndrome reappraised. Clinical Electroencephalography, 27(4), 174–182.

    CAS  PubMed  Google Scholar 

  • Fishman, I., Datko, M., Cabrera, Y., Carper, R. A., & Muller, R. A. (2015). Reduced integration and differentiation of the imitation network in autism: a combined functional connectivity magnetic resonance imaging and diffusion-weighted imaging study. Annals of Neurology, 78(6), 958–969.

    Article  PubMed  PubMed Central  Google Scholar 

  • Folkersma, H., Boellaard, R., Yaqub, M., Kloet, R. W., Windhorst, A. D., Lammertsma, A. A., et al. (2011). Widespread and prolonged increase in (R)-(11)C-PK11195 binding after traumatic brain injury. Journal of Nuclear Medicine, 52(8), 1235–1239.

    Article  PubMed  Google Scholar 

  • Fontaine, A., Azouvi, P., Remy, P., Bussel, B., & Samson, Y. (1999). Functional anatomy of neuropsychological deficits after severe traumatic brain injury. Neurology, 53(9), 1963–1968.

    Article  CAS  PubMed  Google Scholar 

  • Galea, L. A., Wainwright, S. R., Roes, M. M., Duarte-Guterman, P., Chow, C., & Hamson, D. K. (2013). Sex, hormones and neurogenesis in the hippocampus: hormonal modulation of neurogenesis and potential functional implications. Journal of Neuroendocrinology, 25(11), 1039–1061.

    Article  CAS  PubMed  Google Scholar 

  • Gatson, J. W., Stebbins, C., Mathews, D., Harris, T. S., Madden, C., Batjer, H., et al. (2016). Evidence of increased brain amyloid in severe TBI survivors at 1, 12, and 24 months after injury: report of 2 cases. Journal of Neurosurgery, 124(6), 1646–1653.

    Article  PubMed  Google Scholar 

  • Gentry, L. R., Godersky, J. C., & Thompson, B. (1988). MR imaging of head trauma: review of the distribution and radiopathologic features of traumatic lesions. AJR. American Journal of Roentgenology, 150(3), 663–672.

    Article  CAS  PubMed  Google Scholar 

  • Giza, C. C., & Hovda, D. A. (2001). The Neurometabolic Cascade of concussion. Journal of Athletic Training, 36(3), 228–235.

    PubMed  PubMed Central  Google Scholar 

  • Gjedde, A., Wienhard, K., Heiss, W. D., Kloster, G., Diemer, N. H., Herholz, K., et al. (1985). Comparative regional analysis of 2-fluorodeoxyglucose and methylglucose uptake in brain of four stroke patients. With special reference to the regional estimation of the lumped constant. Journal of Cerebral Blood Flow and Metabolism, 5(2), 163–178.

    Article  CAS  PubMed  Google Scholar 

  • Glenn, T. C., Kelly, D. F., Boscardin, W. J., McArthur, D. L., Vespa, P., Oertel, M., et al. (2003). Energy dysfunction as a predictor of outcome after moderate or severe head injury: indices of oxygen, glucose, and lactate metabolism. Journal of Cerebral Blood Flow and Metabolism, 23(10), 1239–1250.

    Article  CAS  PubMed  Google Scholar 

  • Gowda, N. K., Agrawal, D., Bal, C., Chandrashekar, N., Tripati, M., Bandopadhyaya, G. P., et al. (2006). Technetium Tc-99 m ethyl cysteinate dimer brain single-photon emission CT in mild traumatic brain injury: a prospective study. AJNR. American Journal of Neuroradiology, 27(2), 447–451.

    CAS  PubMed  Google Scholar 

  • Grady, M. S., McLaughlin, M. R., Christman, C. W., Valadka, A. B., Fligner, C. L., & Povlishock, J. T. (1993). The use of antibodies targeted against the neurofilament subunits for the detection of diffuse axonal injury in humans. Journal of Neuropathology and Experimental Neurology, 52(2), 143–152.

    Article  CAS  PubMed  Google Scholar 

  • Greicius, M. D., Krasnow, B., Reiss, A. L., & Menon, V. (2003). Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proceedings of the National Academy of Sciences of the United States of America, 100(1), 253–258.

    Article  CAS  PubMed  Google Scholar 

  • Greicius, M. D., Supekar, K., Menon, V., & Dougherty, R. F. (2009). Resting-state functional connectivity reflects structural connectivity in the default mode network. Cerebral Cortex, 19(1), 72–78.

    Article  PubMed  Google Scholar 

  • Gross, H., Kling, A., Henry, G., Herndon, C., & Lavretsky, H. (1996). Local cerebral glucose metabolism in patients with long-term behavioral and cognitive deficits following mild traumatic brain injury. The Journal of Neuropsychiatry and Clinical Neurosciences, 8(3), 324–334.

    Article  CAS  PubMed  Google Scholar 

  • Haglund, Y., & Eriksson, E. (1993). Does amateur boxing lead to chronic brain damage? A review of some recent investigations. The American Journal of Sports Medicine, 21(1), 97–109.

    Article  CAS  PubMed  Google Scholar 

  • Haglund, Y., & Persson, H. E. (1990). Does Swedish amateur boxing lead to chronic brain damage? 3. A retrospective clinical neurophysiological study. Acta Neurologica Scandinavica, 82(6), 353–360.

    Article  CAS  PubMed  Google Scholar 

  • Hagmann, P., Jonasson, L., Maeder, P., Thiran, J. P., Wedeen, V. J., & Meuli, R. (2006). Understanding diffusion MR imaging techniques: from scalar diffusion-weighted imaging to diffusion tensor imaging and beyond. Radiographics, 26(Suppl 1), S205–S223.

