Skip to main content
Log in

Water yield and biomass production for on a eucalypt-dominated Mediterranean catchment under different climate scenarios

  • Original Paper
  • Published:
Journal of Forestry Research Aims and scope Submit manuscript

Abstract

Worldwide, forests are vital in the regulation of the water cycle regulation and in water balance allocation. Knowledge of ecohydrological responses of production forests is essential to support management strategies, especially where water is already scarce. Shifting climatological patterns are expected to impact thermopluviometric regimes, water cycle components, hydrological responses, and plant physiology, evapotranspiration rates, crop productivity and land management operations. This work (1) assessed the impacts of different predicted climate conditions on water yield; (2) inferred the impacts of climate change on biomass production on eucalypt-to-eucalypt succession. To this end, the widely accepted Soil and Water Assessment Tool (SWAT) was run with the RCA, HIRHAM5 and RACMO climate models for two emission scenarios (RCP 4.5 and 8.5). Three 12-year periods were considered to simulate tree growth under coppice regime. The results revealed an overall reduction in streamflow and water yield in the catchment in line with the projected reduction in total annual precipitation. Moreover, HIRHAM5 and RACMO models forecast a slight shift in seasonal streamflow of up to 2 months (for 2024–2048) in line with the projected increase in precipitation from May to September. For biomass production, the extreme climate model (RCA) and severe emission scenario (RCP 8.5) predicted a decrease up to 46%. However, in the less extreme and more-correlated (with actual catchment climate conditions) climate models (RACMO and HIRHAM5) and in the less extreme emission scenario (RCP 4.5), biomass production increased (up to 20%), and the growth cycle was slightly reduced. SWAT was proven to be a valuable tool to assess climate change impacts on a eucalypt-dominated catchment and is a suitable decision-support tool for forest managers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abbaspour K, Vaghefi S, Srinivasan R (2017) A guideline for successful calibration and uncertainty analysis for soil and water assessment: a review of papers from the 2016 international SWAT conference. Water 10(1):6

    Article  Google Scholar 

  • Abbaspour KC (2007) User manual for SWAT-CUP, SWAT calibration and uncertainty analysis programs. In: Swiss Federal Institute of Aquatic Science and Technology, Eawag, Duebendorf, Switzerland, p 2007

  • Abbaspour KC, Johnson CA, Van Genuchten MT (2004) Estimating uncertain flow and transport parameters using a sequential uncertainty fitting procedure. Vadose Zone J 3:1340–1352

    Article  Google Scholar 

  • Abbaspour KC, Rouholahnejad E, Vaghefi S, Srinivasan R, Yang H, Kløve BA (2015) Continental-scale hydrology and water quality model for Europe: calibration and uncertainty of a high-resolution large-scale SWAT model. J Hydrol 524:733–752

    Article  Google Scholar 

  • Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. 300(9), Fao, Rome

  • Almeida AC, Soares JV, Landsberg JJ, Rezende GD (2007) Growth and water balance of Eucalyptus grandis hybrid plantations in Brazil during a rotation for pulp production. For Ecol Manag 251(1–2):10–21

    Article  Google Scholar 

  • Anderson TR, Hawkins E, Jones PD (2016) CO2, the greenhouse effect and global warming: from the pioneering work of arrhenius and callendar to today’s earth system models. Endeavour 40(3):178–187

    Article  PubMed  Google Scholar 

  • Arnold JG, Moriasi DN, Gassman PW, Abbaspour KC, White MJ, Srinivasan R, Santhi C, Harmel RD, van Griensven A, Van Liew NW (2012) SWAT: model use, calibration, and validation. Trans ASABE 55:1491–1508

    Article  Google Scholar 

  • Ashu AB, Lee SI (2020) Assessing climate change effects on water balance in a monsoon watershed. Water 12:2564

    Article  Google Scholar 

  • Baier W, Robertson GW (1965) Estimation of latent evaporation from simple weather observations. Can J Plant Sci 45(3):276–284

