Skip to main content

Advertisement

Log in

Recruitment and Stabilization of Brain Activation Within a Working Memory Task; an fMRI Study

  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

Seventeen subjects underwent functional magnetic resonance imaging (fMRI) performing a 2-Back verbal working memory (VWM) task alternating with a control task to characterize the temporal dynamics of the specific brain regions involved in VWM. Serial sampling of 2-Back sub-blocks revealed many small areas of activation that grew and merged over time. Significant temporal effects for volume recruitment were seen in specific brain regions known to be involved in VWM, including the bilateral dorsolateral prefrontal (DLPFC), medial frontal (MFC), posterior parietal (PPC) cortices and also some extra-cortical and subcortical regions of interest (ROIs). Signal intensity increased over time in most ROIs recruited early in the task, including the DLPFC, MFC, and PPC but excluding dorsal premotor areas. MFC intensity increased rapidly then stabilized with time. The uniqueness of the MFC response raises the possibility that it drives the recruitment process. Increases in intensity and volume were associated with worsening VWM performance over time, suggesting that recruitment of brain resources is necessary in attempting to sustain difficult tasks. Worsening of performance over sub-blocks despite stable task demands reinforces this temporal “load effect”.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akkal, D., Escola, L., Bioulac, B., & Burbaud, P. T. (2004). Time predictability modulates pre-supplementary motor area neuronal activity. NeuroReport, 15(8), 1283–1286.

    CAS  PubMed  Google Scholar 

  • Bandettini, P., Wong, E. C., Hinks, R. S., Tikofsky, R. S., & Hyde, J. S. (1992). Time course EPI of human brain function during task activation. Magnetic Resonance in Medicine, 25(2), 390–397.

    Article  CAS  PubMed  Google Scholar 

  • Bor, D., Duncan, J., Wiseman, R. J., & Owen, A. M. (2003). Encoding strategies dissociate prefrontal activity from working memory demand. Neuron, 37, 361–367.

    Article  CAS  PubMed  Google Scholar 

  • Braver, T. S., Cohen, J. D., Nystrom, L. E., Jonides, J., Smith, E. E., & Noll, D. C. (1997). A parametric study of prefrontal cortex involvement in human working memory. Neuroimage, 5(1), 49–62.

    Article  CAS  PubMed  Google Scholar 

  • Breiter, H. C., Rauch, S. L., Kwong, K. K., Baker, J. R., Weisskoff, R. M., Kennedy, D. N., et al. (1996). Functional magnetic resonance imaging of symptom provocation in obsessive-compulsive disorder. Archives of General Psychiatry, 53(7), 595–606.

    CAS  PubMed  Google Scholar 

  • Buckner, R. L., Bandettini, P. A., O’Craven, K. M., Savoy, R. L., Petersen, S. E., Raichle, M. E., et al. (1996). Detection of cortical activation during averaged single trials of a cognitive task using functional magnetic resonance imaging. Proceedings of the National Academy of Sciences USA, 93(25), 14878–14883.

    Article  CAS  Google Scholar 

  • Buxton, R., & Frank, L. R. (1997). A model for the coupling between cerebral blood flow and oxygen metabolism during neural stimulation. Journal of Cerebral Blood Flow and Metabolism, 17(1), 64–72.

    CAS  PubMed  Google Scholar 

  • Callicott, J. H., Mattay, V. S., Bertolino, A., Finn, K., Coppola, R., Frank, J. A., et al. (1999). Physiological characteristics of capacity constraints in working memory as revealed by functional MRI. Cerebral Cortex, 9(1), 20–26.

    Article  CAS  PubMed  Google Scholar 

  • Cohen, R. (1993). Neuropsychology of attention. New York: Plenum.

    Google Scholar 

  • Cohen, R. A., & Waters, W. F. (1985). Psychophysiological correlates of levels and stages of cognitive processing. Neuropsychologia, 23(2), 243–256.