    Article  PubMed  Google Scholar 

  • Han, K., Mac Donald, C. L., Johnson, A. M., Barnes, Y., Wierzechowski, L., Zonies, D., et al. (2014). Disrupted modular organization of resting-state cortical functional connectivity in U.S. military personnel following concussive 'mild' blast-related traumatic brain injury. NeuroImage, 84, 76–96.

    Article  PubMed  Google Scholar 

  • Hattori, N., Huang, S. C., Wu, H. M., Liao, W., Glenn, T. C., Vespa, P. M., et al. (2003). PET investigation of post-traumatic cerebral blood volume and blood flow. Acta Neurochirurgica. Supplement, 86, 49–52.

    CAS  PubMed  Google Scholar 

  • Hattori, N., Swan, M., Stobbe, G. A., Uomoto, J. M., Minoshima, S., Djang, D., et al. (2009). Differential SPECT activation patterns associated with PASAT performance may indicate frontocerebellar functional dissociation in chronic mild traumatic brain injury. Journal of Nuclear Medicine, 50(7), 1054–1061.

    Article  PubMed  Google Scholar 

  • Hessen, E., & Nestvold, K. (2009). Indicators of complicated mild TBI predict MMPI-2 scores after 23 years. Brain Injury, 23(3), 234–242.

    Article  PubMed  Google Scholar 

  • Honce, J. M., Nyberg, E., Jones, I., & Nagae, L. (2016). Neuroimaging of concussion. Physical Medicine and Rehabilitation Clinics of North America, 27(2), 411–428.

    Article  PubMed  Google Scholar 

  • Hong, Y. T., Veenith, T., Dewar, D., Outtrim, J. G., Mani, V., Williams, C., et al. (2014). Amyloid imaging with carbon 11-labeled Pittsburgh compound B for traumatic brain injury. JAMA Neurology, 71(1), 23–31.

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang, M. X., Nichols, S., Robb, A., Angeles, A., Drake, A., Holland, M., et al. (2012). An automatic MEG low-frequency source imaging approach for detecting injuries in mild and moderate TBI patients with blast and non-blast causes. NeuroImage, 61(4), 1067–1082.

    Article  PubMed  Google Scholar 

  • Huang, M. X., Nichols, S., Baker, D. G., Robb, A., Angeles, A., Yurgil, K. A., et al. (2014). Single-subject-based whole-brain MEG slow-wave imaging approach for detecting abnormality in patients with mild traumatic brain injury. Neuroimage Clin, 5, 109–119.

    Article  PubMed  PubMed Central  Google Scholar 

  • Humayun, M. S., Presty, S. K., Lafrance, N. D., Holcomb, H. H., Loats, H., Long, D. M., et al. (1989). Local cerebral glucose abnormalities in mild closed head injured patients with cognitive impairments. Nuclear Medicine Communications, 10(5), 335–344.

    Article  CAS  PubMed  Google Scholar 

  • Hunter, J. V., Wilde, E. A., Tong, K. A., & Holshouser, B. A. (2012). Emerging imaging tools for use with traumatic brain injury research. Journal of Neurotrauma, 29(4), 654–671.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hutton, B. F. (2014). The origins of SPECT and SPECT/CT. European Journal of Nuclear Medicine and Molecular Imaging, 41(Suppl 1), S3–16.

    Article  PubMed  Google Scholar 

  • Inglese, M., Makani, S., Johnson, G., Cohen, B. A., Silver, J. A., Gonen, O., et al. (2005). Diffuse axonal injury in mild traumatic brain injury: a diffusion tensor imaging study. Journal of Neurosurgery, 103(2), 298–303.

    Article  PubMed  Google Scholar 

  • Iraji, A., Benson, R. R., Welch, R. D., O'Neil, B. J., Woodard, J. L., Ayaz, S. I., et al. (2015). Resting state functional connectivity in mild traumatic brain injury at the acute stage: independent component and seed-based analyses. Journal of Neurotrauma, 32(14), 1031–1045.

    Article  PubMed  PubMed Central  Google Scholar 

  • Israel, I., Ohsiek, A., Al-Momani, E., Albert-Weissenberger, C., Stetter, C., Mencl, S., et al. (2016). Combined [(18)F]DPA-714 micro-positron emission tomography and autoradiography imaging of microglia activation after closed head injury in mice. Journal of Neuroinflammation, 13(1), 140.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jacobs, A., Put, E., Ingels, M., Put, T., & Bossuyt, A. (1996). One-year follow-up of technetium-99 m-HMPAO SPECT in mild head injury. Journal of Nuclear Medicine, 37(10), 1605–1609.

    CAS  PubMed  Google Scholar 

  • Jantzen, K. J., Anderson, B., Steinberg, F. L., & Kelso, J. A. (2004). A prospective functional MR imaging study of mild traumatic brain injury in college football players. AJNR. American Journal of Neuroradiology, 25(5), 738–745.

    PubMed  Google Scholar 

  • Jarbo, K., & Verstynen, T. D. (2015). Converging structural and functional connectivity of orbitofrontal, dorsolateral prefrontal, and posterior parietal cortex in the human striatum. The Journal of Neuroscience, 35(9), 3865–3878.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jbabdi, S., & Johansen-Berg, H. (2011). Tractography: where do we go from here? Brain Connectivity, 1(3), 169–183.