    Article  Google Scholar 

  • Becklin KM, Anderson JT, Gerhart LM, Wadgymar SM, Wessinger CA, Ward JK (2016) Examining plant physiological responses to climate change through an evolutionary lens. Plant Phys 172:00793

    Google Scholar 

  • Beek EG (1991) Spatial interpolation of daily meteorological data. In: Theoretical evaluation of available techniques. Report 53.1. Wageningen, The Netherlands. DLO Winand Staring Centre

  • Berg P, Christensen OB, Klehmet K, Lenderink G, Olsson J, Teichmann C, Yang W (2019) Summertime precipitation extremes in a EURO-CORDEX 0.11 ensemble at an hourly resolution. Nat Hazards Earth Syst Sci 19(4):957–971

    Article  Google Scholar 

  • Berihun ML, Tsunekawa A, Haregeweyn N, Dile YT, Tsubo M, Fenta AA, Meshesha DT, Ebabu K, Sultan D, Srinivasan R (2020) Evaluating runoff and sediment responses to soil and water conservation practices by employing alternative modeling approaches. Sci Total Environ 747:141118

    Article  CAS  PubMed  Google Scholar 

  • Beven K, Freer J (2001) Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology. J Hydrol 249(1–4):11–29

    Article  Google Scholar 

  • Beven KJ, Binley AM (1992) The future of distributed models: model calibration and uncertainty prediction. Hydrol Process 6:279–298

    Article  Google Scholar 

  • Boisvenue C, Running SW (2006) Impacts of climate change on natural forest productivity-evidence since the middle of the 20th century. Glo Chan Biol 12(5):862–882

    Article  Google Scholar 

  • Booth TH (2013) Eucalypt plantations and climate change. For Ecol Manag 301:28–34

    Article  Google Scholar 

  • Booth TH, Broadhurst LM, Pinkard E, Prober SM, Dillon SK, Bush D, Young AG (2015) Native forests and climate change: lessons from eucalypts. For Eco Manag 347:18–29

    Google Scholar 

  • Brouziyne Y, Abouabdillah A, Hirich A, Bouabid R, Zaaboul R, Benaabidate L (2018) Modeling sustainable adaptation strategies toward a climate-smart agriculture in a mediterranean watershed under projected climate change scenarios. Agric Syst 162:154–163

    Article  Google Scholar 

  • Butcher JB, Johnson TE, Nover D, Sarkar S (2014) Incorporating the effects of increased atmospheric CO2 in watershed model projections of climate change impacts. J Hydrol 513:322–334

    Article  CAS  Google Scholar 

  • CARD (2021) SWAT Literature Database for Peer-Reviewed Journal Articles; Center for Agricultural and Rural Development, Iowa State University: Ames, IA, USA, 2019. [accessed on 1.12.2021]. https://www.card.iastate.edu/swat_articles/

  • Cardoso JVJC (1974) A Classificação dos Solos de Portugal–nova versão. Boletim De Solos (SROA) 17:14–46

    Google Scholar 

  • Chen Y, Marek GW, Marek TH, Moorhead JE, Heflin KR, Brauer DK, Srinivasan R (2019) Simulating the impacts of climate change on hydrology and crop production in the Northern High Plains of Texas using an improved SWAT model. Agric Water Manag 22:13–24

    Article  CAS  Google Scholar 

  • Dias R, Araújo A, Terrinha P, Kullberg JC (2013) Geologia de Portugal. Volume II Geologia Meso-cenozóica de Portugal. Escolar Editora, Lisboa, pp 798 (in Portuguese)

  • Di Luzio MD, Srinivasan R, Arnold JG, Neitsch SL (2002) Soil and water assessment tool-ArcView GIS interface manual-version 2000. Grassland, Soil and Water Research Laboratory, Agricultural Research Service and Blackland Research Center, Texas Agricultural Experiment Station, Temple

  • Earls J, Dixon B (2008) A comparison of SWAT model-predicted potential evapotranspiration using real and modeled meteorological data. Vad Zon J 7(2):570–580