    Article  CAS  PubMed  Google Scholar 

  • Cohen, J. D., Perlstein, W. M., Braver, T. S., Nystrom, L. E., Noll, D. C., Jonides, J., et al. (1997). Temporal dynamics of brain activation during a working memory task. Nature, 386(6625), 604–608.

    Article  CAS  PubMed  Google Scholar 

  • Courtney, S. M., Ungerleider, L. G., Keil, K., & Haxby, J. V. (1997). Transient and sustained activity in a distributed neural system for human working memory. Nature, 386(6625), 608–611.

    Article  CAS  PubMed  Google Scholar 

  • Courtney, S. M., Petit, L., Haxby, J. V., & Ungerleider, L. G. (1998). The role of prefrontal cortex in working memory: examining the contents of consciousness. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 353(1377), 1819–1828.

    Article  CAS  PubMed  Google Scholar 

  • Cox, R. (1996). AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Computers and Biomedical Research, 29, 162–173.

    Article  CAS  PubMed  Google Scholar 

  • D’Esposito, M., Aguirre, G. K., Zarahn, E., Ballard, D., Shin, R. K., & Lease, J. (1998a). Functional MRI studies of spatial and nonspatial working memory. Brain Research. Cognitive Brain Research, 7(1), 1–13.

    Article  Google Scholar 

  • D’Esposito, M., Ballard, D., Aguirre, G. K., & Zarahn, E. (1998b). Human prefrontal cortex is not specific for working memory: a functional MRI study. Neuroimage, 8(3), 274–282.

    Article  Google Scholar 

  • Duncan, J. (2001). An adaptive coding model of neural function in prefrontal cortex. Nature Reviews Neuroscience, 11, 820–829.

    Article  Google Scholar 

  • Feinstein, J. S., Goldin, P. R., Stein, M. B., Brown, G. G., & Paulus, M. P. (2002). Habituation of attentional networks during emotion processing. NeuroReport, 13(10), 1255–1258.

    Article  PubMed  Google Scholar 

  • Foerster, B. U., Tomasi, D., & Caparelli, E. C. (2005). Magnetic field shift due to mechanical vibration in functional magnetic resonance imaging. Magnetic Resonance in Medicine, 54(5), 1261–1267.

    Article  PubMed  Google Scholar 

  • Friedman, H., Janas, J. D., & Goldman-Rakic, P. S. (1990). Enhancement of metabolic activity in the diencephalons of monkeys performing working memory tasks: a 2-deoxyglucose study in behaving rhesus monkeys. Journal of Cognitive Neuroscience, 2, 18–31.

    Article  Google Scholar 

  • Glahn, D. C., Kim, J., Cohen, M. S., Poutanen, V. P., Therman, S., Bava, S., et al. (2002). Maintenance and manipulation in spatial working memory: dissociations in the prefrontal cortex. Neuroimage, 17(1), 201–213.

    Article  CAS  PubMed  Google Scholar 

  • Goense, J. B. M., JBM, N. K., & Logothetis, N. K. (2008). Neurophysiology of the BOLD fMRI signal in awake monkeys. Current Biology, 18(9), 631–640.

    Article  CAS  PubMed  Google Scholar 

  • Gould, R. L., Arroyo, B., Brown, R. G., Owen, A. M., Bullmore, E. T., & Howard, R. J. (2006). Brain mechanisms of successful compensation during learning in Alzheimer disease. Neurology, 67(6), 1011–1017.

    Article  CAS  PubMed  Google Scholar 

  • Haxby, J., Petit, L., Ungerleider, L. G., & Courtney, S. M. (2000). Distinguishing the functional roles of multiple regions in distributed neural systems for visual working memory. Neuroimage, 11, 380–391.

    Article  CAS  PubMed  Google Scholar 

  • Hillary, F. G. (2008). Neuroimaging of working memory dysfunction and the dilemma with brain reorganization hypotheses. Journal of the International Neuropsychological Society, 14(4), 526–534.