    Article  PubMed  PubMed Central  Google Scholar 

  • Johnson, V. E., Stewart, W., & Smith, D. H. (2013). Axonal pathology in traumatic brain injury. Experimental Neurology, 246, 35–43.

    Article  CAS  PubMed  Google Scholar 

  • Johnstone, J., & Thatcher, R. W. (1991). Quantitative EEG analysis and rehabilitation issues in mild traumatic brain injury. Journal of Insurance Medicine, 23(4), 228–232.

    CAS  PubMed  Google Scholar 

  • Jorge, R. E., Acion, L., White, T., Tordesillas-Gutierrez, D., Pierson, R., Crespo-Facorro, B., et al. (2012). White matter abnormalities in veterans with mild traumatic brain injury. The American Journal of Psychiatry, 169(12), 1284–1291.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kant, R., Smith-Seemiller, L., Isaac, G., & Duffy, J. (1997). Tc-HMPAO SPECT in persistent post-concussion syndrome after mild head injury: comparison with MRI/CT. Brain Injury, 11(2), 115–124.

    Article  CAS  PubMed  Google Scholar 

  • Kennedy, M. R., Wozniak, J. R., Muetzel, R. L., Mueller, B. A., Chiou, H. H., Pantekoek, K., et al. (2009). White matter and neurocognitive changes in adults with chronic traumatic brain injury. Journal of the International Neuropsychological Society, 15(1), 130–136.

    Article  PubMed  PubMed Central  Google Scholar 

  • Koerte, I. K., Hufschmidt, J., Muehlmann, M., Lin, A. P., & Shenton, M. E. (2016). Advanced Neuroimaging of Mild Traumatic Brain Injury. In D. Laskowitz, & G. Grant (Eds.), Translational Research in Traumatic Brain Injury (Frontiers in Neuroscience). Boca Raton (FL).

  • Kraus, M. F., Susmaras, T., Caughlin, B. P., Walker, C. J., Sweeney, J. A., & Little, D. M. (2007). White matter integrity and cognition in chronic traumatic brain injury: a diffusion tensor imaging study. Brain, 130(Pt 10), 2508–2519.

    Article  PubMed  Google Scholar 

  • Krishnamurthy, K., & Laskowitz, D. T. (2016). Cellular and Molecular Mechanisms of Secondary Neuronal Injury following Traumatic Brain Injury. In D. Laskowitz, & G. Grant (Eds.), Translational Research in Traumatic Brain Injury (Frontiers in Neuroscience). Boca Raton (FL).

  • Laskowski, R. A., Creed, J. A., & Raghupathi, R. (2015). Pathophysiology of Mild TBI: Implications for Altered Signaling Pathways. In F. H. Kobeissy (Ed.), Brain Neurotrauma: Molecular, Neuropsychological, and Rehabilitation Aspects (Frontiers in Neuroengineering). Boca Raton (FL).

  • Lee, R. R., & Huang, M. (2014). Magnetoencephalography in the diagnosis of concussion. Progress in Neurological Surgery, 28, 94–111.

    Article  PubMed  Google Scholar 

  • Len, T. K., & Neary, J. P. (2011). Cerebrovascular pathophysiology following mild traumatic brain injury. Clinical Physiology and Functional Imaging, 31(2), 85–93.

    CAS  PubMed  Google Scholar 

  • Leon-Carrion, J., Martin-Rodriguez, J. F., Damas-Lopez, J., Barroso y Martin, J. M., & Dominguez-Morales, M. R. (2008a). Brain function in the minimally conscious state: a quantitative neurophysiological study. Clinical Neurophysiology, 119(7), 1506–1514.

    Article  CAS  PubMed  Google Scholar 

  • Leon-Carrion, J., Martin-Rodriguez, J. F., Damas-Lopez, J., Martin, J. M., & Dominguez-Morales Mdel, R. (2008b). A QEEG index of level of functional dependence for people sustaining acquired brain injury: the Seville independence index (SINDI). Brain Injury, 22(1), 61–74.

    Article  PubMed  Google Scholar 

  • Leveille, J., Demonceau, G., & Walovitch, R. C. (1992). Intrasubject comparison between technetium-99 m-ECD and technetium-99 m-HMPAO in healthy human subjects. Journal of Nuclear Medicine, 33(4), 480–484.

    CAS  PubMed  Google Scholar 

  • Levin, H. S., Wilde, E., Troyanskaya, M., Petersen, N. J., Scheibel, R., Newsome, M., et al. (2010). Diffusion tensor imaging of mild to moderate blast-related traumatic brain injury and its sequelae. Journal of Neurotrauma, 27(4), 683–694.

    Article  PubMed  Google Scholar 

  • Lewine, J. D., Davis, J. T., Sloan, J. H., Kodituwakku, P. W., & Orrison Jr., W. W. (1999). Neuromagnetic assessment of pathophysiologic brain activity induced by minor head trauma. AJNR. American Journal of Neuroradiology, 20(5), 857–866.

    CAS  PubMed  Google Scholar 

  • Lipton, M. L., Gulko, E., Zimmerman, M. E., Friedman, B. W., Kim, M., Gellella, E., et al. (2009). Diffusion-tensor imaging implicates prefrontal axonal injury in executive function impairment following very mild traumatic brain injury. Radiology, 252(3), 816–824.

    Article  PubMed  Google Scholar 

  • Logothetis, N. K., Pauls, J., Augath, M., Trinath, T., & Oeltermann, A. (2001). Neurophysiological investigation of the basis of the fMRI signal. Nature, 412(6843), 150–157.