    Article  Google Scholar 

  • Ercan MB, Maghami I, Bowes BD, Morsy MM, Goodall JL (2019) Estimating potential climate change effects on the upper neuse watershed water balance using the SWAT model. JAWRA J Am Water Resour Assoc 56(1):53–67

    Article  Google Scholar 

  • FAO–UNESCO (1974) Soil map of the world. Vol. I - Legend. UNESCO, Paris

    Google Scholar 

  • FAO–UNESCO (1988) Soil map of the world. Revised legend. World soil resources report no. 60. Rome, pp 59

  • Galleguillos M, Gimeno F, Puelma C, Zambrano-Bigiarini M, Lara A, Rojas M (2021) Disentangling the effect of future land use strategies and climate change on streamflow in a Mediterranean catchment dominated by tree plantations. J Hydrol 595:126047

    Article  Google Scholar 

  • Gleick P, Chalecki EL (1999) The impacts of climatic changes for water resources of the Colorado and Sacramento-San Joaquin River Basins. J Am Water Resour Assoc 35:1429–1441

    Article  Google Scholar 

  • Gonçalves F, Zbyzewski G, Carvalhosa A, Coelho AP (1979) Notícia explicativa da Carta Geológica de Portugal na escala 1/50 000, Folha 27-D. Serviços Geológicos de Portugal, Lisboa, p 75 (in Portuguese)

  • Gray SB, Brady SM (2016) Plant developmental responses to climate change. Dev Biol 419(1):64–77

    Article  CAS  PubMed  Google Scholar 

  • Gupta HV, Sorooshian S, Yapo PO (1999) Status of automatic calibration for hydrologic models: comparison with multilevel expert calibration. J Hydrol Eng 4(2):135–143

    Article  Google Scholar 

  • Haberlandt U (2010) From hydrological modelling to decision support. Adv Geosci 27:11–19

    Article  Google Scholar 

  • Haerter JO, Hagemann S, Moseley C, Piani C (2011) Climate model bias correction and the role of timescales. Hydrol Earth Syst Sci 15:1065–1079

    Article  Google Scholar 

  • Hagemann S, Chen C, Clark DB, Folwell S, Gosling SN, Haddeland I, Hanasaki N, Heinke J, Ludwig F, Voss F, Wiltshire AJ (2013) Climate change impact on available water resources obtained using multiple global climate and hydrology models. Earth Syst Dyn 4:129–144

    Article  Google Scholar 

  • Hargreaves GH, Samani ZA (1985) Reference crop evapotranspiration from temperature. Appl Eng Agric 1(2):96–99

    Article  Google Scholar 

  • Holthuijzen MF, Beckage B, Clemins PJ, Higdon D, Winter JM (2021) Constructing high-resolution, bias-corrected climate products: a comparison of methods. J Appl Meteorol Clim 60(4):455–475

    Article  Google Scholar 

  • IFN6 (2019) 6º Inventário Florestal Nacional. Instituto da Conservação da Natureza e das Florestas, 2019 (in Portuguese)

  • Islam A, Ahuja L, Garcia L, Ma L, Saseendran A (2012) Modeling the effect of elevated CO2 and climate change on reference evapotranspiration in the semi-arid central great plains. T ASABE 55(6):2135–2146

    Article  CAS  Google Scholar 

  • Jacob D, Petersen J, Eggert B, Alias A, Christensen OB, Bouwer LM, Braun A, Colette A, Déqué M, Georgievski G, Georgopoulou E, Gobiet A, Menut L, Nikulin G, Haensler A, Hempelmann N, Jones C, Keuler K, Kovats S, Kröner N, Kotlarski S, Kriegsmann A, Martin E, van Meijgaard E, Moseley C, Pfeifer S, Preuschmann S, Radermacher C, Radtke K, Rechid D, Rounsevell M, Samuelsson P, Somot S, Soussana JF, Teichmann C, Valentini R, Vautard R, Weber B, Yiou P (2014) EURO-CORDEX: new high-resolution climate change projections for European impact research. Reg Environ Change 14:563–578