    Article  PubMed  Google Scholar 

  • Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics, 6, 65–70.

    Google Scholar 

  • Honey, G., Fu, C. H., Kim, J., et al. (2002). Effects of verbal working memory load on corticocortical connectivity modeled by path analysis of functional magnetic resonance imaging data. Neuroimage, 17(2), 573–582.

    Article  CAS  PubMed  Google Scholar 

  • Jennings, J. R., & Hall, S. W. (1980). Recall, recognition, and rate: memory and the heart. Psychophysiology, 17, 37–46.

    Article  CAS  PubMed  Google Scholar 

  • Jezzard, P., Matthews, P. M., & Smith, S. M. (2003). Functional MRI: An introduction to methods. New York: Oxford University Press.

    Google Scholar 

  • Kim, S. G. (2003). Progress in understanding functional imaging signals. Proceedings of the National Academy of Sciences USA, 100(7), 3550–3552.

    Article  CAS  Google Scholar 

  • Kollias, S. S., Golay, X., Boesiger, P., & Valavanis, A. (2000). Dynamic characteristics of oxygenation-sensitive MRI signal in different temporal protocols for imaging human brain activity. Neuroradiology, 42(8), 591–601.

    Article  CAS  PubMed  Google Scholar 

  • Kwong, K., Belliveau, J. W., Chesler, D. A., Goldberg, I. E., Weisskoff, R. M., Poncelet, B. P., et al. (1992). Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proceedings of the National Academy of Sciences USA, 89(12), 5675–5679.

    Article  CAS  Google Scholar 

  • Langers, D. R., Backes, W. H., & van Dijk, P. (2003). Spectrotemporal features of the auditory cortex: the activation in response to dynamic ripples. Neuroimage, 20(1), 265–275.

    Article  PubMed  Google Scholar 

  • Lawrence, N., Ross, T. J., Hoffmann, R., et al. (2003). Multiple neuronal networks mediate sustained attention. Journal of Cognitive Neuroscience, 15(7), 1028–1038.

    Article  PubMed  Google Scholar 

  • Leung, H.-C., Gore, J. C., & Goldman-Rakic, P. S. (2002). Sustained mnemonic response in the human middle frontal gyrus during on-line storage of spatial memoranda. Journal of Cognitive Neuroscience, 14(4), 659–671.

    Article  PubMed  Google Scholar 

  • Liu, J. Z., Shan, Z. Y., Zhang, L. D., Sahgal, V., Brown, R. W., & Yue, G. H. (2003). Human brain activation during sustained and intermittent submaximal fatigue muscle contractions: an FMRI study. Journal of Neurophysiology, 90(1), 300–312.

    Article  PubMed  Google Scholar 

  • Lowe, M. J., & Russell, D. P. (1999). Treatment of baseline drifts in fMRI time series analysis. Journal of Computer Assisted Tomography, 23(3), 463–473.

    Article  CAS  PubMed  Google Scholar 

  • Mathews, P., & Jezzard, P. (2004). Functional magnetic resonance imaging. Journal of Neurology, Neurosurgery and Psychiatry, 75(1), 6–12.

    Google Scholar 

  • McCarthy, G., Puce, A., Luby, M., Belger, A., & Allison, T. (1996). Magnetic resonance imaging studies of functional brain activation: analysis and interpretation. Electroencephalography and Clinical Neurophysiology. Supplement, 47, 15–31.

    CAS  PubMed  Google Scholar 

  • Menon, R., & Goodyear, B. G. (2001). Spatial and temporal resolution in FMRI. In P. Jezzard, P. M. Matthews & S. M. Smith (Eds.), Functional magnetic resonance imaging: An introduction to methods (pp. 145–158). New York: Oxford University Press.