    Article  CAS  PubMed  Google Scholar 

  • Loosemore, M., Knowles, C. H., & Whyte, G. P. (2007). Amateur boxing and risk of chronic traumatic brain injury: systematic review of observational studies. BMJ, 335(7624), 809.

    Article  PubMed  PubMed Central  Google Scholar 

  • MacFarlane, M. P., & Glenn, T. C. (2015). Neurochemical cascade of concussion. Brain Injury, 29(2), 139–153.

    Article  PubMed  Google Scholar 

  • Magistretti, P. J., & Pellerin, L. (1996). The contribution of astrocytes to the 18F-2-deoxyglucose signal in PET activation studies. Molecular Psychiatry, 1(6), 445–452.

    CAS  PubMed  Google Scholar 

  • Magistretti, P. J., Pellerin, L., Rothman, D. L., & Shulman, R. G. (1999). Energy on demand. Science, 283(5401), 496–497.

    Article  CAS  PubMed  Google Scholar 

  • Marks, W., Lasek, J., Witkowski, Z., Lass, P., Deja, W., Bialko, M., et al. (2006). Early brain spect in patients after minor craniocerebral trauma. The Neuroradiology Journal, 19(5), 569–576.

    Article  CAS  PubMed  Google Scholar 

  • Marquez de la Plata, C. D., Garces, J., Shokri Kojori, E., Grinnan, J., Krishnan, K., Pidikiti, R., et al. (2011). Deficits in functional connectivity of hippocampal and frontal lobe circuits after traumatic axonal injury. Archives of Neurology, 68(1), 74–84.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mattioli, F., Grassi, F., Perani, D., Cappa, S. F., Miozzo, A., & Fazio, F. (1996). Persistent post-traumatic retrograde amnesia: a neuropsychological and (18F)FDG PET study. Cortex, 32(1), 121–129.

    Article  CAS  PubMed  Google Scholar 

  • Mayer, A. R., Mannell, M. V., Ling, J., Gasparovic, C., & Yeo, R. A. (2011). Functional connectivity in mild traumatic brain injury. Human Brain Mapping, 32(11), 1825–1835.

    Article  PubMed  PubMed Central  Google Scholar 

  • McAllister, T. W., Saykin, A. J., Flashman, L. A., Sparling, M. B., Johnson, S. C., Guerin, S. J., et al. (1999). Brain activation during working memory 1 month after mild traumatic brain injury: a functional MRI study. Neurology, 53(6), 1300–1308.

    Article  CAS  PubMed  Google Scholar 

  • McAllister, T. W., Sparling, M. B., Flashman, L. A., Guerin, S. J., Mamourian, A. C., & Saykin, A. J. (2001). Differential working memory load effects after mild traumatic brain injury. NeuroImage, 14(5), 1004–1012.

    Article  CAS  PubMed  Google Scholar 

  • McCrea, M., Prichep, L., Powell, M. R., Chabot, R., & Barr, W. B. (2010). Acute effects and recovery after sport-related concussion: a neurocognitive and quantitative brain electrical activity study. The Journal of Head Trauma Rehabilitation, 25(4), 283–292.

    Article  PubMed  Google Scholar 

  • McCrory, P., Meeuwisse, W., Johnston, K., Dvorak, J., Aubry, M., Molloy, M., et al. (2009). Consensus statement on concussion in sport: the 3rd international conference on concussion in sport held in Zurich, November 2008. Journal of Athletic Training, 44(4), 434–448.

    Article  PubMed  PubMed Central  Google Scholar 

  • McLatchie, G., Brooks, N., Galbraith, S., Hutchison, J. S., Wilson, L., Melville, I., et al. (1987). Clinical neurological examination, neuropsychology, electroencephalography and computed tomographic head scanning in active amateur boxers. Journal of Neurology, Neurosurgery, and Psychiatry, 50(1), 96–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mendez, M. F., Owens, E. M., Reza Berenji, G., Peppers, D. C., Liang, L. J., & Licht, E. A. (2013). Mild traumatic brain injury from primary blast vs. blunt forces: post-concussion consequences and functional neuroimaging. Neuro Rehabilitation, 32(2), 397–407.

  • Menon, V., & Uddin, L. Q. (2010). Saliency, switching, attention and control: a network model of insula function. Brain Structure & Function, 214(5–6), 655–667.

    Article  Google Scholar 

  • Messe, A., Caplain, S., Paradot, G., Garrigue, D., Mineo, J. F., Soto Ares, G., et al. (2011). Diffusion tensor imaging and white matter lesions at the subacute stage in mild traumatic brain injury with persistent neurobehavioral impairment. Human Brain Mapping, 32(6), 999–1011.

    Article  PubMed  Google Scholar 

  • Mitsis, E. M., Riggio, S., Kostakoglu, L., Dickstein, D. L., Machac, J., Delman, B., et al. (2014). Tauopathy PET and amyloid PET in the diagnosis of chronic traumatic encephalopathies: studies of a retired NFL player and of a man with FTD and a severe head injury. Translational Psychiatry, 4, e441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mouzon, B. C., Bachmeier, C., Ferro, A., Ojo, J. O., Crynen, G., Acker, C. M., et al. (2014). Chronic neuropathological and neurobehavioral changes in a repetitive mild traumatic brain injury model. Annals of Neurology, 75(2), 241–254.