    Article  Google Scholar 

  • Jha MK, Gassman PW, Panagopoulos Y (2013) Regional changes in nitrate loadings in the upper mississippi river basin under predicted mid-century climate. Reg Environ Change 15(3):449–460

    Article  Google Scholar 

  • Kamali B, Houshmand Kouchi D, Yang H, Abbaspour KC (2017) Multilevel drought hazard assessment under climate change scenarios in semi-arid regions—a case study of the Karkheh River Basin in Iran. Water 9:241

    Article  Google Scholar 

  • Keenan RJ (2015) Climate change impacts and adaptation in forest management: a review. Ann for Sci 72(2):145–167

    Article  Google Scholar 

  • Kjellström E, Bärring L, Nikulin G, Nilsson C, Persson G, Strandberg G (2016) Production and use of regional climate model projections–a Swedish perspective on building climate services. Clim Serv 2:15–29

    Article  PubMed  Google Scholar 

  • Köppen W (1931) Grundriss der Klimakunde. Walter de Gruyter, Berlin, p 388

    Google Scholar 

  • Krause P, Boyle D, Bäse P (2005) Comparison of different efficiency criteria for hydrological model assessment. Adv Geosci 5:89-97F

    Article  Google Scholar 

  • Landgren OA, Haugen JE, Førland EJ (2014) Evaluation of regional climate model temperature and precipitation outputs over Scandinavia. Clim Res 60(3):249–264

    Article  Google Scholar 

  • Leta OT, El-Kadi AI, Dulai H, Ghazal KA (2016) Assessment of climate change impacts on water balance components of Heeia watershed in Hawaii. J Hydrol Reg Stud 8:182–197

    Article  Google Scholar 

  • Lima WP (1984) The hydrology of eucalypt forests in Australia. IPEF (piracicaba) 28:11–32

    Google Scholar 

  • Mami A, Raimonet M, Yebdri D, Sauvage S, Zettam A, Perez JMS (2021) Future climatic and hydrologic changes estimated by bias-adjusted regional climate model outputs of the Cordex-Africa project: case of the Tafna basin (North-Western Africa). Int J Glob Warm 23(1):58–90

    Article  Google Scholar 

  • Maraun D, Shepherd TG, Widmann M, Zappa G, Walton D, MearnsLO GJM (2017) Towards process-informed bias correction of climate change simulations. Nat Clim Chan 7(11):664–773

    Google Scholar 

  • Marin M, Clinciu I, Tudose NC, Ungurean C, Adorjani A, Mihalache AL, Cacovean H (2020) Assessing the vulnerability of water resources in the context of climate changes in a small forested watershed using SWAT: a review. Environ Res 184:109330

    Article  CAS  PubMed  Google Scholar 

  • Martínez-Salvador A, Millares A, Eekhout JPC, Conesa-García C (2021) Assessment of streamflow from EURO-CORDEX regional climate simulations in semi-arid catchments using the SWAT model. Sustai 13:7120

    Article  Google Scholar 

  • Matias MJ, Marques JM, Figueiredo P, Basto MJ, Abreu MM, Carreira PM, Ribeiro C, Flambo A, Feliciano J, Vicente EM (2008) Assessment of pollution risk ascribed to santa margarida military camp activities (Portugal). Environ Geol 56(6):1227–1235

    Article  Google Scholar 

  • McKee TB, Doesken NJ, Kleist J (1993) The relationship of drought frequency and duration to time scale. In: Proceedings of the eighth conference on applied climatology. American Meteorological Society, Anaheim, pp 179–184

  • Mehdi B, Ludwig R, Lehner B (2015) Evaluating the impacts of climate change and crop land use change on streamflow, nitrates and phosphorus: a modeling study in Bavaria. J Hydrol Reg Stud 4:60–90