    Google Scholar 

  • Owen, A. M., McMillan, K. M., Laird, A. R., & Bullmore, E. (2005). N-back working memory paradigm: a meta-analysis of normative functional neuroimaging studies. Human Brain Mapping, 25(1), 46–59.

    Article  PubMed  Google Scholar 

  • Paskavitz, J. F., Sweet, L. H., Wellen, J., Helmer, K. G., & Cohen, R. A. (2003a). Dynamic changes in brain volumes of activation during sustained working memory observed with FMRI. Journal of International Neuropsychological Society, 9(2), 321.

    Google Scholar 

  • Paskavitz, J., Sweet, L., Wellen, J., & Helmer, C. R. A. (2003b). The role of the medial thalamus in working memory; an FMRI study. Neuroimage, 19(2), S497.

    Google Scholar 

  • Pfeuffer, J., Van de Moortele, P. F., Ugurbil, K., Hu, X., & Glover, G. H. (2002). Correction of physiologically induced global off-resonance effects in dynamic echo-planar and spiral functional imaging. Magnetic Resonance in Medicine, 47(2), 344–353.

    Article  PubMed  Google Scholar 

  • Poellinger, A., Thomas, R., Lio, P., Lee, A., Makris, N., Rosen, B. R., et al. (2001). Activation and habituation in olfaction—an fMRI study. Neuroimage, 13(4), 547–560.

    Article  CAS  PubMed  Google Scholar 

  • Rosen, B. R., Aronen, H. J., Kwong, K. K., Belliveau, J. W., Hamberg, L. M., & Fordham, J. A. (1993). Advances in clinical neuroimaging: functional MR imaging techniques. Radiographics, 13(4), 889–896.

    CAS  PubMed  Google Scholar 

  • Rosen, B. R., Buckner, R. L., & Dale, A. M. (1998). Event-related functional MRI: past, present, and future. Proceedings of the National Academy of Sciences USA, 95(3), 773–780.

    Article  CAS  Google Scholar 

  • Royall, D. R., Lauterbach, E. C., Cummings, J. L., Reeve, A., Rummans, T. A., Kaufer, D. I., et al. (2002). Executive control function: a review of its promise and challenges for clinical research. A report from the Committee on Research of the American Neuropsychiatric Association. Journal of Neuropsychiatry and Clinical Neurosciences, 14(4), 377–405.

    PubMed  Google Scholar 

  • Samuel, M., Williams, S. C., Leigh, P. N., Simmons, A., Chakraborti, S., Andrew, C. M., et al. (1998). Exploring the temporal nature of hemodynamic responses of cortical motor areas using functional MRI. Neurology, 51(6), 1567–1575.

    CAS  PubMed  Google Scholar 

  • Savoy, R. L. (2001). History and future directions of human brain mapping and functional neuroimaging. Acta Psychologcia (Amst), 107(1–3), 9–42.

    Article  CAS  Google Scholar 

  • Savoy, R. L. (2005). Experimental design in brain activation MRI: cautionary tales. Brain Research Bulletin, 67(5), 361–367.

    Article  PubMed  Google Scholar 

  • Selemon, L., & Goldman-Rakic, P. S. (1988). Common cortical and subcortical targets of the dorsolateral prefrontal and posterior parietal cortices in the rhesus monkey: evidence for a distributed neural network subserving spatially guided behavior. Journal of Neuroscience, 8(11), 4049–4068.

    CAS  PubMed  Google Scholar 

  • Simmons, A., Moore, E., & Williams, S. C. (1999). Quality control for functional magnetic resonance imaging using automated data analysis and Shewhart charting. Magnetic Resonance in Medicine, 41(6), 1274–1278.

    Article  CAS  PubMed  Google Scholar 

  • Smith, E. E., & Jonides, J. (1997). Working memory: a view from neuroimaging. Cognitive Psychology, 33(1), 5–42.