    Article  PubMed  Google Scholar 

  • Nakayama, N., Okumura, A., Shinoda, J., Nakashima, T., & Iwama, T. (2006). Relationship between regional cerebral metabolism and consciousness disturbance in traumatic diffuse brain injury without large focal lesions: an FDG-PET study with statistical parametric mapping analysis. Journal of Neurology, Neurosurgery, and Psychiatry, 77(7), 856–862.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newton, M. R., Greenwood, R. J., Britton, K. E., Charlesworth, M., Nimmon, C. C., Carroll, M. J., et al. (1992). A study comparing SPECT with CT and MRI after closed head injury. Journal of Neurology, Neurosurgery, and Psychiatry, 55(2), 92–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niogi, S. N., Mukherjee, P., Ghajar, J., Johnson, C., Kolster, R. A., Sarkar, R., et al. (2008). Extent of microstructural white matter injury in postconcussive syndrome correlates with impaired cognitive reaction time: a 3 T diffusion tensor imaging study of mild traumatic brain injury. AJNR. American Journal of Neuroradiology, 29(5), 967–973.

    Article  CAS  PubMed  Google Scholar 

  • Niskanen, J. P., Airaksinen, A. M., Sierra, A., Huttunen, J. K., Nissinen, J., Karjalainen, P. A., et al. (2013). Monitoring functional impairment and recovery after traumatic brain injury in rats by FMRI. Journal of Neurotrauma, 30(7), 546–556.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nuwer, M. (1997). Assessment of digital EEG, quantitative EEG, and EEG brain mapping: report of the American Academy of Neurology and the American clinical neurophysiology society. Neurology, 49(1), 277–292.

    Article  CAS  PubMed  Google Scholar 

  • O'Donnell, L. J., & Pasternak, O. (2015). Does diffusion MRI tell us anything about the white matter? An overview of methods and pitfalls. Schizophrenia Research, 161(1), 133–141.

    Article  PubMed  Google Scholar 

  • Paans, A. M. (1997). Positron emission tomography: background, possibilities and perspectives in neuroscience. Acta Neurologica Belgica, 97(3), 150–153.

    CAS  PubMed  Google Scholar 

  • Paus, T. (2005). Mapping brain maturation and cognitive development during adolescence. Trends in Cognitive Sciences, 9(2), 60–68.

    Article  PubMed  Google Scholar 

  • Peerless, S. J., & Rewcastle, N. B. (1967). Shear injuries of the brain. Canadian Medical Association Journal, 96(10), 577–582.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peskind, E. R., Petrie, E. C., Cross, D. J., Pagulayan, K., McCraw, K., Hoff, D., et al. (2011). Cerebrocerebellar hypometabolism associated with repetitive blast exposure mild traumatic brain injury in 12 Iraq war veterans with persistent post-concussive symptoms. NeuroImage, 54(Suppl 1), S76–S82.

    Article  PubMed  Google Scholar 

  • Petrie, E. C., Cross, D. J., Yarnykh, V. L., Richards, T., Martin, N. M., Pagulayan, K., et al. (2014). Neuroimaging, behavioral, and psychological sequelae of repetitive combined blast/impact mild traumatic brain injury in Iraq and Afghanistan war veterans. Journal of Neurotrauma, 31(5), 425–436.

    Article  PubMed  PubMed Central  Google Scholar 

  • Povlishock, J. T. (1993). Pathobiology of traumatically induced axonal injury in animals and man. Annals of Emergency Medicine, 22(6), 980–986.

    Article  CAS  PubMed  Google Scholar 

  • Povlishock, J. T., Marmarou, A., McIntosh, T., Trojanowski, J. Q., & Moroi, J. (1997). Impact acceleration injury in the rat: evidence for focal axolemmal change and related neurofilament sidearm alteration. Journal of Neuropathology and Experimental Neurology, 56(4), 347–359.

    Article  CAS  PubMed  Google Scholar 

  • Provenzano, F. A., Jordan, B., Tikofsky, R. S., Saxena, C., Van Heertum, R. L., & Ichise, M. (2010). F-18 FDG PET imaging of chronic traumatic brain injury in boxers: a statistical parametric analysis. Nuclear Medicine Communications, 31(11), 952–957.

    Article  PubMed  Google Scholar 

  • Ramlackhansingh, A. F., Brooks, D. J., Greenwood, R. J., Bose, S. K., Turkheimer, F. E., Kinnunen, K. M., et al. (2011). Inflammation after trauma: microglial activation and traumatic brain injury. Annals of Neurology, 70(3), 374–383.

    Article  PubMed  Google Scholar 

  • Randolph, C., & Miller, M. H. (1988). EEG and cognitive performance following closed head injury. Neuropsychobiology, 20(1), 43–50.

    Article  CAS  PubMed  Google Scholar 

  • Robinson, M. E., Lindemer, E. R., Fonda, J. R., Milberg, W. P., McGlinchey, R. E., & Salat, D. H. (2015). Close-range blast exposure is associated with altered functional connectivity in veterans independent of concussion symptoms at time of exposure. Human Brain Mapping, 36(3), 911–922.

    Article  PubMed  Google Scholar 

  • Romero, K., Lobaugh, N. J., Black, S. E., Ehrlich, L., & Feinstein, A. (2015). Old wine in new bottles: validating the clinical utility of SPECT in predicting cognitive performance in mild traumatic brain injury. Psychiatry Research, 231(1), 15–24.

    Article  PubMed  Google Scholar 

  • Roy, D., McCann, U., Han, D., & Rao, V. (2015). Pathological laughter and crying and psychiatric comorbidity after traumatic brain injury. The Journal of Neuropsychiatry and Clinical Neurosciences, 27(4), 299–303.

