Skip to main content
Log in

Thermodynamic Optimisation of the Ni-Al-Y Ternary System

  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

Ni-base superalloys become more attractive recently for its use in aerospace. As one of the most important constitutional ternary system the Ni-Al-Y system has been thermodynamically optimised in the present work. Solubility of yttrium in fcc-nickel and fcc-aluminium has been taken into account since yttrium can be used as an alloy element in Ni-base superalloys. A comprehensive set of thermodynamic parameters have been obtained. Calculated phase equilibria and enthalpies of formation of ternary intermetallic compounds are consistent with experimental data. This work can be used as basis of multi-component thermodynamic database for Ni-base alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Reference

  1. R.C. Reed, Superalloys, Cambridge University Press, Cambridge, 2008

    Google Scholar 

  2. B. Geddes, H. Leon, and X. Huang, Superalloys: Alloying and Performance, ASM International, Materials Park, 2010

    MATH  Google Scholar 

  3. D.A. Ford, K.P.L. Fullagar, H.K. Bhangu, M.C. Thomas, P.S. Burkholder, K. Harris, and J.B. Wahl, Improved Performance Rhenium Containing Single Crystal Alloy Turbine Blades Utilizing ppm Levels of the Highly Reactive Elements Lanthanum and Yttrium, Trans. ASME J. Eng. Gas Turb. Power, 1999, 121, p 138-143

    Article  Google Scholar 

  4. Thermotech, TTNi8 Database, www.thermocalc.com.

  5. Thermo-Calc, TCNi7 Database, www.thermocalc.com.

  6. Compu-Therm LLC, PanNickel Database, www.computherm.com.

  7. R. Ferro, G. Zanicchi, and R. Marazza, Aluminium-Nickel-Yttrium, Ternary Alloys: A Comprehensive Compendium of Evaluated Constitutional Data and Phase Diagrams, Vol 8, G. Petzow and G. Effenberg, Ed., Weinheim VCH, Germany, 1993, p 58-62

    Google Scholar 

  8. R.M. Rykhal and O.S. Zarechnyuk, Isothermal Section at 800 °C of Yttrium-Nickel-Aluminum Ternary System in the Range of 0–33.3 at.% of Yttrium, Dopov. Akad. Nauk Ukr. RSR Ser. A, 1977, 39, p 375-377

    Google Scholar 

  9. S. Rosen and J.A. Goebel, Phase Equilibria in the Nickel-Aluminum-Yttrium System at 1000 °C, J. Less-Common Met., 1968, 16, p 285-287

    Article  Google Scholar 

  10. K.B. Povarova, N.K. Kazanskaya, A.A. Drozdov, and A.E. Morozov, Rare-Earth Metals (REMs) in Nickel Aluminide-Based Alloys: I. Physicochemical Laws of Interaction in the Ni-Al-REM and NixAly-REM-AE (Alloying Elements) Systems, Russ. Metall., 2008, 2008, p 58-64

    ADS  Google Scholar 

  11. R.E. Gladyshevskii and E. Parthe, Structure of Monoclinic Y4Ni6Al23, Acta Cryst., 1992, C48, p 232-236

    Google Scholar 

  12. R.E. Gladyshevskii, K. Cenzual, H.D. Flack, and E. Parthe, Structure of RNi3Al9 (R = Y, Gd, Dy, Er) with Either Ordered or Partly Disordered Arrangement of Al-Atom Triangles and Rare-Earth-Metal Atoms, Acta Cryst., 1993, B49, p 468-474

    Article  Google Scholar 

  13. R.M. Rykhal, O.S. Zarechnyuk, and Y.P. Yarmolyuk, Crystal Structure of the Compounds YtNiAl4 and YtNiAl2, Sov. Phys.-Crystallogr., 1972, 17, p 453-455

    Google Scholar 

  14. R.E. Gladyshevskii and E. Parthe, Structure of Orthorhombic YNiAl3, Acta Cryst., 1992, C48, p 229-232

    Google Scholar 

  15. A.E. Dwight, M.E. Mueller, R.A. Conner, J.W. Downey, and H. Knott, Ternary Compounds with the Fe2P-Type Structure, Trans. Met. Soc. AIME, 1968, 242, p 2075-2080

    Google Scholar 

  16. V.A. Romaka, Y.N. Grin, Y.P. Yarmolyuk, O.S. Zarechnyuk, and R.V. Skolozdra, Magnetic and Crystallographic Parameters of R2Ni2Ga and R2Ni2Al Compounds, Phys. Met. Metallogr., 1982, 54, p 58-64

    Google Scholar 

  17. R.M. Rykhal, O.S. Zarechnyuk, and O.M. Marich, Isothermal Section of the Gd–Ni–Al Ternary System at 800 °C in the Range 0-33. 3 At.% Gadolinium, Dopov. Akad. Nauk. Ukr. RSR Ser. A, 1978, 9, p 835