    Article  Google Scholar 

  • Morais J (1959) Divisão climática de Portugal. In: Memórias e Notícias; Publicações do Museu Mineralógico e Geológico da Universidade de Coimbra: Coimbra, Portugal, p 27 (in Portuguese)

  • Moriasi DN, Arnold JG, Van Liew MW, Bingner RL, Harmel RD, Veith TL (2007) Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans ASABE 50(3):885–900

    Article  Google Scholar 

  • Moriasi DN, Gitau MW, Pai N, Daggupati P (2015) Hydrologic and water quality models: performance measures and evaluation criteria. Trans ASABE 58(6):1763–1785

    Article  Google Scholar 

  • Morison J (1987) Intercellular CO2 concentration and stomatal response to CO2. In: Zeiger E, Farquhar G, Cowan I (eds) Stomatal function. Stanford University Press, Stanford, pp 229–252

    Google Scholar 

  • Neitsch SL, Arnold JG, Kiniry JR, Williams JR, King KW (2002) Soil and water assessment tool theoretical documentation, version 2000. Temple, Blackland Research Center, Texas Agricultural Experiment Station, Texas 2001

  • Nilawar AP, Waikar ML (2018) Use of SWAT to determine the efects of climate and land use changes on streamfow and sediment concentration in the purna river basin India. Environ Earth Sci 77:783

    Article  Google Scholar 

  • Nunes JP, Jacinto R, Keizer JJ (2017) Combined impacts of climate and socio economic scenarios on irrigation water availability for a dry Mediterranean reservoir. Sci Total Environ 584(c):219–233

    Article  PubMed  Google Scholar 

  • Nunes JP, Seixas J, Keizer JJ (2013) Modeling the response of within-storm runoff and erosion dynamics to climate change in two Mediterranean watersheds: a multi-model, multi-scale approach to scenario design and analysis. CATENA 102:27–39

    Article  Google Scholar 

  • Nunes JP, Seixas J, Pacheco NR (2008) Vulnerability of water resources, vegetation productivity and soil erosion to climate change in Mediterranean watersheds. Hydrol Processes 22:3115–3134

    Article  Google Scholar 

  • Olivier JGJ, Peters JAHW (2020) Trends in global CO2 and total greenhouse gas emissions: 2020 report. PBL Netherlands Environmental Assessment Agency, The Hague

    Google Scholar 

  • Palma JH, Hakamada R, Moreira GG, Nobre S, Rodriguez LCE (2021) Using 3PG to assess climate change impacts on management plan optimization of eucalyptus plantations. A case study in southern Brazil. Sci Rep 11(1):1–8

    Article  Google Scholar 

  • Penman HL (1948) Natural evaporation from open water, bare soil and grass. Proc R Soc Lond Ser A Math Phys Sci 193(1032):120–145

    CAS  Google Scholar 

  • Priestley CHB, Taylor RJ (1972) On the assessment of surface heat flux and evaporation using large-scale parameters. Mon Weather Rev 100(2):81–92

    Article  Google Scholar 

  • Quansah JE, Naliaka AB, Fall S, Ankumah R, Afandi GE (2021) Assessing future impacts of climate change on streamflow within the alabama river basin. Climate 9(4):55

    Article  Google Scholar 

  • Rathjens H, Bieger B, Srinivasan S, Chaubey I, Arnold JG (2016) CMhyd user manual. http://swat.tamu.edu/software/cmhyd/ Accessed 26 July 2021

  • Reis RMM, Gonçalves MZ (1987) Caracterização climática da Região do Alentejo. O Clima de Portugal. Fascículo XXXIV. INMG. Lisboa (in Portuguese)

  • Roberts S, Vertessy R, Grayson R (2001) Transpiration from Eucalyptus sieberi (L. Johnson) forests of different age. For Ecol Manag 143(1–3):153–161

    Article  Google Scholar 

  • Rocha J, Carvalho-Santos C, Diogo P, Beça P, Keizer JJ, Nunes JP (2020a) Impacts of climate change on reservoir water availability, quality and irrigation needs in a water scarce Mediterranean region (southern Portugal). Sci Total Environ 736:139477