    Article  PubMed  Google Scholar 

  • Rutgers, D. R., Fillard, P., Paradot, G., Tadie, M., Lasjaunias, P., & Ducreux, D. (2008). Diffusion tensor imaging characteristics of the corpus callosum in mild, moderate, and severe traumatic brain injury. AJNR. American Journal of Neuroradiology, 29(9), 1730–1735.

    Article  CAS  PubMed  Google Scholar 

  • Saatman, K. E., Duhaime, A. C., Bullock, R., Maas, A. I., Valadka, A., Manley, G. T., et al. (2008). Classification of traumatic brain injury for targeted therapies. Journal of Neurotrauma, 25(7), 719–738.

    Article  PubMed  PubMed Central  Google Scholar 

  • Scheibel, R. S., Newsome, M. R., Troyanskaya, M., Lin, X., Steinberg, J. L., Radaideh, M., et al. (2012). Altered brain activation in military personnel with one or more traumatic brain injuries following blast. Journal of the International Neuropsychological Society, 18(1), 89–100.

    Article  PubMed  Google Scholar 

  • Scott, G., Ramlackhansingh, A. F., Edison, P., Hellyer, P., Cole, J., Veronese, M., et al. (2016). Amyloid pathology and axonal injury after brain trauma. Neurology, 86(9), 821–828.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shin, Y. B., Kim, S. J., Kim, I. J., Kim, Y. K., Kim, D. S., Park, J. H., et al. (2006). Voxel-based statistical analysis of cerebral blood flow using Tc-99 m ECD brain SPECT in patients with traumatic brain injury: group and individual analyses. Brain Injury, 20(6), 661–667.

    Article  PubMed  Google Scholar 

  • Shin, S. S., Verstynen, T., Pathak, S., Jarbo, K., Hricik, A. J., Maserati, M., et al. (2012). High-definition fiber tracking for assessment of neurological deficit in a case of traumatic brain injury: finding, visualizing, and interpreting small sites of damage. Journal of Neurosurgery, 116(5), 1062–1069.

    Article  PubMed  Google Scholar 

  • Shin, S. S., Pathak, S., Presson, N., Bird, W., Wagener, L., Schneider, W., et al. (2014). Detection of white matter injury in concussion using high-definition fiber tractography. Progress in Neurological Surgery, 28, 86–93.

    Article  PubMed  Google Scholar 

  • Sjaardema, H., & Glaser, M. A. (1942). The electro-encephalographic diagnosis of subdural hemorrhage. Annals of Surgery, 116(3), 452–460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skudlarski, P., Jagannathan, K., Calhoun, V. D., Hampson, M., Skudlarska, B. A., & Pearlson, G. (2008). Measuring brain connectivity: diffusion tensor imaging validates resting state temporal correlations. NeuroImage, 43(3), 554–561.

    Article  PubMed  PubMed Central  Google Scholar 

  • Slobounov, S. M., Gay, M., Zhang, K., Johnson, B., Pennell, D., Sebastianelli, W., et al. (2011). Alteration of brain functional network at rest and in response to YMCA physical stress test in concussed athletes: RsFMRI study. NeuroImage, 55(4), 1716–1727.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smits, M., Houston, G. C., Dippel, D. W., Wielopolski, P. A., Vernooij, M. W., Koudstaal, P. J., et al. (2011). Microstructural brain injury in post-concussion syndrome after minor head injury. Neuroradiology, 53(8), 553–563.

    Article  PubMed  Google Scholar 

  • Song, S. K., Sun, S. W., Ramsbottom, M. J., Chang, C., Russell, J., & Cross, A. H. (2002). Dysmyelination revealed through MRI as increased radial (but unchanged axial) diffusion of water. NeuroImage, 17(3), 1429–1436.

    Article  PubMed  Google Scholar 

  • Sours, C., Zhuo, J., Janowich, J., Aarabi, B., Shanmuganathan, K., & Gullapalli, R. P. (2013). Default mode network interference in mild traumatic brain injury - a pilot resting state study. Brain Research, 1537, 201–215.

    Article  CAS  PubMed  Google Scholar 

  • Sours, C., Rosenberg, J., Kane, R., Roys, S., Zhuo, J., Shanmuganathan, K., et al. (2015). Associations between interhemispheric functional connectivity and the automated neuropsychological assessment metrics (ANAM) in civilian mild TBI. Brain Imaging and Behavior, 9(2), 190–203.

    Article  PubMed  PubMed Central  Google Scholar 

  • Spence, A. M., Muzi, M., Graham, M. M., O'Sullivan, F., Krohn, K. A., Link, J. M., et al. (1998). Glucose metabolism in human malignant gliomas measured quantitatively with PET, 1-[C-11]glucose and FDG: analysis of the FDG lumped constant. Journal of Nuclear Medicine, 39(3), 440–448.

    CAS  PubMed  Google Scholar 

  • Spritzer, M. D., & Galea, L. A. (2007). Testosterone and dihydrotestosterone, but not estradiol, enhance survival of new hippocampal neurons in adult male rats. Developmental Neurobiology, 67(10), 1321–1333.

    Article  CAS  PubMed  Google Scholar 

  • Stocker, R. P., Cieply, M. A., Paul, B., Khan, H., Henry, L., Kontos, A. P., et al. (2014). Combat-related blast exposure and traumatic brain injury influence brain glucose metabolism during REM sleep in military veterans. NeuroImage, 99, 207–214.