    Google Scholar 

  18. R.M. Rykhal, The Crystal Structure of Y3Ni6Al2 and Relative Compounds, Vestn. L’vov. Univ. Ser. Khim., 1977, 19, p 34-36

    Google Scholar 

  19. R.M. Rykhal, O.S. Zarechnyuk, and G.V. Pyshchik, New Representatives of the MgCuAl2 and YNiAl4 Types of the Structure, Dopov. Akad. Nauk. Ukr. RSR Ser. A, 1973, 35, p 568-570

    Google Scholar 

  20. A.V. Tsvyashchenko and L.N. Fomicheva, Crystallization of the Laves Phases RNiAl (C14-type) at High Pressure, J. Less-Common Met., 1987, 135, p L9-L12

    Article  Google Scholar 

  21. A.V. Tsvyashchenko and L.N. Fomicheva, New Polymorphic Modifications of the Compounds RTAl (R = Rare Earth Metal, T = Cu, Ni), Inorg. Mater., 1987, 23, p 1024-1027

    Google Scholar 

  22. R. Raggio, G. Borzone, and R. Ferro, The Al-Rich Region in the Y-Ni-Al System: Microstructures and Phase Equilibria, Intermetallics, 2000, 8, p 247-257

    Article  Google Scholar 

  23. A.L. Vasiliev, M. Aindow, M.J. Backbum, and T.J. Watson, Phase Stability and Microstructure in Devitrified Al-Rich Al-Y-Ni Alloys, Intermetallics, 2004, 12, p 349-362

    Article  Google Scholar 

  24. W.J. Golumbfskie, S.N. Prins, T.J. Eden, and Z.-K. Liu, Predictions of the Al-Rich Region of the Al-Co-Ni-Y System Based Upton First-Principles and Experimental Data, CALPHAD, 2009, 33, p 124-135

    Article  Google Scholar 

  25. W.J. Golumbfskie, R. Arroyave, D. Shin, and Z.K. Liu, Finite-Temperature Thermodynamic and Vibrational Properties of Al-Ni-Y Compounds via First-Principles Calculations, Acta Mater., 2006, 54, p 2291-2304

    Article  Google Scholar 

  26. V. Raghavan, Al-Ni-Y (Aluminum-Nickel-Yttrium), J. Phase Equilib. Diff., 2010, 31, p 57-58

    Article  MathSciNet  Google Scholar 

  27. P. Nash, H.N. Su, and O. Kleppa, Enthalpies of Formation of Compounds in Al-Ni-Y System, Trans. Nonferr. Met. Soc., 2002, 12, p 754-758

    Google Scholar 

  28. M.Y. Na, K.C. Kim, W.T. Kim, and D.H. Kim, Crystallization Behavior of Al-Ni-Y Amorphous Alloys, Appl. Microsc., 2013, 43, p 127-131

    Article  Google Scholar 

  29. B.J. Beaudry and A.H. Daane, Some Laves Phases of Yttrium with Transition Elements, Trans. Met. Soc. AIME, 1960, 218, p 854-859

    Google Scholar 

  30. R.F. Domagala, J.J. Rausch, and D.W. Levinson, The Systems Y-Fe, Y-Ni and Y-Cu, Trans. Am. Soc. Met., 1961, 53, p 137-155

    Google Scholar 

  31. K.H.J. Buschow, The Crystal Structures of the Rare-Earth Compounds of the form R2Ni17, R2Co17 and R2Fe17, J. Less-Common Met., 1966, 11, p 204-208

    Article  Google Scholar 

  32. Y.Y. Pan and P. Nash, The Al-Ni-Zr System (Aluminum-Nickel-Zirconium), Binary Alloy Phase Diagrams, 2nd ed., ASM International, Materials Park, OH, 1991, p 2406-2408

    Google Scholar 

  33. M. Palumbo, G. Borzone, S. Delsante, N. Parodi, G. Cacciamani, R. Ferro, L. Battezzati, and M. Baricco, Thermodynamic Analysis and Assessment of the Ce-Ni System, Intermetallics, 2004, 12, p 1367-1372

    Article  Google Scholar 

  34. P. Nash, The Ni-Yb (Nickel-Ytterbium) System, Bull. Alloy Phase Diagrams, 1989, 10, p 129-132

    Article  Google Scholar 

  35. H.Y. Zhou, X.L. Ou, and X.P. Zhong, An Investigation of the Ho-Ni Phase Diagram, J. Alloys Compds., 1991, 177, p 101-106

    Article  Google Scholar 

  36. Y.Y. Pan and P. Nash, Binary Alloy Phase Diagrams, 2nd ed., ASM International, Materials Park, OH, 1991, p 77

    MATH  Google Scholar 

  37. H. Okamoto, Supplemental Literature Review of Binary Phase Diagrams: Cd-Se, Cu-Hg, Cu-Ho, Eu-Mg, H-Sr, Hf-Si, La-Mn, Mn-Nd, Nb-Y, Ni-Y, Pb-Se, and Sc-Sr, J. Phase Equilib. Diff., 2013, 34, p 430-436