    Article  CAS  PubMed  Google Scholar 

  • Rocha J, Duarte A, Silva M, Fabres S, Vasques J, Revilla-Romero B, Quintela A (2020b) The importance of high resolution digital elevation models for improved hydrological simulations of a Mediterranean forested catchment. Rem Sens 12(20):3287

    Article  Google Scholar 

  • Rocha J, Roebeling P, Rial-Rivas ME (2015) Assessing the impacts of sustainable agricultural practices for water quality improvements in the vouga catchment (Portugal) using the SWAT model. Sci Total Environ 536:48–58

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues A, Pita G, Mateus J, Kurz-Besson C, Casquilho M, Cerasoli S, Pereira J (2011) Eight years of continuous carbon fluxes measurements in a Portuguese eucalypt stand under two main events: drought and felling. Agric for Meteorol 151(4):493–507

    Article  Google Scholar 

  • Rouholahnejad Freund E, Abbaspour K, Lehmann A (2017) Water resources of the black sea catchment under future climate and landuse change projections. Water 9(8):598

    Article  Google Scholar 

  • Santos JYG, Montenegro SMGL, da Silva RM, Santos CAG, Quinn NW, Dantas APX, Ribeiro NA (2021) Modeling the impacts of future LULC and climate change on runoff and sediment yield in a strategic basin in the caatinga/atlantic forest ecotone of Brazil. CATENA 203:105308

    Article  Google Scholar 

  • Seaton S, Matusick G, Ruthrof KX, Hardy GESJ (2015) Outbreak of Phoracantha semipunctata in response to severe drought in a Mediterranean eucalyptus forest. Forests 6(11):3868–3881

    Article  Google Scholar 

  • Serpa D, Nunes JP, Keizer JJ, Abrantes N (2017) Impacts of climate and land use changes on the water quality of a small Mediterranean catchment with intensive viticulture. Environ Pollut 224:454–465

    Article  CAS  PubMed  Google Scholar 

  • Serpa D, Nunes JP, Santos J, Sampaio E, Jacinto R, Veiga S, Lima JC, Moreira M, Corte-Real J, Keizer JJ, Abrantes N (2015) Impacts of climate and land use changes on the hydrological and erosion processes of two contrasting Mediterranean catchments. Sci Total Environ 538:64–77

    Article  CAS  PubMed  Google Scholar 

  • Shrestha M, Acharya SC, Shrestha PK (2017) Bias correction of climate models for hydrological modelling—are simple methods still useful? Meteorol Appl 24:531–539

    Article  Google Scholar 

  • Sluiter R (2009) Interpolation methods for climate data: literature review. De Bilt, Royal Netherlands Meteorological Institute (KNMI). https://www.researchgate.net/publication/242783501

  • Soares JV, Almeida AC (2001) Modeling the water balance and soil water fluxes in a fast-growing eucalyptus plantation in Brazil. J Hydrol 253:130–147

    Article  Google Scholar 

  • SROA (1970) Carta dos Solos de Portugal. I Vol: Classificação e Caracterização Morfológica dos Solos. Ministério da Economia, Secretaria de Estado da Agricultura, Serviço de Reconhecimento e Ordenamento Agrário, Vl, I, 6ª Edição (in Portuguese)

  • Tan GR, Ayugi B, Ngoma H, Ongoma V (2020a) Projections of future meteorological drought events under representative concentration pathways (RCPs) of CMIP5 over Kenya. East Africa Atmos Res 246:105112

    Article  Google Scholar 

  • Tan YG, Guzman SM, Dong ZC, Tan L (2020b) Selection of effective GCM bias correction methods and evaluation of hydrological response under future climate scenarios. Climate 8(10):108

    Article  Google Scholar 

  • Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498

    Article  Google Scholar 

  • Teshager AD, Gassman PW, Schoof JT, Secchi S (2016) Assessment of impacts of agricultural and climate change scenarios on watershed water quantity and quality, and crop production. Hydrol Earth Syst Sci 20(8):3325–3342