    Article  CAS  PubMed  Google Scholar 

  • Strich, S. J. (1956). Diffuse degeneration of the cerebral white matter in severe dementia following head injury. Journal of Neurology, Neurosurgery, and Psychiatry, 19(3), 163–185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stulemeijer, M., Vos, P. E., van der Werf, S., van Dijk, G., Rijpkema, M., & Fernandez, G. (2010). How mild traumatic brain injury may affect declarative memory performance in the post-acute stage. Journal of Neurotrauma, 27(9), 1585–1595.

    Article  PubMed  Google Scholar 

  • Sunami, K., Nakamura, T., Ozawa, Y., Kubota, M., Namba, H., & Yamaura, A. (1989). Hypermetabolic state following experimental head injury. Neurosurgical Review, 12(Suppl 1), 400–411.

    Article  PubMed  Google Scholar 

  • Tebano, M. T., Cameroni, M., Gallozzi, G., Loizzo, A., Palazzino, G., Pezzini, G., et al. (1988). EEG spectral analysis after minor head injury in man. Electroencephalography and Clinical Neurophysiology, 70(2), 185–189.

    Article  CAS  PubMed  Google Scholar 

  • Terry, D. P., Adams, T. E., Ferrara, M. S., & Miller, L. S. (2015). FMRI hypoactivation during verbal learning and memory in former high school football players with multiple concussions. Archives of Clinical Neuropsychology, 30(4), 341–355.

    Article  PubMed  Google Scholar 

  • Thatcher, R. W., Walker, R. A., Gerson, I., & Geisler, F. H. (1989). EEG discriminant analyses of mild head trauma. Electroencephalography and Clinical Neurophysiology, 73(2), 94–106.

    Article  CAS  PubMed  Google Scholar 

  • Thatcher, R. W., North, D. M., Curtin, R. T., Walker, R. A., Biver, C. J., Gomez, J. F., et al. (2001). An EEG severity index of traumatic brain injury. The Journal of Neuropsychiatry and Clinical Neurosciences, 13(1), 77–87.

    Article  CAS  PubMed  Google Scholar 

  • Thelin, E. P., Just, D., Frostell, A., Haggmark-Manberg, A., Risling, M., Svensson, M., et al. (2016). Protein profiling in serum after traumatic brain injury in rats reveals potential injury markers. Behavioural Brain Research. doi:10.1016/j.bbr.2016.08.058.

  • Thomassen, A., Juul-Jensen, P., de Fine Olivarius, B., Braemer, J., & Christensen, A. L. (1979). Neurological, electroencephalographic and neuropsychological examination of 53 former amateur boxers. Acta Neurologica Scandinavica, 60(6), 352–362.

    Article  CAS  PubMed  Google Scholar 

  • Thornton, K. E. (1999). Exploratory investigation into mild brain injury and discriminant analysis with high frequency bands (32-64 Hz). Brain Injury, 13(7), 477–488.

    Article  CAS  PubMed  Google Scholar 

  • Toth, P., Szarka, N., Farkas, E., Ezer, E., Czeiter, E., Amrein, K., et al. (2016). Traumatic brain injury-induced autoregulatory dysfunction and spreading depression-related neurovascular uncoupling: Pathomechanisms, perspectives, and therapeutic implications. American Journal of Physiology. Heart and Circulatory Physiology, 311(5), H1118–H1131.

    Article  PubMed  Google Scholar 

  • Trudeau, D. L., Anderson, J., Hansen, L. M., Shagalov, D. N., Schmoller, J., Nugent, S., et al. (1998). Findings of mild traumatic brain injury in combat veterans with PTSD and a history of blast concussion. The Journal of Neuropsychiatry and Clinical Neurosciences, 10(3), 308–313.

    Article  CAS  PubMed  Google Scholar 

  • Turner, G. R., McIntosh, A. R., & Levine, B. (2011). Prefrontal compensatory engagement in TBI is due to altered functional engagement of existing networks and not functional reorganization. Frontiers in Systems Neuroscience, 5, 9.

    Article  PubMed  PubMed Central  Google Scholar 

  • Uruma, G., Hashimoto, K., & Abo, M. (2013). A new method for evaluation of mild traumatic brain injury with neuropsychological impairment using statistical imaging analysis for Tc-ECD SPECT. Annals of Nuclear Medicine, 27(3), 187–202.

    Article  PubMed  Google Scholar 

  • van den Heuvel, M., Mandl, R., Luigjes, J., & Hulshoff Pol, H. (2008). Microstructural organization of the cingulum tract and the level of default mode functional connectivity. The Journal of Neuroscience, 28(43), 10844–10851.

    Article  PubMed  CAS  Google Scholar 

  • Van Horn, J. D., Bhattrai, A., & Irimia, A. (2016). Multimodal imaging of Neurometabolic pathology due to traumatic brain injury. Trends in Neurosciences, 40(1),39–59.

  • Vanhaudenhuyse, A., Noirhomme, Q., Tshibanda, L. J., Bruno, M. A., Boveroux, P., Schnakers, C., et al. (2010). Default network connectivity reflects the level of consciousness in non-communicative brain-damaged patients. Brain, 133(Pt 1), 161–171.

    Article  PubMed  Google Scholar 

  • Vecchio, F., Miraglia, F., Curcio, G., Altavilla, R., Scrascia, F., Giambattistelli, F., et al. (2015). Cortical brain connectivity evaluated by graph theory in dementia: a correlation study between functional and structural data. Journal of Alzheimer's Disease, 45(3), 745–756.