    Article  Google Scholar 

  38. Z. Du and D. Lu, Thermodynamic Modeling of the Co-Ni-Y System, Intermetallics, 2005, 13, p 586-595

    Article  Google Scholar 

  39. N. Mattern, M. Zinkevich, W. Loeser, G. Behr, and J. Acker, Experimental and Thermodynamic Assessment of the Nb-Ni-Y System, J. Phase Equilib. Diff., 2008, 29, p 141-155

    Article  Google Scholar 

  40. M. Mezbahul-Islam and M. Medraj, A Critical Thermodynamic Assessment of the Mg-Ni, Ni-Y Binary and Mg-Ni-Y Ternary Systems, CALPHAD, 2009, 33, p 478-486

    Article  Google Scholar 

  41. R.L. Snyder, Ph.D. Thesis, Iowa State University of Science and Technology, Ames, Iowa, 1960, p 46.

  42. C.E. Lundin, Jr, and D.T. Klodt, Phase Equilibria in the Yttrium-Aluminum System, Am. Soc. Metal. Trans. Quart., 1961, 54, p 68-75

    Google Scholar 

  43. S.H. Liu, Y. Du, H.H. Xu, C.Y. He, and J.C. Schuster, Experimental Investigation of the Al-Y Phase Diagram, J. Alloys Compd., 2006, 414, p 60-65

    Article  Google Scholar 

  44. L.F. Yamishchikov, V.I. Kober, V.A. Lebedev, I.F. Nichkov, and S.P. Raspopin, Thermodynamics of Y-Al Alloys, Rich in Aluminum, Zh. Fiz. Khim., 1975, 49, p 2933-2935

    Google Scholar 

  45. L.F. Yamishchikov, V.I. Kober, V.A. Lebedev, I.F. Nichkov, and S.P. Raspopin, Thermodynamic Properties of Yttrium Alloys with Low-Melting Metals, Zh. Fiz. Khim., 1979, 53, p 1163

    Google Scholar 

  46. X. Zhang and S. Wang, First-Principles Study of Thermodynamic Properties and Solubility of Aluminium-Rare-Earth Intermetallics, Comput. Mater. Sci., 2014, 90, p 56-60

    Article  Google Scholar 

  47. M.E. van Dalen, R.A. Karnesky, J.R. Cabotaje, D.C. Dunand, and D.N. Seidman, Erbium and Ytterbium Solubilities and Diffusivities in Aluminum as Determined by Nanoscale Characterization of Precipitates, Acta Mater., 2009, 57, p 4081-4089

    Article  Google Scholar 

  48. Q. Ran, H.L. Lukas, G. Effenberg, and G. Petzow, A Thermodynamic Optimization of the Al-Y System, J. Less-Common Met., 1989, 146, p 213-222

    Article  Google Scholar 

  49. H.L. Lukas, System Al-Y, COST 507, Thermochemical Database for Light Metal Alloys, I. Ansara, A.T. Dinsdale, and M.H. Rand, Ed., European Communities, Luxembourg, 1998, p 99

    Google Scholar 

  50. S. Liu, Y. Du, and H. Chen, A Thermodynamic Reassessment of the Al-Y System, CALPHAD, 2006, 30, p 334-340

    Article  Google Scholar 

  51. H. Okamoto, Al-Y (Aluminum-Yttrium), J. Phase Equil. Diff., 2008, 29, p 114

    Article  Google Scholar 

  52. W. Huang and Y.A. Chang, A Thermodynamic Analysis of the Ni-Al System, Intermetallics, 1998, 6, p 487-498

    Article  Google Scholar 

  53. N. Saunders and A.P. Miodownik, CALPHAD Calculation of Phase Diagram: A Comprehensive Guide, Pergamon Press, Oxford, 1998

    Google Scholar 

  54. W. Cao, S.-L. Chen, F. Zhang, K. Wu, Y. Yang, Y.A. Chang, R. Schmid-Fetzer, and W.A. Oates, PANDAT Software with PanEngine PanOptimizer and PanPrecipitation for Multi-component Phase Diagram Calculation and Materials Property Simulation, CALPHAD, 2009, 33, p 328-342

    Article  Google Scholar 

  55. A.T. Dinsdale, SGTE Data for Pure Elements, CALPHAD, 1991, 15, p 317-425

    Article  Google Scholar 

Download references

Acknowledgment

This work is financially supported by NSCF (Grant No. 51401095) and Jiangxi University of Science and Technology (Grant No. jxxjbs15001 & 3304000029). Thanks are also given to Mr. Zi-Ang Wang for his help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hang Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, J., Yang, B., Chen, H. et al. Thermodynamic Optimisation of the Ni-Al-Y Ternary System. J. Phase Equilib. Diffus. 36, 357–365 (2015). https://doi.org/10.1007/s11669-015-0390-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-015-0390-6

Keywords

Navigation