    Article  CAS  Google Scholar 

  • Teutschbein C, Seibert J (2012) Bias correction of regional climate model simulations for hydrological climate-change impact studies: review and evaluation of different methods. J Hydrol 456–457:12–29

    Article  Google Scholar 

  • Thomson AM, Calvin KV, Smith SJ, Kyle GP, Volke A, Patel P, Edmonds JA (2011) RCP4.5: a pathway for stabilization of radiative forcing by 2100. Clim Change 109(1–2):77–94

    Article  CAS  Google Scholar 

  • Thornthwaite CW (1948) An approach toward a rational classification of climate. Geogr Rev 38:55–94

    Article  Google Scholar 

  • van Vuuren DP, Edmonds J, Kainuma M, Riahi K, Thomson A, Hibbard K, Rose SK (2011) The representative concentration pathways: an overview. Clim Change 109(1–2):5–31

    Article  Google Scholar 

  • Vautard R, Kadygrov N, Iles C, Boberg F, Buonomo E, Bülow K, Wulfmeyer V (2021) Evaluation of the large EURO‐CORDEX regional climate model ensemble. J Geophys Res 126(17):e2019JD032344

  • Wang X, Williams JR, Gassman PW, Baffaut C, Izaurralde RC, Jeonginiry JJR (2012) EPIC and APEX: model use, calibration, and validation. Trans ASABE 55(4):1447–1462

    Article  Google Scholar 

  • Williams JR, Jones CA, Dyke PT (1984) A modeling approach to determining the relationship between erosion and soil productivity. Trans Am Soc Agric Eng 27:129–144

    Article  Google Scholar 

  • Williams JR, Nearing MA, Nicks A, Skidmore E, Valentine C, King K, Savabi R (1996) Using soil erosion models for global change studies. J Soil Water Conserv 51(5):381–385

    Google Scholar 

  • Woldesenbet TA, Elagib NA, Ribbe L, Heinrich J (2018) Catchment response to climate and land use changes in the upper blue nile sub-basins, Ethiopia. Sci Total Environ 644:193–206

    Article  CAS  PubMed  Google Scholar 

  • Wu HJ, Chen B (2015) Evaluating uncertainty estimates in distributed hydrological modeling for the wenjing river watershed in China by GLUE, SUFI-2, and ParaSol methods. Ecol Eng 76:110–112

    Article  Google Scholar 

  • Yang J, Reichert P, Abbaspour KC, Xia J, Yang H (2008) Comparing uncertainty analysis techniques for a SWAT application to the chaohe basin in China. J Hydrol 358(1–2):1–23

    Article  Google Scholar 

Download references

Acknowledgements

The authors (Dalila Serpa and Jan Jacob Keizer) would like to acknowledge the financial support of CESAM and WAFLE by FCT/ MCTES, through national funds. Dalila Serpa was funded by national funds (OE) through FCT, I.P., in the scope of the framework contract foreseen in the numbers 4, 5 and 6 of the article 23, of the Decree-Law 57/2016, of August 29, changed by Law 57/2017, of July 19.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Rocha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Project funding: This study was particilly (Dalila Serpa;Jan Jacob Keizer) supported by CESAM (UIDP/50017/2020 + UIDB/50017/2020 + LA/P/0094/2020) by FCT/ MCTES, through national funds,and the project WAFLE (PTDC/ASP-SIL/31573/2017) funded by FEDER, through COMPETE2020–Programa OperacionalCompetitividade e Internacionalização (POCI), and by national funds (OE), through FCT/MCTES.

The online version is available at http://www.springerlink.com

Corresponding editor: Tao Xu

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rocha, J., Quintela, A., Serpa, D. et al. Water yield and biomass production for on a eucalypt-dominated Mediterranean catchment under different climate scenarios. J. For. Res. 34, 1263–1278 (2023). https://doi.org/10.1007/s11676-022-01590-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11676-022-01590-2

Keywords

Navigation