    Article  CAS  PubMed  Google Scholar 

  • Sobel, N., Prabhakaran, V., Zhao, Z., Desmond, J. E., Glover, G. H., Sullivan, E. V., et al. (2000). Time course of odorant-induced activation in the human primary olfactory cortex. Journal of Neurophysiology, 83(1), 537–551.

    CAS  PubMed  Google Scholar 

  • Stephenson, C. M., Suckling, J., Dirckx, S. G., Ooi, C., McKenna, P. J., Bisbrown-Chippendale, R., et al. (2003). GABAergic inhibitory mechanisms for repetition-adaptivity in large-scale brain systems. Neuroimage, 19(4), 1578–1588.

    Article  CAS  PubMed  Google Scholar 

  • Sweet, L. H., Rao, S. M., Primeau, M., Mayer, A. R., & Cohen, R. A. (2004). Functional magnetic resonance imaging of working memory among multiple sclerosis patients. Journal of Neuroimaging, 14(2), 150–157.

    PubMed  Google Scholar 

  • Sweet, L. H., Paskavitz, J. F., O’Connor, M. J., Browndyke, J. N., Wellen, J. W., & Cohen, R. A. (2005). FMRI correlates of the WAIS-III symbol search subtest. Journal of International Neuropsychological Society, 11(4), 471–476.

    Google Scholar 

  • Sweet, L. H., Rao, S. M., Primeau, M., Durgerian, S., & Cohen, R. A. (2006). Functional magnetic resonance imaging response to increased verbal working memory demands among patients with multiple sclerosis. Human Brain Mapping, 27(1), 28–36.

    Article  PubMed  Google Scholar 

  • Sweet, L. H., Paskavitz, J. F., Haley, A. P., Gunstad, J. J., Nyalakanti, P. K., & Cohen, R. A. (2008). Imaging phonological similarity effects in verbal working memory. Neuropsychologia, 46(4), 1114–1123.

    Article  PubMed  Google Scholar 

  • Talairach, J., & Tournoux, P. (1988). Co-planar stereotaxic atlas of the human brain: 3-Dimensional proportional system: An approach to cerebral imaging. Stuttgart: Thieme Medical.

    Google Scholar 

  • Tan, H. Y., Sust, S., Buckholtz, J. W., Mattay, V. S., Meyer-Lindenberg, A., Egan, M. F., et al. (2006). Dysfunctional prefrontal regional specialization and compensation in schizophrenia. American Journal of Psychiatry, 163(11), 1969–1977.

    Article  PubMed  Google Scholar 

  • Williams, L. M., Brown, K. J., Das, P., Boucsein, W., Sokolov, E. N., Brammer, M. J., et al. (2004). The dynamics of cortico-amygdala and autonomic activity over the experimental time course of fear perception. Brain Research. Cognitive Brain Research, 21(1), 114–123.

    Article  PubMed  Google Scholar 

  • Williams, L. M., Das, P., Liddell, B., Olivieri, G., Peduto, A., Brammer, M. J., et al. (2005). BOLD, sweat and fears: fMRI and skin conductance distinguish facial fear signals. NeuroReport, 16(1), 49–52.

    Article  PubMed  Google Scholar 

  • Zaharchuk, G., Mandeville, J. B., Bogdanov, A. A., Jr., Weissleder, R., Rosen, B. R., & Marota, J. J. (1999). Cerebrovascular dynamics of autoregulation and hypoperfusion. An MRI study of CBF and changes in total and microvascular cerebral blood volume during hemorrhagic hypotension. Stroke, 30(10), 2197–2204. discussion 2204-5.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James F. Paskavitz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paskavitz, J.F., Sweet, L.H., Wellen, J. et al. Recruitment and Stabilization of Brain Activation Within a Working Memory Task; an fMRI Study. Brain Imaging and Behavior 4, 5–21 (2010). https://doi.org/10.1007/s11682-009-9081-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-009-9081-4

Keywords

Navigation