    PubMed  Google Scholar 

  • Vespa, P. M., Boscardin, W. J., Hovda, D. A., McArthur, D. L., Nuwer, M. R., Martin, N. A., et al. (2002). Early and persistent impaired percent alpha variability on continuous electroencephalography monitoring as predictive of poor outcome after traumatic brain injury. Journal of Neurosurgery, 97(1), 84–92.

    Article  PubMed  Google Scholar 

  • Walker, R. C., Purnell, G. L., Jones-Jackson, L. B., Thomas, K. L., Brito, J. A., & Ferris, E. J. (2004). Introduction to PET imaging with emphasis on biomedical research. Neurotoxicology, 25(4), 533–542.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Y., Yue, X., Kiesewetter, D. O., Niu, G., Teng, G., & Chen, X. (2014). PET imaging of neuroinflammation in a rat traumatic brain injury model with radiolabeled TSPO ligand DPA-714. European Journal of Nuclear Medicine and Molecular Imaging, 41(7), 1440–1449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ware, J. B., Biester, R. C., Whipple, E., Robinson, K. M., Ross, R. J., & Nucifora, P. G. (2016). Combat-related mild traumatic brain injury: association between baseline diffusion-tensor imaging findings and long-term outcomes. Radiology, 280(1), 212–219.

    Article  PubMed  Google Scholar 

  • Wheeler-Kingshott, C. A., & Cercignani, M. (2009). About "axial" and "radial" diffusivities. Magnetic Resonance in Medicine, 61(5), 1255–1260.

    Article  PubMed  Google Scholar 

  • Wilde, E. A., McCauley, S. R., Hunter, J. V., Bigler, E. D., Chu, Z., Wang, Z. J., et al. (2008). Diffusion tensor imaging of acute mild traumatic brain injury in adolescents. Neurology, 70(12), 948–955.

    Article  CAS  PubMed  Google Scholar 

  • Wilde, E. A., Bouix, S., Tate, D. F., Lin, A. P., Newsome, M. R., Taylor, B. A., et al. (2015). Advanced neuroimaging applied to veterans and service personnel with traumatic brain injury: state of the art and potential benefits. Brain Imaging and Behavior, 9(3), 367–402.

    Article  PubMed  Google Scholar 

  • Wu, H. M., Huang, S. C., Vespa, P., Hovda, D. A., & Bergsneider, M. (2013). Redefining the pericontusional penumbra following traumatic brain injury: evidence of deteriorating metabolic derangements based on positron emission tomography. Journal of Neurotrauma, 30(5), 352–360.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yamaki, T., Imahori, Y., Ohmori, Y., Yoshino, E., Hohri, T., Ebisu, T., et al. (1996). Cerebral hemodynamics and metabolism of severe diffuse brain injury measured by PET. Journal of Nuclear Medicine, 37(7), 1166–1170.

    CAS  PubMed  Google Scholar 

  • Yang, J., Wu, Z., Renier, N., Simon, D. J., Uryu, K., Park, D. S., et al. (2015). Pathological axonal death through a MAPK cascade that triggers a local energy deficit. Cell, 160(1–2), 161–176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yokoyama, K., Matsuki, M., Shimano, H., Sumioka, S., Ikenaga, T., Hanabusa, K., et al. (2008). Diffusion tensor imaging in chronic subdural hematoma: correlation between clinical signs and fractional anisotropy in the pyramidal tract. AJNR. American Journal of Neuroradiology, 29(6), 1159–1163.

    Article  CAS  PubMed  Google Scholar 

  • Yuh, E. L., Cooper, S. R., Mukherjee, P., Yue, J. K., Lingsma, H. F., Gordon, W. A., et al. (2014). Diffusion tensor imaging for outcome prediction in mild traumatic brain injury: a TRACK-TBI study. Journal of Neurotrauma, 31(17), 1457–1477.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang, K., Johnson, B., Pennell, D., Ray, W., Sebastianelli, W., & Slobounov, S. (2010b). Are functional deficits in concussed individuals consistent with white matter structural alterations: combined FMRI & DTI study. Experimental Brain Research, 204(1), 57–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, J., Mitsis, E. M., Chu, K., Newmark, R. E., Hazlett, E. A., & Buchsbaum, M. S. (2010a). Statistical parametric mapping and cluster counting analysis of [18F] FDG-PET imaging in traumatic brain injury. Journal of Neurotrauma, 27(1), 35–49.

    Article  PubMed  Google Scholar 

  • Zhou, Y., Milham, M. P., Lui, Y. W., Miles, L., Reaume, J., Sodickson, D. K., et al. (2012). Default-mode network disruption in mild traumatic brain injury. Radiology, 265(3), 882–892.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu, D. C., Covassin, T., Nogle, S., Doyle, S., Russell, D., Pearson, R. L., et al. (2015). A potential biomarker in sports-related concussion: brain functional connectivity alteration of the default-mode network measured with longitudinal resting-state fMRI over thirty days. Journal of Neurotrauma, 32(5), 327–341.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Misun Hwang.

Ethics declarations

Funding

This study was not funded my any agency.

Conflict of interest

The authors report no conflict of interest in this study.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shin, S.S., Bales, J.W., Edward Dixon, C. et al. Structural imaging of mild traumatic brain injury may not be enough: overview of functional and metabolic imaging of mild traumatic brain injury. Brain Imaging and Behavior 11, 591–610 (2017). https://doi.org/10.1007/s11682-017-9684-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-017-9684-0

Keywords

Navigation